1
|
Hu L, Li X, Li C, Wang L, Han L, Ni W, Zhou P, Hu S. Characterization of a novel multifunctional glycoside hydrolase family in the metagenome-assembled genomes of horse gut. Gene 2024; 927:148758. [PMID: 38977109 DOI: 10.1016/j.gene.2024.148758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/29/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
The gut microbiota is a treasure trove of carbohydrate-active enzymes (CAZymes). To explore novel and efficient CAZymes, we analyzed the 4,142 metagenome-assembled genomes (MAGs) of the horse gut microbiota and found the MAG117.bin13 genome (Bacteroides fragilis) contains the highest number of polysaccharide utilisation loci sites (PULs), indicating its high capability for carbohydrate degradation. Bioinformatics analysis indicate that the PULs region of the MAG117.bin13 genome encodes many hypothetical proteins, which are important sources for exploring novel CAZymes. Interestingly, we discovered a hypothetical protein (595 amino acids). This protein exhibits potential CAZymes activity and has a lower similarity to CAZymes, we named it BfLac2275. We purified the protein using prokaryotic expression technology and studied its enzymatic function. The hydrolysis experiment of the polysaccharide substrate showed that the BfLac2275 protein has the ability to degrade α-lactose (156.94 U/mg), maltose (92.59 U/mg), raffinose (86.81 U/mg), and hyaluronic acid (5.71 U/mg). The enzyme activity is optimal at pH 5.0 and 30 ℃, indicating that the hypothetical protein BfLac2275 is a novel and multifunctional CAZymes in the glycoside hydrolases (GHs). These properties indicate that BfLac2275 has broad application prospects in many fields such as plant polysaccharide decomposition, food industry, animal feed additives and enzyme preparations. This study not only serves as a reference for exploring novel CAZymes encoded by gut microbiota but also provides an example for further studying the functional annotation of hypothetical genes in metagenomic assembly genomes.
Collapse
Affiliation(s)
- Lingling Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaoyue Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Cunyuan Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Limin Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang 832003, China
| | - Lin Han
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Wei Ni
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Ping Zhou
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang 832003, China.
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
2
|
Fuchs W, Rachbauer L, Rittmann SKMR, Bochmann G, Ribitsch D, Steger F. Eight Up-Coming Biotech Tools to Combat Climate Crisis. Microorganisms 2023; 11:1514. [PMID: 37375016 DOI: 10.3390/microorganisms11061514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Biotechnology has a high potential to substantially contribute to a low-carbon society. Several green processes are already well established, utilizing the unique capacity of living cells or their instruments. Beyond that, the authors believe that there are new biotechnological procedures in the pipeline which have the momentum to add to this ongoing change in our economy. Eight promising biotechnology tools were selected by the authors as potentially impactful game changers: (i) the Wood-Ljungdahl pathway, (ii) carbonic anhydrase, (iii) cutinase, (iv) methanogens, (v) electro-microbiology, (vi) hydrogenase, (vii) cellulosome and, (viii) nitrogenase. Some of them are fairly new and are explored predominantly in science labs. Others have been around for decades, however, with new scientific groundwork that may rigorously expand their roles. In the current paper, the authors summarize the latest state of research on these eight selected tools and the status of their practical implementation. We bring forward our arguments on why we consider these processes real game changers.
Collapse
Affiliation(s)
- Werner Fuchs
- Department IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria
| | - Lydia Rachbauer
- Lawrence Berkeley National Laboratory, Deconstruction Division at the Joint Bioenergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA
| | - Simon K-M R Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Djerassiplatz 1, 1030 Wien, Austria
| | - Günther Bochmann
- Department IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria
| | - Doris Ribitsch
- ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
| | - Franziska Steger
- Department IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria
| |
Collapse
|
3
|
Hammed A, Polunin Y, Voronov A, Pryor S. Tubular electrosynthesis of silica-coated magnetite and evaluation of magnetic nanobiocatalyst efficacy during biomass hydrolysis. Bioprocess Biosyst Eng 2022; 45:1311-1318. [PMID: 35876966 DOI: 10.1007/s00449-022-02746-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/10/2022] [Indexed: 11/02/2022]
Abstract
Magnetic nanobiocatalysts (MNBCs) are a promising immobilization approach to ease enzyme recovery during bioprocessing. However, industrial adoption of MNBCs is unfeasible because MNBC-synthesis involves complex and potentially expensive processing steps including synthesis of silica-coated superparamagnetic iron oxide nanoparticles (Si-SPIONs). We developed a single-step process for Si-SPION synthesis using a tubular electrochemical system (TES) and investigated the effect of concentration of the Na2SiO3 coating agent on Si-SPION properties. The Si-SPIONs were used as a support for attachment of polymer-cellulase conjugate to make MNBCs. The spherical Si-SPIONs were 8-12 nm in diameter including a 2-nm silica coating. Na2SiO3 concentration in the reactor did not affect Si-SPION morphology, but increasing Na2SiO3 concentration reduced SPION productivity in the reactor. Protective properties of the SPION silica coatings were demonstrated by showing that they prevented dissolution of SPIONs in an acid solution for 48 h. Enzyme attachment was quantified as protein adsorption on Si-SPIONs which reached 55 μg/mg Si-SPION. The MNBCs were recovered and reused four times. The use of TES for Si-SPION synthesis is promising to reduce MNBC production complexity.
