1
|
Djokić I, Knežević A, Savković Ž, Ljaljević Grbić M, Dimkić I, Bukvički D, Gavrilović D, Unković N. Characterization of Culturable Mycobiome of Newly Excavated Ancient Wooden Vessels from the Archeological Site of Viminacium, Serbia. J Fungi (Basel) 2024; 10:343. [PMID: 38786698 PMCID: PMC11122453 DOI: 10.3390/jof10050343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/08/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Two ancient wooden vessels, specifically a monoxyle (1st century BCE to 1st century CE) and shipwreck (15th to 17th century CE), were excavated in a well-preserved state east of the confluence of the old Mlava and the Danube rivers (Serbia). The vessels were found in the ground that used to be river sediment and were temporarily stored within the semi-underground exhibition space of Mammoth Park. As part of the pre-conservation investigations, the primary aim of the research presented was to characterize the culturable mycobiomes of two excavated wooden artifacts so that appropriate conservation procedures for alleviating post-excavation fungal infestation could be formulated. Utilizing culture-based methods, a total of 32 fungi from 15 genera were identified, mainly Ascomycota and to a lesser extent Mucoromycota sensu stricto. Soft-rot Ascomycota of genus Penicillium, followed by Aspergillus and Cephalotrichum species, were the most diverse of the isolated fungi. Out of a total of 38 isolates, screened on 7 biodegradation plate assays, 32 (84.21%) demonstrated at least one degradative property. Penicillium solitum had the highest deterioration potential, with a positive reaction in 5 separate plate assays. The obtained results further broaden the limited knowledge on the peculiarities of post-excavation soft-rot decay of archaeological wood and indicate the biochemical mechanisms at the root of post-excavation fungal deterioration.
Collapse
Affiliation(s)
- Ivana Djokić
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; (I.D.); (A.K.); (Ž.S.); (M.L.G.); (I.D.); (N.U.)
| | - Aleksandar Knežević
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; (I.D.); (A.K.); (Ž.S.); (M.L.G.); (I.D.); (N.U.)
| | - Željko Savković
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; (I.D.); (A.K.); (Ž.S.); (M.L.G.); (I.D.); (N.U.)
| | - Milica Ljaljević Grbić
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; (I.D.); (A.K.); (Ž.S.); (M.L.G.); (I.D.); (N.U.)
| | - Ivica Dimkić
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; (I.D.); (A.K.); (Ž.S.); (M.L.G.); (I.D.); (N.U.)
| | - Danka Bukvički
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; (I.D.); (A.K.); (Ž.S.); (M.L.G.); (I.D.); (N.U.)
| | | | - Nikola Unković
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; (I.D.); (A.K.); (Ž.S.); (M.L.G.); (I.D.); (N.U.)
| |
Collapse
|
2
|
Kalntremtziou M, Papaioannou IA, Vangalis V, Polemis E, Pappas KM, Zervakis GI, Typas MA. Evaluation of the lignocellulose degradation potential of Mediterranean forests soil microbial communities through diversity and targeted functional metagenomics. Front Microbiol 2023; 14:1121993. [PMID: 36922966 PMCID: PMC10008878 DOI: 10.3389/fmicb.2023.1121993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/31/2023] [Indexed: 02/28/2023] Open
Abstract
The enzymatic arsenal of several soil microorganisms renders them particularly suitable for the degradation of lignocellulose, a process of distinct ecological significance with promising biotechnological implications. In this study, we investigated the spatiotemporal diversity and distribution of bacteria and fungi with 16S and Internally Trascribed Spacer (ITS) ribosomal RNA next-generation-sequencing (NGS), focusing on forest mainland Abies cephalonica and insular Quercus ilex habitats of Greece. We analyzed samples during winter and summer periods, from different soil depths, and we applied optimized and combined targeted meta-omics approaches aiming at the peroxidase-catalase family enzymes to gain insights into the lignocellulose degradation process at the soil microbial community level. The microbial communities recorded showed distinct patterns of response to season, soil depth and vegetation type. Overall, in both forests Proteobacteria, Actinobacteria, Acidobacteria were the most abundant bacteria phyla, while the other phyla and the super-kingdom of Archaea were detected in very low numbers. Members of the orders Agaricales, Russulales, Sebacinales, Gomphales, Geastrales, Hysterangiales, Thelephorales, and Trechisporales (Basidiomycota), and Pezizales, Sordariales, Eurotiales, Pleosporales, Helotiales, and Diaporthales (Ascomycota) were the most abundant for Fungi. By using optimized "universal" PCR primers that targeted the peroxidase-catalase enzyme family, we identified several known and novel sequences from various Basidiomycota, even from taxa appearing at low abundance. The majority of the sequences recovered were manganese peroxidases from several genera of Agaricales, Hysterangiales, Gomphales, Geastrales, Russulales, Hymenochaetales, and Trechisporales, while lignin -and versatile-peroxidases were limited to two to eight species, respectively. Comparisons of the obtained sequences with publicly available data allowed a detailed structural analysis of polymorphisms and functionally relevant amino-acid residues at phylogenetic level. The targeted metagenomics applied here revealed an important role in lignocellulose degradation of hitherto understudied orders of Basidiomycota, such as the Hysterangiales and Gomphales, while it also suggested the auxiliary activity of particular members of Proteobacteria, Actinobacteria, Acidobacteria, Verrucomicrobia, and Gemmatimonadetes. The application of NGS-based metagenomics approaches allows a better understanding of the complex process of lignocellulolysis at the microbial community level as well as the identification of candidate taxa and genes for targeted functional investigations and genetic modifications.
