1
|
Wang H, Masuku MV, Tao Y, Yang J, Kuang Y, Lyu C, Huang J, Yang S. Improved Stability and Catalytic Efficiency of ω-Transaminase in Aqueous Mixture of Deep Eutectic Solvents. Molecules 2023; 28:molecules28093895. [PMID: 37175305 PMCID: PMC10180074 DOI: 10.3390/molecules28093895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The efficient biosynthesis of chiral amines at an industrial scale to meet the high demand from industries that require chiral amines as precursors is challenging due to the poor stability and low catalytic efficiency of ω-transaminases (ω-TAs). Herein, this study adopted a green and efficient solvent engineering method to explore the effects of various aqueous solutions of deep eutectic solvents (DESs) as cosolvents on the catalytic efficiency and stability of ω-TA. Binary- and ternary-based DESs were used as cosolvents in enhancing the catalytic activity and stability of a ω-TA variant from Aspergillus terreus (E133A). The enzyme exhibited a higher catalytic activity in a ternary-based DES that was 2.4-fold higher than in conventional buffer. Moreover, the thermal stability was enhanced by a magnitude of 2.7, with an improvement in storage stability. Molecular docking studies illustrated that the most potent DES established strong hydrogen bond interactions with the enzyme's amino acid, which enhanced the catalytic efficiency and improved the stability of the ω-TA. Molecular docking is essential in designing DESs for a specific enzyme.
Collapse
Affiliation(s)
- Hongpeng Wang
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Mercy Vimbai Masuku
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yachen Tao
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jiayao Yang
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yi Kuang
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou 311300, China
| | - Changjiang Lyu
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jun Huang
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Shengxiang Yang
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
2
|
Zhou M, Fakayode OA, Ren M, Li H, Liang J, Yagoub AEA, Fan Z, Zhou C. Laccase-catalyzed lignin depolymerization in deep eutectic solvents: challenges and prospects. BIORESOUR BIOPROCESS 2023; 10:21. [PMID: 38647951 PMCID: PMC10992038 DOI: 10.1186/s40643-023-00640-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/26/2023] [Indexed: 04/25/2024] Open
Abstract
Lignin has enormous potential as a renewable feedstock for depolymerizing to numerous high-value chemicals. However, lignin depolymerization is challenging owing to its recalcitrant, heterogenous, and limited water-soluble nature. From the standpoint of environmental friendliness and sustainability, enzymatic depolymerization of lignin is of great significance. Notably, laccases play an essential role in the enzymatic depolymerization of lignin and are considered the ultimate green catalysts. Deep eutectic solvent (DES), an efficient media in biocatalysis, are increasingly recognized as the newest and utmost green solvent that highly dissolves lignin. This review centers on a lignin depolymerization strategy by harnessing the good lignin fractionating capability of DES and the high substrate and product selectivity of laccase. Recent progress and insights into the laccase-DES interactions, protein engineering strategies for improving DES compatibility with laccase, and controlling the product selectivity of lignin degradation by laccase or in DES systems are extensively provided. Lastly, the challenges and prospects of the alliance between DES and laccase for lignin depolymerization are discussed. The collaboration of laccase and DES provides a great opportunity to develop an enzymatic route for lignin depolymerization.
Collapse
Affiliation(s)
- Man Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Olugbenga Abiola Fakayode
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
- Department of Agricultural and Food Engineering, University of Uyo, Uyo, 520001, Akwa Ibom State, Nigeria
| | - Manni Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Haoxin Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Jiakang Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | | | - Zhiliang Fan
- Biological and Agricultural Engineering Department, University of California, Davis, 95616, USA
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
3
|
Combination of Enzymes and Deep Eutectic Solvents as Powerful Toolbox for Organic Synthesis. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020516. [PMID: 36677575 PMCID: PMC9863131 DOI: 10.3390/molecules28020516] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
During the last decade, a wide spectrum of applications and advantages in the use of deep eutectic solvents for promoting organic reactions has been well established among the scientific community. Among these synthetic methodologies, in recent years, various examples of biocatalyzed processes have been reported, making use of eutectic mixtures as reaction media, as an improvement in terms of selectivity and sustainability. This review aims to show the newly reported protocols in the field, subdivided by reaction class as a 'toolbox' guide for organic synthesis.
Collapse
|
4
|
Mao S, Sun J, Wang L, Gao X, Liu X, Lu F, Qin HM. Mining and characterization of 3-ketosteroid-∆1-dehydrogenases from Arthrobacter simplex genome and applications for steroid dehydrogenation. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Cicco L, Dilauro G, Perna FM, Vitale P, Capriati V. Advances in deep eutectic solvents and water: applications in metal- and biocatalyzed processes, in the synthesis of APIs, and other biologically active compounds. Org Biomol Chem 2021; 19:2558-2577. [DOI: 10.1039/d0ob02491k] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review highlights recent advances in metal- and biocatalyzed transformations, in the synthesis of APIs and other biologically active compounds, when employing deep eutectic solvents and water as environmentally responsible solvents.