Collapse
Affiliation(s)
- Ademola Hammed
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND, USA.
| | - Yehor Polunin
- Coatings and Polymeric Materials Department, North Dakota State University, Fargo, ND, USA
| | - Andriy Voronov
- Coatings and Polymeric Materials Department, North Dakota State University, Fargo, ND, USA
| | - Scott Pryor
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND, USA.,College of Engineering, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
4
|
Fan J, Yu Q, Li M, Chen J, Wang Y, Zhang Y, Li G, Ma X, Zhong H, Yu Y. Optimization of ethanol-extracted lignin from palm fiber by response surface methodology and preparation of activated carbon fiber for dehumidification. BIORESOUR BIOPROCESS 2022; 9:61. [PMID: 38647770 PMCID: PMC10992789 DOI: 10.1186/s40643-022-00549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/12/2022] [Indexed: 11/10/2022] Open
Abstract
Lignin is a renewable bioresource that can be used for a variety of value-added applications. However, the effective separation of lignin from lignocellulosic biomass remains an ongoing challenge. In this study, lignin was extracted from waste palm fiber and successfully converted into a dehumidifying material. The following four process parameters of lignin extraction from palm fiber were optimized systematically and comprehensively using the response surface methodology: reaction time, extraction temperature, ethanol concentration and solid/liquid ratio. The results revealed that under the optimum processing conditions (111 min of extraction at 174 °C using 73% ethanol at 1/16 g/mL solid/liquid ratio), the extraction yield of lignin was 56.2%. The recovery of ethanol solvent was as high as 91.8%. Further, the lignin could be directly used without purification to produce lignin-based activated carbon fibers (LACFs) with specific surface area and total pore volume of 1375 m2/g and 0.881 cm3/g, respectively. Compared with the commercial pitch-based activated carbon fiber, the LACF has a higher specific area and superior pore structure parameters. This work provides a feasible route for extracting lignin from natural palm fiber and demonstrates its use in the preparation of activated carbon fiber with a remarkable performance as a solid dehumidification agent.
Collapse
Affiliation(s)
- Jie Fan
- Solar Energy Research Institute, Yunnan Normal University, Kunming, 650500, China
- Key Laboratory of Solar Heating and Cooling Technology of Yunnan Provincial Universities, Kunming, 650500, China
| | - Qiongfen Yu
- Solar Energy Research Institute, Yunnan Normal University, Kunming, 650500, China.
- Key Laboratory of Solar Heating and Cooling Technology of Yunnan Provincial Universities, Kunming, 650500, China.
