1
|
Zang H, Cheng Y, Li M, Zhou L, Hong LL, Deng H, Lin HW, Zhou Y. Mutagenetic analysis of the biosynthetic pathway of tetramate bripiodionen bearing 3-(2H-pyran-2-ylidene)pyrrolidine-2,4-dione skeleton. Microb Cell Fact 2024; 23:87. [PMID: 38515152 PMCID: PMC10956176 DOI: 10.1186/s12934-024-02364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Natural tetramates are a family of hybrid polyketides bearing tetramic acid (pyrrolidine-2,4-dione) moiety exhibiting a broad range of bioactivities. Biosynthesis of tetramates in microorganisms is normally directed by hybrid polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) machineries, which form the tetramic acid ring by recruiting trans- or cis-acting thioesterase-like Dieckmann cyclase in bacteria. There are a group of tetramates with unique skeleton of 3-(2H-pyran-2-ylidene)pyrrolidine-2,4-dione, which remain to be investigated for their biosynthetic logics. RESULTS Herein, the tetramate type compounds bripiodionen (BPD) and its new analog, featuring the rare skeleton of 3-(2H-pyran-2-ylidene)pyrrolidine-2,4-dione, were discovered from the sponge symbiotic bacterial Streptomyces reniochalinae LHW50302. Gene deletion and mutant complementation revealed the production of BPDs being correlated with a PKS-NRPS biosynthetic gene cluster (BGC), in which a Dieckmann cyclase gene bpdE was identified by sit-directed mutations. According to bioinformatic analysis, the tetramic acid moiety of BPDs should be formed on an atypical NRPS module constituted by two discrete proteins, including the C (condensation)-A (adenylation)-T (thiolation) domains of BpdC and the A-T domains of BpdD. Further site-directed mutagenetic analysis confirmed the natural silence of the A domain in BpdC and the functional necessities of the two T domains, therefore suggesting that an unusual aminoacyl transthiolation should occur between the T domains of two NRPS subunits. Additionally, characterization of a LuxR type regulator gene led to seven- to eight-fold increasement of BPDs production. The study presents the first biosynthesis case of the natural molecule with 3-(2H-pyran-2-ylidene)pyrrolidine-2,4-dione skeleton. Genomic mining using BpdD as probe reveals that the aminoacyl transthiolation between separate NRPS subunits should occur in a certain population of NRPSs in nature.
Collapse
Affiliation(s)
- Haixia Zang
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yijia Cheng
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Mengjia Li
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lin Zhou
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Li-Li Hong
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hai Deng
- Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Hou-Wen Lin
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yongjun Zhou
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
2
|
Yang M, Li W, Zhou L, Lin X, Zhang W, Shen Y, Deng H, Lin HW, Zhou Y. Biosynthesis of trialkyl-substituted aromatic polyketide NFAT-133 involves unusual P450 monooxygenase-mediating aromatization and a putative metallo-beta-lactamase fold hydrolase. Synth Syst Biotechnol 2023; 8:349-356. [PMID: 37325182 PMCID: PMC10265476 DOI: 10.1016/j.synbio.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
The bacterial trialkyl-substituted aromatic polyketides are structurally featured with the unusual aromatic core in the middle of polyketide chain such as TM-123 (1), veramycin A (2), NFAT-133 (3) and benwamycin I (4), which were discovered from Streptomyces species and demonstrated with antidiabetic and immunosuppressant activities. Though the biosynthetic pathway of 1-3 was reported as a type I polyketide synthase (PKS), the PKS assembly line was interpreted inconsistently, and it remains a mystery how the compound 3 was generated. Herein, the PKS assembly logic of 1-4 was revised by site-mutagenetic analysis of the PKS dehydratase domains. Based on gene deletion and complementation, the putative P450 monooxygenase nftE1 and metallo-beta-lactamase (MBL) fold hydrolase nftF1 were verified as essential genes for the biosynthesis of 1-4. The absence of nftE1 led to abolishment of 1-4 and accumulation of new products (5-8). Structural elucidation reveals 5-8 as the non-aromatic analogs of 1, suggesting the NftE1-catalyzed aromatic core formation. Deletion of nftF1 resulted in disappearance of 3 and 4 with the compounds 1 and 2 unaffected. As a rare MBL-fold hydrolase from type I PKSs, NftF1 potentially generates the compound 3 through two strategies: catalyze premature chain-offloading as a trans-acting thioesterase or hydrolyze the lactone-bond of compound 1 as an esterase.