Collapse
Affiliation(s)
- Luciana Cicco
- Dipartimento di Farmacia-Scienze del Farmaco
- Università di Bari “Aldo Moro”
- Consorzio C.I.N.M.P.I.S
- Bari
- Italy
| | - Giuseppe Dilauro
- Dipartimento di Farmacia-Scienze del Farmaco
- Università di Bari “Aldo Moro”
- Consorzio C.I.N.M.P.I.S
- Bari
- Italy
| | - Filippo Maria Perna
- Dipartimento di Farmacia-Scienze del Farmaco
- Università di Bari “Aldo Moro”
- Consorzio C.I.N.M.P.I.S
- Bari
- Italy
| | - Paola Vitale
- Dipartimento di Farmacia-Scienze del Farmaco
- Università di Bari “Aldo Moro”
- Consorzio C.I.N.M.P.I.S
- Bari
- Italy
| | - Vito Capriati
- Dipartimento di Farmacia-Scienze del Farmaco
- Università di Bari “Aldo Moro”
- Consorzio C.I.N.M.P.I.S
- Bari
- Italy
| |
Collapse
|
6
|
Peng F, Chen QS, Li FZ, Ou XY, Zong MH, Lou WY. Using deep eutectic solvents to improve the biocatalytic reduction of 2-hydroxyacetophenone to (R)-1-phenyl-1,2-ethanediol by Kurthia gibsonii SC0312. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110773] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Peng F, Zhao Y, Li FZ, Ou XY, Zeng YJ, Zong MH, Lou WY. Highly enantioselective resolution of racemic 1-phenyl-1,2-ethanediol to (S)-1-phenyl-1,2-ethanediol by Kurthia gibsonii SC0312 in a biphasic system. J Biotechnol 2020; 308:21-26. [PMID: 31758968 DOI: 10.1016/j.jbiotec.2019.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022]
Abstract
The asymmetric resolution of racemic 1-phenyl-1,2-ethanediol (PED) to (S)-PED by Kurthia gibsonii SC0312 (K. gibsonii SC0312) was conducted in a biphasic system comprised of an organic solvent and aqueous phosphate buffer. The impacts of organic solvents on the whole cell catalytic activity, metabolic activity, membrane integrity, and material distribution were first evaluated. The results showed that all organic solvents, except for dibutyl phthalate, showed a detrimental effect on the metabolic activity of the cells, especially for those with low log P values. All organic solvents were capable of changing the membrane permeability and membrane integrity of the cells. Moreover, some organic solvents showed a good extraction of the oxidation product. Finally, a high yield of 47.7 % of (S)-PED was obtained by the asymmetric resolution of racemic PED using K. gibsonii SC0312 in a biphasic system under the optimal conditions: racemic PED 120 mM, temperature 35 °C, reaction time 6 h, 180 rpm, and a volume ratio of dibutyl phthalate to aqueous phosphate buffer of 1:1. The optical purity of (S)-PED increased from 51.3 % to >99 %. This work described an efficient approach to improve reaction efficiency, and constructed a highly effective biphasic reaction system for the fabrication of (S)-PED via K. gibsonii SC0312.
Collapse
Affiliation(s)
- Fei Peng
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Ying Zhao
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Fang-Zhou Li
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Xiao-Yang Ou
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Ying-Jie Zeng
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Min-Hua Zong
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Wen-Yong Lou
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China.
| |
Collapse
|
8
|
Peng F, Ou X, Zhao Y, Zong M, Lou W. Highly selective resolution of racemic 1‐phenyl‐1,2‐ethanediol by a novel strain
Kurthia gibsonii
SC
0312. Lett Appl Microbiol 2019; 68:446-454. [DOI: 10.1111/lam.13123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 11/29/2022]
Affiliation(s)
- F. Peng
- Laboratory of Applied Biocatalysis School of Food Science and Engineering South China University of Technology Guangzhou China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou China
| | - X.‐Y. Ou
- Laboratory of Applied Biocatalysis School of Food Science and Engineering South China University of Technology Guangzhou China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou China
| | - Y. Zhao
- Laboratory of Applied Biocatalysis School of Food Science and Engineering South China University of Technology Guangzhou China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou China
| | - M.‐H. Zong
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou China
| | - W.‐Y. Lou
- Laboratory of Applied Biocatalysis School of Food Science and Engineering South China University of Technology Guangzhou China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou China
| |
Collapse
|