| | - Ming Li
- Solar Energy Research Institute, Yunnan Normal University, Kunming, 650500, China
- Key Laboratory of Solar Heating and Cooling Technology of Yunnan Provincial Universities, Kunming, 650500, China
| | - Jie Chen
- Solar Energy Research Institute, Yunnan Normal University, Kunming, 650500, China
- Key Laboratory of Solar Heating and Cooling Technology of Yunnan Provincial Universities, Kunming, 650500, China
| | - Yunfeng Wang
- Solar Energy Research Institute, Yunnan Normal University, Kunming, 650500, China
- Key Laboratory of Solar Heating and Cooling Technology of Yunnan Provincial Universities, Kunming, 650500, China
| | - Ying Zhang
- Solar Energy Research Institute, Yunnan Normal University, Kunming, 650500, China
- Key Laboratory of Solar Heating and Cooling Technology of Yunnan Provincial Universities, Kunming, 650500, China
| | - Guoliang Li
- Solar Energy Research Institute, Yunnan Normal University, Kunming, 650500, China
- Key Laboratory of Solar Heating and Cooling Technology of Yunnan Provincial Universities, Kunming, 650500, China
| | - Xun Ma
- Solar Energy Research Institute, Yunnan Normal University, Kunming, 650500, China
- Key Laboratory of Solar Heating and Cooling Technology of Yunnan Provincial Universities, Kunming, 650500, China
| | - Hao Zhong
- Solar Energy Research Institute, Yunnan Normal University, Kunming, 650500, China
- Key Laboratory of Solar Heating and Cooling Technology of Yunnan Provincial Universities, Kunming, 650500, China
| | - Yamei Yu
- Solar Energy Research Institute, Yunnan Normal University, Kunming, 650500, China
- Key Laboratory of Solar Heating and Cooling Technology of Yunnan Provincial Universities, Kunming, 650500, China
| |
Collapse
|
5
|
Abstract
Cellulosomes are elaborate multienzyme complexes capable of efficiently deconstructing lignocellulosic substrates, produced by cellulolytic anaerobic microorganisms, colonizing a large variety of ecological niches. These macromolecular structures have a modular architecture and are composed of two main elements: the cohesin-bearing scaffoldins, which are non-catalytic structural proteins, and the various dockerin-bearing enzymes that tenaciously bind to the scaffoldins. Cellulosome assembly is mediated by strong and highly specific interactions between the cohesin modules, present in the scaffoldins, and the dockerin modules, present in the catalytic units. Cellulosomal architecture and composition varies between species and can even change within the same organism. These differences seem to be largely influenced by external factors, including the nature of the available carbon-source. Even though cellulosome producing organisms are relatively few, the development of new genomic and proteomic technologies has allowed the identification of cellulosomal components in many archea, bacteria and even some primitive eukaryotes. This reflects the importance of this cellulolytic strategy and suggests that cohesin-dockerin interactions could be involved in other non-cellulolytic processes. Due to their building-block nature and highly cellulolytic capabilities, cellulosomes hold many potential biotechnological applications, such as the conversion of lignocellulosic biomass in the production of biofuels or the development of affinity based technologies.
Collapse
Affiliation(s)
- Victor D Alves
- CIISA, Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Carlos M G A Fontes
- CIISA, Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Pedro Bule
- CIISA, Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal.
| |
Collapse
|
6
|
Co-Immobilization of Xylanase and Scaffolding Protein onto an Immobilized Metal Ion Affinity Membrane. Catalysts 2020. [DOI: 10.3390/catal10121408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lignocellulosic biomass conversion technology seeks to convert agricultural waste to sugars through the use of various cellulases and hemicellulases. In practice, the application of free enzymes might increase the cost of the process due to difficulties with recovery of the enzymes and products. Immobilization might be an effective approach for recovering the hydrolysis products and improving the stability and reusability of the enzymes. In this study, we used a recombinant genetic engineering approach to construct a scaffold protein gene (CipA) and a xylanase gene (XynC) fused to a dockerin gene (DocT). After expressing CipA and XynC-DocT (XynCt) genes using E. coli hosts, the crude extracts were collected. An immobilized metal ion affinity membrane/Co2+ ion (IMAM-Co2+) system was prepared to adsorb CipA in its crude extract, thereby allowing simultaneous purification and immobilization of CipA protein. A similar approach was applied for the adsorption of XynCt protein, exploiting the interaction between the cohesin units in IMAM-Co2+-CipA and the dockerin unit in XynCt. The activity of the xylanase unit was enhanced in the presence of Co2+ for both the free XynCt enzymes and the immobilized CipA-XynCt. The heat resistance and stability over a wide range of values of pH of the immobilized CipA-XynCt were superior to those of the free XynCt. Furthermore, the immobilized CipA-XynCt retained approximately 80% of its initial activity after seven reaction cycles. The values of Km and νmax of IMAM-Co2+-CipA-XynCt (1.513 mg/mL and 3.831 U/mg, respectively) were the best among those of the other tested forms of XynCt.
