Combe M, Sokolenko S. Quantifying the impact of cell culture media on CHO cell growth and protein production.
Biotechnol Adv 2021;
50:107761. [PMID:
33945850 DOI:
10.1016/j.biotechadv.2021.107761]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 10/21/2022]
Abstract
In recombinant protein production, cell culture media development and optimization is typically seen as a useful strategy to increase titer and cell density, reduce by-products, as well as improve product quality (with cell density and titer often serving as the primary reported outcome of media studies). However, despite the large number of media optimization studies, there have been few attempts to comprehensively assess the overall effectiveness of media additives. The aim of this review is therefore both to document published media optimization studies over the last twenty years (in the context of Chinese hamster ovary cell recombinant production) and quantitatively estimate the impact of this media optimization on cell culture performance. In considering 78 studies, we have identified 238 unique media components that have been supplemented over the last 20 years. Among these additives, trace elements stood out as having a positive impact on cell density while nucleotides show potential for increasing titer, with commercial supplements benefiting both. However, we also identified that the impact of specific additives is far more variable than often perceived. With relatively few media studies considering multiple cell lines or multiple basal media, teasing out consistent and general trends becomes a considerable challenge. By extracting cell density and titer values from all of the reviewed studies, we were able to build a mixed-effect model capable of estimating the relative impact of additives, cell line, product type, basal medium, cultivation method (flask or reactor), and feeding strategy (batch or fed-batch). Overall, additives only accounted for 3% of the variation in cell density and 1% of the variation in titer. Similarly, the impact of basal media was also relatively modest, at 10% for cell density and 0% for titer. Cell line, product type, and feeding strategy were all found to have more impact. These results emphasize the need for media studies to consider more factors to ensure that reported observations can be generalized and further developed.
Collapse