Collapse
Affiliation(s)
- Maria Kalntremtziou
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis A. Papaioannou
- Zentrum für Molekulare Biologie der Universität Heidelberg, ZMBH, University of Heidelberg, Heidelberg, Germany
| | - Vasileios Vangalis
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Elias Polemis
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Athens, Greece
| | - Katherine M. Pappas
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios I. Zervakis
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Athens, Greece
| | - Milton A. Typas
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Metasecretome and biochemical analysis of consortium PM-06 during the degradation of nixtamalized maize pericarp. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
4
|
Orłowska M, Muszewska A. In Silico Predictions of Ecological Plasticity Mediated by Protein Family Expansions in Early-Diverging Fungi. J Fungi (Basel) 2022; 8:67. [PMID: 35050007 PMCID: PMC8778642 DOI: 10.3390/jof8010067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/16/2022] Open
Abstract
Early-diverging fungi (EDF) are ubiquitous and versatile. Their diversity is reflected in their genome sizes and complexity. For instance, multiple protein families have been reported to expand or disappear either in particular genomes or even whole lineages. The most commonly mentioned are CAZymes (carbohydrate-active enzymes), peptidases and transporters that serve multiple biological roles connected to, e.g., metabolism and nutrients intake. In order to study the link between ecology and its genomic underpinnings in a more comprehensive manner, we carried out a systematic in silico survey of protein family expansions and losses among EDF with diverse lifestyles. We found that 86 protein families are represented differently according to EDF ecological features (assessed by median count differences). Among these there are 19 families of proteases, 43 CAZymes and 24 transporters. Some of these protein families have been recognized before as serine and metallopeptidases, cellulases and other nutrition-related enzymes. Other clearly pronounced differences refer to cell wall remodelling and glycosylation. We hypothesize that these protein families altogether define the preliminary fungal adaptasome. However, our findings need experimental validation. Many of the protein families have never been characterized in fungi and are discussed in the light of fungal ecology for the first time.
Collapse
Affiliation(s)
- Małgorzata Orłowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| |
Collapse
|
5
|
Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution across Holomycota. Nat Commun 2021; 12:4973. [PMID: 34404788 PMCID: PMC8371127 DOI: 10.1038/s41467-021-25308-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Compared to multicellular fungi and unicellular yeasts, unicellular fungi with free-living flagellated stages (zoospores) remain poorly known and their phylogenetic position is often unresolved. Recently, rRNA gene phylogenetic analyses of two atypical parasitic fungi with amoeboid zoospores and long kinetosomes, the sanchytrids Amoeboradix gromovi and Sanchytrium tribonematis, showed that they formed a monophyletic group without close affinity with known fungal clades. Here, we sequence single-cell genomes for both species to assess their phylogenetic position and evolution. Phylogenomic analyses using different protein datasets and a comprehensive taxon sampling result in an almost fully-resolved fungal tree, with Chytridiomycota as sister to all other fungi, and sanchytrids forming a well-supported, fast-evolving clade sister to Blastocladiomycota. Comparative genomic analyses across fungi and their allies (Holomycota) reveal an atypically reduced metabolic repertoire for sanchytrids. We infer three main independent flagellum losses from the distribution of over 60 flagellum-specific proteins across Holomycota. Based on sanchytrids' phylogenetic position and unique traits, we propose the designation of a novel phylum, Sanchytriomycota. In addition, our results indicate that most of the hyphal morphogenesis gene repertoire of multicellular fungi had already evolved in early holomycotan lineages.
