1
|
Hou Y, Guo Z, Liu Z, Yan S, Cui M, Chen F, Wang W, Yu L, Zhao L. Enhancement of astaxanthin accumulation via energy reassignment by removing the flagella of Haematococcus pluvialis. BIORESOUR BIOPROCESS 2024; 11:78. [PMID: 39095685 PMCID: PMC11296984 DOI: 10.1186/s40643-024-00789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/13/2024] [Indexed: 08/04/2024] Open
Abstract
Astaxanthin biosynthesis in Haematococcus pluvialis is driven by energy. However, the effect of the flagella-mediated energy-consuming movement process on astaxanthin accumulation has not been well studied. In this study, the profiles of astaxanthin and NADPH contents in combination with the photosynthetic parameters with or without flagella enabled by pH shock were characterized. The results demonstrated that there was no significant alteration in cell morphology, with the exception of the loss of flagella observed in the pH shock treatment group. In contrast, the astaxanthin content in the flagella removal groups was 62.9%, 62.8% and 91.1% higher than that of the control at 4, 8 and 12 h, respectively. Simultaneously, the increased Y(II) and decreased Y(NO) suggest that cells lacking the flagellar movement process may allocate more energy towards astaxanthin biosynthesis. This finding was verified by NADPH analysis, which revealed higher levels in flagella removal cells. These results provide preliminary insights into the underlying mechanism of astaxanthin accumulation enabled by energy reassignment in movement-lacking cells.
Collapse
Affiliation(s)
- Yuyong Hou
- College of Life Science, North China University of Science and Technology, Tangshan, China
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhile Guo
- College of Life Science, North China University of Science and Technology, Tangshan, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhiyong Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Suihao Yan
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Meijie Cui
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Fangjian Chen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Weijie Wang
- College of Life Science, North China University of Science and Technology, Tangshan, China.
| | - Longjiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Lei Zhao
- College of Life Science, North China University of Science and Technology, Tangshan, China.
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Zhang L, Hu T, Yao S, Hu C, Xing H, Liu K, Sun X, Xu N. Enhancement of astaxanthin production, recovery, and bio-accessibility in Haematococcus pluvialis through taurine-mediated inhibition of secondary cell wall formation under high light conditions. BIORESOURCE TECHNOLOGY 2023; 389:129802. [PMID: 37783237 DOI: 10.1016/j.biortech.2023.129802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023]
Abstract
This study explored the use of taurine in enhancing the production and bio-accessibility of astaxanthin in Haematococcus pluvialis, which typically forms a secondary cell wall hindering astaxanthin extraction. The biomass of taurine-treated group significantly increased by 18%, and astaxanthin yield surged by 34% in comparison to the control group. Without cell disruption, astaxanthin recovery from thin-walled cells in the taurine-treated group, using dimethyl sulfoxide and ethanol as extraction reagents, was 97% and 75%, respectively, which were 30-fold higher than those of thick-walled cells in the control group. Additionally, the cell fragmentation rate increased by 86% in taurine-treated group relative to the control group. Comparative transcriptome analysis identified taurine-induced upregulation of genes involved in the astaxanthin biosynthesis pathway and downregulation of those associated with secondary cell wall synthesis. This study thus offers an innovative taurine-based strategy to enhance astaxanthin production and bio-accessibility while shedding light on the mechanisms driving this process.
Collapse
Affiliation(s)
- Liuquan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315832, China
| | - Tao Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315832, China
| | - Shiqi Yao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315832, China
| | - Chaoyang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315832, China
| | - Hailiang Xing
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315832, China
| | - Kai Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315832, China
| | - Xue Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315832, China
| | - Nianjun Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315832, China.