Collapse
|
7
|
Arora R, Behera S, Sharma NK, Singh I, Ransore V, Saiyyed R, Kumar S. Bioprospecting Saccharification of Alkali Pretreated Paddy Straw Through Statistically Designed Parameters for Biofuel Production. Ind Biotechnol (New Rochelle N Y) 2020. [DOI: 10.1089/ind.2020.0015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Richa Arora
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, India
| | - Shuvashish Behera
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, India
| | - Nilesh Kumar Sharma
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, India
| | - Isheeta Singh
- Department of Chemical Engineering, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, India
| | - Vishnu Ransore
- School of Life Sciences, Devi Ahilya Vishwavidyalaya, Indore, India
| | - Rehan Saiyyed
- School of Life Sciences, Devi Ahilya Vishwavidyalaya, Indore, India
| | - Sachin Kumar
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, India
| |
Collapse
|
8
|
Srivastava RK, Akhtar N, Verma M, Imandi SB. Primary metabolites from overproducing microbial system using sustainable substrates. Biotechnol Appl Biochem 2020; 67:852-874. [PMID: 32294277 DOI: 10.1002/bab.1927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/12/2020] [Indexed: 02/06/2023]
Abstract
Primary (or secondary) metabolites are produced by animals, plants, or microbial cell systems either intracellularly or extracellularly. Production capabilities of microbial cell systems for many types of primary metabolites have been exploited at a commercial scale. But the high production cost of metabolites is a big challenge for most of the bioprocess industries and commercial production needs to be achieved. This issue can be solved to some extent by screening and developing the engineered microbial systems via reconstruction of the genome-scale metabolic model. The predicted genetic modification is applied for an increased flux in biosynthesis pathways toward the desired product. Wherein the resulting microbial strain is capable of converting a large amount of carbon substrate to the expected product with minimum by-product formation in the optimal operating conditions. Metabolic engineering efforts have also resulted in significant improvement of metabolite yields, depending on the nature of the products, microbial cell factory modification, and the types of substrate used. The objective of this review is to comprehend the state of art for the production of various primary metabolites by microbial strains system, focusing on the selection of efficient strain and genetic or pathway modifications, applied during strain engineering.
Collapse
Affiliation(s)
- Rajesh K Srivastava
- Department of Biotechnology, GIT, GITAM (Deemed to be University), Gandhi Nagar Campus, Rushikonda, Visakhapatnam, India
| | - Nasim Akhtar
- Department of Biotechnology, GIT, GITAM (Deemed to be University), Gandhi Nagar Campus, Rushikonda, Visakhapatnam, India
| | - Malkhey Verma
- Departments of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, India
| | - Sarat Babu Imandi
- Department of Biotechnology, GIT, GITAM (Deemed to be University), Gandhi Nagar Campus, Rushikonda, Visakhapatnam, India
| |
Collapse
|
9
|
Evaluating the Pathway for Co-fermentation of Glucose and Xylose for Enhanced Bioethanol Production Using Flux Balance Analysis. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0026-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Wang Y, Leng L, Islam MK, Liu F, Lin CSK, Leu SY. Substrate-Related Factors Affecting Cellulosome-Induced Hydrolysis for Lignocellulose Valorization. Int J Mol Sci 2019; 20:ijms20133354. [PMID: 31288425 PMCID: PMC6651384 DOI: 10.3390/ijms20133354] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/30/2019] [Accepted: 07/03/2019] [Indexed: 11/22/2022] Open
Abstract
Cellulosomes are an extracellular supramolecular multienzyme complex that can efficiently degrade cellulose and hemicelluloses in plant cell walls. The structural and unique subunit arrangement of cellulosomes can promote its adhesion to the insoluble substrates, thus providing individual microbial cells with a direct competence in the utilization of cellulosic biomass. Significant progress has been achieved in revealing the structures and functions of cellulosomes, but a knowledge gap still exists in understanding the interaction between cellulosome and lignocellulosic substrate for those derived from biorefinery pretreatment of agricultural crops. The cellulosomic saccharification of lignocellulose is affected by various substrate-related physical and chemical factors, including native (untreated) wood lignin content, the extent of lignin and xylan removal by pretreatment, lignin structure, substrate size, and of course substrate pore surface area or substrate accessibility to cellulose. Herein, we summarize the cellulosome structure, substrate-related factors, and regulatory mechanisms in the host cells. We discuss the latest advances in specific strategies of cellulosome-induced hydrolysis, which can function in the reaction kinetics and the overall progress of biorefineries based on lignocellulosic feedstocks.