Collapse
|
6
|
Sahu N, Merényi Z, Bálint B, Kiss B, Sipos G, Owens RA, Nagy LG. Hallmarks of Basidiomycete Soft- and White-Rot in Wood-Decay -Omics Data of Two Armillaria Species. Microorganisms 2021; 9:149. [PMID: 33440901 PMCID: PMC7827401 DOI: 10.3390/microorganisms9010149] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/01/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Wood-decaying Basidiomycetes are among the most efficient degraders of plant cell walls, making them key players in forest ecosystems, global carbon cycle, and in bio-based industries. Recent insights from -omics data revealed a high functional diversity of wood-decay strategies, especially among the traditional white-rot and brown-rot dichotomy. We examined the mechanistic bases of wood-decay in the conifer-specialists Armillaria ostoyae and Armillaria cepistipes using transcriptomic and proteomic approaches. Armillaria spp. (Fungi, Basidiomycota) include devastating pathogens of temperate forests and saprotrophs that decay wood. They have been discussed as white-rot species, though their response to wood deviates from typical white-rotters. While we observed an upregulation of a diverse suite of plant cell wall degrading enzymes, unlike white-rotters, they possess and express an atypical wood-decay repertoire in which pectinases and expansins are enriched, whereas lignin-decaying enzymes (LDEs) are generally downregulated. This combination of wood decay genes resembles the soft-rot of Ascomycota and appears widespread among Basidiomycota that produce a superficial white rot-like decay. These observations are consistent with ancestral soft-rot decay machinery conserved across asco- and Basidiomycota, a gain of efficient lignin-degrading ability in white-rot fungi and repeated, complete, or partial losses of LDE encoding gene repertoires in brown- and secondarily soft-rot fungi.
Collapse
Affiliation(s)
- Neha Sahu
- Biological Research Center, Synthetic and Systems Biology Unit, 6726 Szeged, Hungary; (N.S.); (Z.M.); (B.B.); (B.K.)
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Zsolt Merényi
- Biological Research Center, Synthetic and Systems Biology Unit, 6726 Szeged, Hungary; (N.S.); (Z.M.); (B.B.); (B.K.)
| | - Balázs Bálint
- Biological Research Center, Synthetic and Systems Biology Unit, 6726 Szeged, Hungary; (N.S.); (Z.M.); (B.B.); (B.K.)
| | - Brigitta Kiss
- Biological Research Center, Synthetic and Systems Biology Unit, 6726 Szeged, Hungary; (N.S.); (Z.M.); (B.B.); (B.K.)
| | - György Sipos
- Research Center for Forestry and Wood Industry, Functional Genomics and Bioinformatics Group, University of Sopron, 9400 Sopron, Hungary;
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Rebecca A. Owens
- Department of Biology, Maynooth University, W23 F2H6 Kildare, Ireland;
| | - László G. Nagy
- Biological Research Center, Synthetic and Systems Biology Unit, 6726 Szeged, Hungary; (N.S.); (Z.M.); (B.B.); (B.K.)
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
7
|
|
8
|
Venice F, Desirò A, Silva G, Salvioli A, Bonfante P. The Mosaic Architecture of NRPS-PKS in the Arbuscular Mycorrhizal Fungus Gigaspora margarita Shows a Domain With Bacterial Signature. Front Microbiol 2020; 11:581313. [PMID: 33329443 PMCID: PMC7732545 DOI: 10.3389/fmicb.2020.581313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/29/2020] [Indexed: 12/31/2022] Open
Abstract
As obligate biotrophic symbionts, arbuscular mycorrhizal fungi (AMF) live in association with most land plants. Among them, Gigaspora margarita has been deeply investigated because of its peculiar features, i.e., the presence of an intracellular microbiota with endobacteria and viruses. The genome sequencing of this fungus revealed the presence of some hybrid non-ribosomal peptide synthases-polyketide synthases (NRPS-PKS) that have been rarely identified in AMF. The aim of this study is to describe the architecture of these NRPS-PKS sequences and to understand whether they are present in other fungal taxa related to G. margarita. A phylogenetic analysis shows that the ketoacyl synthase (KS) domain of one G. margarita NRPS-PKS clusters with prokaryotic sequences. Since horizontal gene transfer (HGT) has often been advocated as a relevant evolutionary mechanism for the spread of secondary metabolite genes, we hypothesized that a similar event could have interested the KS domain of the PKS module. The bacterial endosymbiont of G. margarita, Candidatus Glomeribacter gigasporarum (CaGg), was the first candidate as a donor, since it possesses a large biosynthetic cluster involving an NRPS-PKS. However, bioinformatics analyses do not confirm the hypothesis of a direct HGT from the endobacterium to the fungal host: indeed, endobacterial and fungal sequences show a different evolution and potentially different donors. Lastly, by amplifying a NRPS-PKS conserved fragment and mining the sequenced AMF genomes, we demonstrate that, irrespective of the presence of CaGg, G. margarita, and some other related Gigasporaceae possess such a sequence.