| |
Collapse
|
3
|
Shan S, Manyakhin AY, Wang C, Ge B, Han J, Zhang X, Zhou C, Yan X, Ruan R, Cheng P. Mixotrophy, a more promising culture mode: Multi-faceted elaboration of carbon and energy metabolism mechanisms to optimize microalgae culture. BIORESOURCE TECHNOLOGY 2023; 386:129512. [PMID: 37481043 DOI: 10.1016/j.biortech.2023.129512] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/15/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Some mixotrophic microalgae appear to exceed the sum of photoautotrophy and heterotrophy in terms of biomass production. This paper mainly reviews the carbon and energy metabolism of microalgae to reveal the synergistic mechanisms of the mixotrophic mode from multiple aspects. It explains the shortcomings of photoautotrophic and heterotrophic growth, highlighting that the mixotrophic mode is not simply the sum of photoautotrophy and heterotrophy. Specifically, microalgae in mixotrophic mode can be divided into separate parts of photoautotrophic and heterotrophic cultures, and the synergistic parts of photoautotrophic culture enhance aerobic respiration and heterotrophic culture enhance the Calvin cycle. Additionally, this review argues that current deficiencies in mixotrophic culture can be improved by uncovering the synergistic mechanism of the mixotrophic mode, aiming to increase biomass growth and improve quality. This approach will enable the full utilization of advantagesin various fields, and provide research directions for future microalgal culture.
Collapse
Affiliation(s)
- Shengzhou Shan
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Artem Yurevich Manyakhin
- Far Eastern Branch, Russian Academy of Sciences, Federal Scientific Center of East Asian Terrestrial Biodiversity, 100-letiya Vladivostoka Prospect, 159, Vladivostok 690022, Russia
| | - Chun Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Jichang Han
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xuezhi Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaojun Yan
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Roger Ruan
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Pengfei Cheng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China; Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA.
| |
Collapse
|
4
|
Shi Q, Chen C, He T, Fan J. Circadian rhythm promotes the biomass and amylose hyperaccumulation by mixotrophic cultivation of marine microalga Platymonas helgolandica. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:75. [PMID: 35794631 PMCID: PMC9261046 DOI: 10.1186/s13068-022-02174-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/28/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Microalgal starch can be exploited for bioenergy, food, and bioplastics. Production of starch by green algae has been concerned for many years. Currently commonly used methods such as nutrient stress will affect cell growth, thereby inhibiting the production efficiency and quality of starch production. Simpler and more efficient control strategies need to be developed. RESULT We proposed a novel regulation method to promote the growth and starch accumulation by a newly isolated Chlorophyta Platymonas helgolandica. By adding exogenous glucose and controlling the appropriate circadian light and dark time, the highest dry weight accumulation 6.53 g L-1 (Light:Dark = 12:12) can be achieved, and the highest starch concentration could reach 3.88 g L-1 (Light:Dark = 6:18). The highest production rate was 0.40 g L-1 d-1 after 9 days of production. And this method helps to improve the ability to produce amylose, with the highest accumulation of 39.79% DW amylose. We also discussed the possible mechanism of this phenomenon through revealing changes in the mRNA levels of key genes. CONCLUSION This study provides a new idea to regulate the production of amylose by green algae. For the first time, it is proposed to combine organic carbon source addition and circadian rhythm regulation to increase the starch production from marine green alga. A new starch-producing microalga has been isolated that can efficiently utilize organic matter and grow with or without photosynthesis.
Collapse
Affiliation(s)
- Qianwen Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Cheng Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Tingwei He
- Department of Bioengineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China.
| |
Collapse
|
5
|
Fei Z, Liao J, Fan F, Wan M, Bai W, He M, Li Y. Improving astaxanthin production by using multivariate statistical analysis to evaluate green cells of Haematococcus pluvialis. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Ma J, Yan HH, Qin CQ, Liang YX, Ren DF. Accumulation of Astaxanthin by Co-fermentation of Spirulina platensis and Recombinant Saccharomyces cerevisiae. Appl Biochem Biotechnol 2022; 194:988-999. [PMID: 34591255 DOI: 10.1007/s12010-021-03666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
This study aimed to explore an effective, simple, and time-saving method for astaxanthin accumulation. Wild-type Saccharomyces cerevisiae as a bioreactor, the SpcrtR gene was first ligated with the signal peptide S to construct pYES2/NT-A-S-SpcrtR plasmid in Saccharomyces cerevisiae. The detection of SDS-PAGE and Western blotting protein proved that SpCRTR was successfully extracellular expressed in Saccharomyces cerevisiae. The target product astaxanthin was produced by co-fermentation of Spirulina platensis and recombinant Saccharomyces cerevisiae. The test results showed that after 18 h of fermentation, the astaxanthin concentration was highest in the mixed fermentation broth with 4% Spirulina platensis and recombinant Saccharomyces cerevisiae, and the content of astaxanthin was 0.25 ± 0.02 μg/mL. In addition, the source of astaxanthin was explored. During the fermentation process of the Saccharomyces cerevisiae strain, SpCRTR enzyme catalyzed the Spirulina platensis canthaxanthin, which almost completely converted into astaxanthin, providing a simple method for astaxanthin synthesis. Compared with culture of Haematococcus pluvialis, this culture route not only shortens culture time, but also eliminates the limitation of the conditions in the culture process.