Collapse
Affiliation(s)
- Ying Wang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, China
- Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Ling Leng
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Md Khairul Islam
- Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Fanghua Liu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
11
|
Jing K, Guo Y, Ng IS. Antigen-43-mediated surface display revealed in Escherichia coli by different fusion sites and proteins. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0248-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
12
|
Angelov A, Pham VTT, Übelacker M, Brady S, Leis B, Pill N, Brolle J, Mechelke M, Moerch M, Henrissat B, Liebl W. A metagenome-derived thermostable β-glucanase with an unusual module architecture which defines the new glycoside hydrolase family GH148. Sci Rep 2017; 7:17306. [PMID: 29229913 PMCID: PMC5725463 DOI: 10.1038/s41598-017-16839-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/16/2017] [Indexed: 12/15/2022] Open
Abstract
The discovery of novel and robust enzymes for the breakdown of plant biomass bears tremendous potential for the development of sustainable production processes in the rapidly evolving new bioeconomy. By functional screening of a metagenomic library from a volcano soil sample a novel thermostable endo-β-glucanase (EngU) which is unusual with regard to its module architecture and cleavage specificity was identified. Various recombinant EngU variants were characterized. Assignment of EngU to an existing glycoside hydrolase (GH) family was not possible. Two regions of EngU showed weak sequence similarity to proteins of the GH clan GH-A, and acidic residues crucial for catalytic activity of EngU were identified by mutation. Unusual, a carbohydrate-binding module (CBM4) which displayed binding affinity for β-glucan, lichenin and carboxymethyl-cellulose was found as an insertion between these two regions. EngU hydrolyzed β-1,4 linkages in carboxymethyl-cellulose, but displayed its highest activity with mixed linkage (β-1,3-/β-1,4-) glucans such as barley β-glucan and lichenin, where in contrast to characterized lichenases cleavage occurred predominantly at the β-1,3 linkages of C4-substituted glucose residues. EngU and numerous related enzymes with previously unknown function represent a new GH family of biomass-degrading enzymes within the GH-A clan. The name assigned to the new GH family is GH148.
Collapse
Affiliation(s)
- Angel Angelov
- Department of Microbiology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Vu Thuy Trang Pham
- Department of Microbiology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Maria Übelacker
- Department of Microbiology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Silja Brady
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, Göttingen, Germany
| | - Benedikt Leis
- Department of Microbiology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Nicole Pill
- Department of Microbiology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Judith Brolle
- Department of Microbiology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Matthias Mechelke
- Department of Microbiology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Matthias Moerch
- Department of Microbiology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Bernard Henrissat
- Architecture et Function des Macromolécules Biologiques, CNRS, Aix-Marseille University, Marseille, France
| | - Wolfgang Liebl
- Department of Microbiology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan, Germany.
| |
Collapse
|
13
|
Harnessing yeast organelles for metabolic engineering. Nat Chem Biol 2017; 13:823-832. [DOI: 10.1038/nchembio.2429] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 05/23/2016] [Indexed: 11/08/2022]
|
14
|
Moraïs S, Stern J, Kahn A, Galanopoulou AP, Yoav S, Shamshoum M, Smith MA, Hatzinikolaou DG, Arnold FH, Bayer EA. Enhancement of cellulosome-mediated deconstruction of cellulose by improving enzyme thermostability. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:164. [PMID: 27493686 PMCID: PMC4973527 DOI: 10.1186/s13068-016-0577-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 07/27/2016] [Indexed: 05/25/2023]
Abstract
BACKGROUND The concerted action of three complementary cellulases from Clostridium thermocellum, engineered to be stable at elevated temperatures, was examined on a cellulosic substrate and compared to that of the wild-type enzymes. Exoglucanase Cel48S and endoglucanase Cel8A, both key elements of the natural cellulosome from this bacterium, were engineered previously for increased thermostability, either by SCHEMA, a structure-guided, site-directed protein recombination method, or by consensus-guided mutagenesis combined with random mutagenesis using error-prone PCR, respectively. A thermostable β-glucosidase BglA mutant was also selected from a library generated by error-prone PCR that will assist the two cellulases in their methodic deconstruction of crystalline cellulose. The effects of a thermostable scaffoldin versus those of a largely mesophilic scaffoldin were also examined. By improving the stability of the enzyme subunits and the structural component, we aimed to improve cellulosome-mediated deconstruction of cellulosic substrates. RESULTS The results demonstrate that the combination of thermostable enzymes as free enzymes and a thermostable scaffoldin was more active on the cellulosic substrate than the wild-type enzymes. Significantly, "thermostable" designer cellulosomes exhibited a 1.7-fold enhancement in cellulose degradation compared to the action of conventional designer cellulosomes that contain the respective wild-type enzymes. For designer cellulosome formats, the use of the thermostabilized scaffoldin proved critical for enhanced enzymatic performance under conditions of high temperatures. CONCLUSIONS Simple improvement in the activity of a given enzyme does not guarantee its suitability for use in an enzyme cocktail or as a designer cellulosome component. The true merit of improvement resides in its ultimate contribution to synergistic action, which can only be determined experimentally. The relevance of the mutated thermostable enzymes employed in this study as components in multienzyme systems has thus been confirmed using designer cellulosome technology. Enzyme integration via a thermostable scaffoldin is critical to the ultimate stability of the complex at higher temperatures. Engineering of thermostable cellulases and additional lignocellulosic enzymes may prove a determinant parameter for development of state-of-the-art designer cellulosomes for their employment in the conversion of cellulosic biomass to soluble sugars.Graphical abstractConversion of conventional designer cellulosomes into thermophilic designer cellulosomes.
