1
|
Zhang L, Qiu X, Huang L, Xu J, Wang W, Li Z, Xu P, Tang H. Microbial degradation of multiple PAHs by a microbial consortium and its application on contaminated wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126524. [PMID: 34323721 DOI: 10.1016/j.jhazmat.2021.126524] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widely distributed in the environment and pose a serious threat to human health. Due to their unfavorable biological effects and persistent properties, it is extremely urgent to effectively degrade PAHs that are present in the environment, especially in wastewater. In this study, we obtained an efficient bacterial consortium (PDMC), consisting of the genera Sphingobium (58.57-72.40%) and Pseudomonas (25.93-39.75%), which is able to efficiently utilize phenanthrene or dibenzothiophene as the sole carbon source. The phenanthrene-cultivated consortium could also degrade naphthalene, acenaphthene, fluorene, anthracene, fluoranthene, benzo[a]anthracene, dibenzofuran, carbazole and indole, respectively. Furthermore, we identified the multiple key intermediates of aforementioned 11 substrates and discussed proposed pathways involved. Notably, a novel intermediate 1,2-dihydroxy-4a,9a-dihydroanthracene-9,10-dione of anthracene degradation was detected, which is extremely rare compared to previous reports. The PDMC consortium removed 100% of PAHs within 5 days in the small-scale wastewater bioremediation added with PAHs mixture, with a sludge settling velocity of 5% after 10 days of incubation. Experiments on the stability reveal the PDMC consortium always has excellent degrading ability for totaling 24 days. Combined with the microbial diversity analysis, the results suggest the PDMC consortium is a promising candidate to facilitate the bioremediation of PAHs-contaminated environments.
Collapse
Affiliation(s)
- Lige Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiaoyu Qiu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ling Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jijun Xu
- Befar Group Co., LTD., Shandong, Binzhou 256619, People's Republic of China
| | - Weiwei Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhao Li
- Befar Group Co., LTD., Shandong, Binzhou 256619, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| |
Collapse
|
2
|
Liu Y, Hu H, Zanaroli G, Xu P, Tang H. A Pseudomonas sp. strain uniquely degrades PAHs and heterocyclic derivatives via lateral dioxygenation pathways. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123956. [PMID: 33265000 DOI: 10.1016/j.jhazmat.2020.123956] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/21/2020] [Accepted: 09/04/2020] [Indexed: 05/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and heterocyclic derivatives are organic pollutants that pose a serious health risk to human beings. In this study, a newly isolated Pseudomonas brassicacearum strain MPDS could effectively degrade PAHs and heterocyclic derivatives, including naphthalene, fluorene, dibenzofuran (DBF) and dibenzothiophene (DBT). Notably, strain MPDS is able to degrade fluorene, DBF and DBT uniquely via a lateral dioxygenation pathway, while most reported strains degrade fluorene, DBF and DBT via an angular dioxygenation pathway or co-metabolize them via a lateral dioxygenation pathway. Strain MPDS completely degraded 50 mg naphthalene (in 50 mL medium) in 84 h, and OD600 reached 1.0-1.1; while, it stabilized at OD600 0.5-0.6 with 5 mg fluorene or DBF or DBT. Meanwhile, 65.7% DBF and 32.1% DBT were degraded in 96 h, and 40.3% fluorene was degraded in 72 h, respectively. Through genomic and transcriptomic analyses, and comparative genomic analysis with another DBF degradation strain, relevant gene clusters were predicted, and a naphthalene-degrading gene cluster was identified. This study provides understanding of degradation of PAHs and their heterocyclic derivatives, as well as new insights into the lateral dioxygenation pathway of relevant contaminants.
Collapse
Affiliation(s)
- Yunli Liu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Haiyang Hu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Giulio Zanaroli
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Bologna 40131, Italy
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| |
Collapse
|