Collapse
Affiliation(s)
- Jun Ma
- Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Hai-Dian District, Beijing, 100083, People's Republic of China
| | - Huan-Huan Yan
- Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Hai-Dian District, Beijing, 100083, People's Republic of China
| | - Chen-Qiang Qin
- Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Hai-Dian District, Beijing, 100083, People's Republic of China
| | - Ya-Xin Liang
- Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Hai-Dian District, Beijing, 100083, People's Republic of China
| | - Di-Feng Ren
- Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Hai-Dian District, Beijing, 100083, People's Republic of China.
| |
Collapse
|
7
|
Sung YJ, Sim SJ. Multifaceted strategies for economic production of microalgae Haematococcus pluvialis-derived astaxanthin via direct conversion of CO 2. BIORESOURCE TECHNOLOGY 2022; 344:126255. [PMID: 34757226 DOI: 10.1016/j.biortech.2021.126255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Owing to its strong antioxidant properties, astaxanthin has a high market price in the nutraceutical and pharmaceutical fields, and its demand is increasing. Furthermore, with an increase in the demand for green technology, astaxanthin production through direct CO2 conversion using the autotrophic green microalga Haematococcus pluvialis as a bio-platform has received much attention. Large-scale outdoor cultivation of H. pluvialis using waste CO2 sources and sunlight can secure sustainability and improve economic efficiency. However, low strain performance, reduced light utilization because of increased cell density, and inefficient transfer of gaseous CO2 into liquid culture broth hinder its large-scale commercialization of astaxanthin. Herein, we presented a multifaceted strategy, including the development of high-efficiency strains, a culture system for astaxanthin accumulation, and astaxanthin extraction from biomass, for economically producing astaxanthin from H. pluvialis through direct CO2 conversion. Future perspectives were presented by comparing and analyzing various previous studies conducted using the latest technology.
Collapse
Affiliation(s)
- Young Joon Sung
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
8
|
Wang X, Meng C, Zhang H, Xing W, Cao K, Zhu B, Zhang C, Sun F, Gao Z. Transcriptomic and Proteomic Characterizations of the Molecular Response to Blue Light and Salicylic Acid in Haematococcus pluvialis. Mar Drugs 2021; 20:md20010001. [PMID: 35049856 PMCID: PMC8780009 DOI: 10.3390/md20010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
Haematococcus pluvialis accumulates a large amount of astaxanthin under various stresses, e.g., blue light and salicylic acid (SA). However, the metabolic response of H. pluvialis to blue light and SA is still unclear. We investigate the effects of blue light and SA on the metabolic response in H. pluvialis using both transcriptomic and proteomic sequencing analyses. The largest numbers of differentially expressed proteins (DEPs; 324) and differentially expressed genes (DEGs; 13,555) were identified on day 2 and day 7 of the treatment with blue light irradiation (150 μmol photons m−2s−1), respectively. With the addition of SA (2.5 mg/L), a total of 63 DEPs and 11,638 DEGs were revealed on day 2 and day 7, respectively. We further analyzed the molecular response in five metabolic pathways related to astaxanthin synthesis, including the astaxanthin synthesis pathway, the fatty acid synthesis pathway, the heme synthesis pathway, the reactive oxygen species (ROS) clearance pathway, and the cell wall biosynthesis pathway. Results show that blue light causes a significant down-regulation of the expression of key genes involved in astaxanthin synthesis and significantly increases the expression of heme oxygenase, which shows decreased expression by the treatment with SA. Our study provides novel insights into the production of astaxanthin by H. pluvialis treated with blue light and SA.