Collapse
Affiliation(s)
- Sarah Moraïs
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Johanna Stern
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Amaranta Kahn
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Anastasia P. Galanopoulou
- Microbiology Group, Faculty of Biology, National and Kapodistrian University of Athens, Zografou Campus, 15784 Athens, Greece
| | - Shahar Yoav
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
- Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, P.O. Box 12, 76100 Rehovot, Israel
| | - Melina Shamshoum
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Matthew A. Smith
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 USA
| | - Dimitris G. Hatzinikolaou
- Microbiology Group, Faculty of Biology, National and Kapodistrian University of Athens, Zografou Campus, 15784 Athens, Greece
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 USA
| | - Edward A. Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
- Department of Biological Chemistry, The Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
15
|
Min BC, Bhayani BV, Jampana VS, Ramarao BV. Enhancement of the enzymatic hydrolysis of fines from recycled paper mill waste rejects. BIORESOUR BIOPROCESS 2015. [DOI: 10.1186/s40643-015-0068-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
16
|
Arora R, Behera S, Sharma NK, Kumar S. A new search for thermotolerant yeasts, its characterization and optimization using response surface methodology for ethanol production. Front Microbiol 2015; 6:889. [PMID: 26388844 PMCID: PMC4555967 DOI: 10.3389/fmicb.2015.00889] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 08/17/2015] [Indexed: 11/13/2022] Open
Abstract
The progressive rise in energy crisis followed by green house gas (GHG) emissions is serving as the driving force for bioethanol production from renewable resources. Current bioethanol research focuses on lignocellulosic feedstocks as these are abundantly available, renewable, sustainable and exhibit no competition between the crops for food and fuel. However, the technologies in use have some drawbacks including incapability of pentose fermentation, reduced tolerance to products formed, costly processes, etc. Therefore, the present study was carried out with the objective of isolating hexose and pentose fermenting thermophilic/thermotolerant ethanologens with acceptable product yield. Two thermotolerant isolates, NIRE-K1 and NIRE-K3 were screened for fermenting both glucose and xylose and identified as Kluyveromyces marxianus NIRE-K1 and K. marxianus NIRE-K3. After optimization using Face-centered Central Composite Design (FCCD), the growth parameters like temperature and pH were found to be 45.17°C and 5.49, respectively for K. marxianus NIRE-K1 and 45.41°C and 5.24, respectively for K. marxianus NIRE-K3. Further, batch fermentations were carried out under optimized conditions, where K. marxianus NIRE-K3 was found to be superior over K. marxianus NIRE-K1. Ethanol yield (Y x∕s ), sugar to ethanol conversion rate (%), microbial biomass concentration (X) and volumetric product productivity (Q p ) obtained by K. marxianus NIRE-K3 were found to be 9.3, 9.55, 14.63, and 31.94% higher than that of K. marxianus NIRE-K1, respectively. This study revealed the promising potential of both the screened thermotolerant isolates for bioethanol production.
Collapse
Affiliation(s)
- Richa Arora
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-EnergyKapurthala, India
- I.K Gujral Punjab Technical UniversityKapurthala, India
| | - Shuvashish Behera
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-EnergyKapurthala, India
| | - Nilesh K. Sharma
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-EnergyKapurthala, India
- I.K Gujral Punjab Technical UniversityKapurthala, India
| | - Sachin Kumar
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-EnergyKapurthala, India
| |
Collapse
|