Collapse
Affiliation(s)
- Francesco Venice
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.,Institute for Sustainable Plant Protection (IPSP)-SS Turin-National Research Council (CNR), Turin, Italy
| | - Alessandro Desirò
- Department of Plant, Soil and Microbial Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States
| | - Gladstone Silva
- Department of Mycology, Federal University of Pernambuco, Recife, Brazil
| | - Alessandra Salvioli
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
9
|
Wu H, Nakazawa T, Takenaka A, Kodera R, Morimoto R, Sakamoto M, Honda Y. Transcriptional shifts in delignification-defective mutants of the white-rot fungus Pleurotus ostreatus. FEBS Lett 2020; 594:3182-3199. [PMID: 32697375 DOI: 10.1002/1873-3468.13890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022]
Abstract
White-rot fungi efficiently degrade lignin and, thus, play a pivotal role in the global carbon cycle. However, the mechanisms of lignin degradation are largely unknown. Recently, mutations in four genes, namely wtr1, chd1, pex1, and gat1, were shown to abrogate the wood lignin-degrading ability of Pleurotus ostreatus. In this study, we conducted a comparative transcriptome analysis to identify genes that are differentially expressed in ligninolysis-deficient mutant strains. Putative ligninolytic genes that are highly expressed in parental strains are significantly downregulated in the mutant strains. On the contrary, many putative cellulolytic and xylanolytic genes are upregulated in the chd1-1, Δpex1, and Δgat1 strains. Identifying transcriptional alterations in mutant strains could provide new insights into the regulatory mechanisms of lignocellulolytic genes in P. ostreatus.
Collapse
Affiliation(s)
- Hongli Wu
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Atsuki Takenaka
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Rina Kodera
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Ryota Morimoto
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
Kameshwar AKS, Ramos LP, Qin W. CAZymes-based ranking of fungi (CBRF): an interactive web database for identifying fungi with extrinsic plant biomass degrading abilities. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0286-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractCarbohydrate-active enzymes (CAZymes) are industrially important enzymes, which are involved in synthesis and breakdown of carbohydrates. CAZymes secreted by microorganisms especially fungi are widely used in industries. However, identifying an ideal fungal candidate is costly and time-consuming process. In this regard, we have developed a web-database “CAZymes Based Ranking of Fungi (CBRF)”, for sorting and selecting an ideal fungal candidate based on their genome-wide distribution of CAZymes. We have retrieved the complete annotated proteomic data of 443 published fungal genomes from JGI-MycoCosm web-repository, for the CBRF web-database construction. CBRF web-database was developed using open source computing programing languages such as MySQL, HTML, CSS, bootstrap, jQuery, JavaScript and Ajax frameworks. CBRF web-database sorts complete annotated list of fungi based on three selection functionalities: (a) to sort either by ascending (or) descending orders; (b) to sort the fungi based on a selected CAZy group and class; (c) to sort fungi based on their individual lignocellulolytic abilities. We have also developed a simple and basic webpage “S-CAZymes” using HTML, CSS and Java script languages. The global search functionality of S-CAZymes enables the users to understand and retrieve information about a specific carbohydrate-active enzyme and its current classification in the corresponding CAZy family. The S-CAZymes is a supporting web page which can be used in complementary with the CBRF web-database (knowing the classification of specific CAZyme in S-CAZyme and use this information further to sort fungi using CBRF web-database). The CBRF web-database and S-CAZymes webpage are hosted through Amazon® Web Services (AWS) available at http://13.58.192.177/RankEnzymes/about. We strongly believe that CBRF web-database simplifies the process of identifying a suitable fungus both in academics and industries. In future, we intend to update the CBRF web-database with the public release of new annotated fungal genomes.
Collapse
|