Collapse
Affiliation(s)
- Xiaodong Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China; (X.W.); (C.M.); (W.X.); (K.C.); (B.Z.); (C.Z.)
| | - Chunxiao Meng
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China; (X.W.); (C.M.); (W.X.); (K.C.); (B.Z.); (C.Z.)
| | - Hao Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China;
| | - Wei Xing
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China; (X.W.); (C.M.); (W.X.); (K.C.); (B.Z.); (C.Z.)
| | - Kai Cao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China; (X.W.); (C.M.); (W.X.); (K.C.); (B.Z.); (C.Z.)
| | - Bingkui Zhu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China; (X.W.); (C.M.); (W.X.); (K.C.); (B.Z.); (C.Z.)
| | - Chengsong Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China; (X.W.); (C.M.); (W.X.); (K.C.); (B.Z.); (C.Z.)
| | - Fengjie Sun
- School of Science and Technology, Georgia Gwinnett College, 1000 University Center Lane, Lawrenceville, GA 30043, USA
- Correspondence: (F.S.); (Z.G.)
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China;
- Correspondence: (F.S.); (Z.G.)
| |
Collapse
|
9
|
Hoys C, Romero-Losada AB, Del Río E, Guerrero MG, Romero-Campero FJ, García-González M. Unveiling the underlying molecular basis of astaxanthin accumulation in Haematococcus through integrative metabolomic-transcriptomic analysis. BIORESOURCE TECHNOLOGY 2021; 332:125150. [PMID: 33878543 DOI: 10.1016/j.biortech.2021.125150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Astaxanthin is a valuable and highly demanded ketocarotenoid pigment, for which the chlorophycean microalga Haematococcus pluvialis is an outstanding natural source. Although information on astaxanthin accumulation in H. pluvialis has substantially advanced in recent years, its underlying molecular bases remain elusive. An integrative metabolic and transcriptomic analysis has been performed for vegetative Haematococcus cells, grown both under N sufficiency (green palmelloid cells) and under moderate N limitation, allowing concurrent active cell growth and astaxanthin synthesis (reddish palmelloid cells). Transcriptional activation was noticeable in reddish cells of key enzymes participating in glycolysis, pentose phosphate cycle and pyruvate metabolism, determining the adequate provision of glyceraldehyde 3 phosphate and pyruvate, precursors of carotenoids and fatty acids. Moreover, for the first time, transcriptional regulators potentially involved in controlling astaxanthin accumulation have been identified, a knowledge enabling optimization of commercial astaxanthin production by Haematococcus through systems metabolic engineering.
Collapse
Affiliation(s)
- Cristina Hoys
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Centro de Investigaciones Científicas Isla de la Cartuja, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Ana B Romero-Losada
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Centro de Investigaciones Científicas Isla de la Cartuja, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain; Department of Computer Science and Artificial Intelligence (University of Sevilla), Avenida Reina Mercedes s/n, 41012 Seville, Spain
| | - Esperanza Del Río
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Centro de Investigaciones Científicas Isla de la Cartuja, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Miguel G Guerrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Centro de Investigaciones Científicas Isla de la Cartuja, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain; AlgaEnergy S.A, Avda. de Europa 19, 28108 Alcobendas, Madrid, Spain
| | - Francisco J Romero-Campero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Centro de Investigaciones Científicas Isla de la Cartuja, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain; Department of Computer Science and Artificial Intelligence (University of Sevilla), Avenida Reina Mercedes s/n, 41012 Seville, Spain
| | - Mercedes García-González
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Centro de Investigaciones Científicas Isla de la Cartuja, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain.
| |
Collapse
|
10
|
Combination of mechanical and chemical extraction of astaxanthin from Haematococcus pluvialis and its properties of microencapsulation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101979] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|