Collapse
Affiliation(s)
- Ming Yang
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wanlu Li
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lin Zhou
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiao Lin
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Institute of Marine Drugs, Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, PR China
| | - Wenyu Zhang
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yaoyao Shen
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hai Deng
- Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Hou-wen Lin
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yongjun Zhou
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
3
|
Zhang W, Yang M, Li W, Zhou L, Shen Y, Wang SP, Gao JM, Lin HW, Qi J, Zhou Y. Iterative-Acting Thioesterase from Polyketide Biosynthesis Accepts Diverse Nucleophilic Alcohols to Yield Oxazole-Containing Esters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7459-7467. [PMID: 37148255 DOI: 10.1021/acs.jafc.3c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The biosynthesis of antitumor oxazole-containing conglobatin is directed by a multienzyme assembly line of nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS), in which an uncanonical iterative-acting C-terminal thioesterase domain, Cong-TE, ligated two fully elongated chains/conglobatin monomers on the terminal acylcarrier protein and subsequently cyclized the resulting dimer to a C2-symmetric macrodiolide. Screening of the conglobatin producer for secondary metabolites led to the discovery of two new compounds conglactones A (1) and B (2), possessing inhibitory activities to phytopathogenic microorganisms and cancer cells, respectively. The compounds 1 and 2 feature the ester bond-linked hybrid structures consisting of an aromatic polyketide benwamycin I (3) and one (for 1)/two (for 2) molecules of the conglobatin monomer (5). Genetic mutational analysis revealed that the production of 1 and 2 was correlated with the biosynthetic pathways of 3 and 5. Biochemical analysis indicated that 1 and 2 were produced by Cong-TE from 3 and an N-acetylcysteamine thioester form of 5 (7). Furthermore, the substrate compatibility of Cong-TE was demonstrated by enzymatically generating a bunch of ester products from 7 and 43 exotic alcohols. This property of Cong-TE was further validated by producing 36 hybrid esters in the fermentation of conglobatin producer fed with nonindigenous alcohols. This work shows a prospect of developing Cong-TE for green synthesis of valuable oxazole-containing esters, thus complementing the environmentally unfriendly chemosynthesis strategies.
Collapse
Affiliation(s)
- Wenyu Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ming Yang
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wanlu Li
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lin Zhou
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yaoyao Shen
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shu-Ping Wang
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hou-Wen Lin
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jianzhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yongjun Zhou
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
4
|
Li W, Zhang W, Cheng Y, Shen Y, Qi J, Lin HW, Zhou Y. Investigation of carbonyl amidation and O-methylation during biosynthesis of the pharmacophore pyridyl of antitumor piericidins. Synth Syst Biotechnol 2022; 7:880-886. [PMID: 35601822 PMCID: PMC9112059 DOI: 10.1016/j.synbio.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/12/2022] [Accepted: 05/03/2022] [Indexed: 12/05/2022] Open
Abstract
Piericidins are a large family of bacterial α-pyridone antibiotics with antitumor activities such as their anti-renal carcinoma activity exhibited recently in nude mice. The backbones of piericidins are derived from β, δ-diketo carboxylic acids, which are offloaded from a modular polyketide synthase (PKS) and putatively undergo a carbonyl amidation before α-pyridone ring formation. The tailoring modifications to the α-pyridone structure mainly include the verified hydroxylation and O-methylation of the C-4' position and an unidentified C-5' O-methylation. Here, we describe a piericidin producer, terrestrial Streptomyces conglobatus, which contains a piericidin biosynthetic gene cluster in two different loci. Deletion of the amidotransferase gene pieD resulted in the accumulation of two fatty acids that should be degraded from the nascent carboxylic acid released by the PKS, supporting the carbonyl amidation function of PieD during α-pyridone ring formation. Deletion of the O-methyltransferase gene pieB1 led to the production of three piericidin analogues lacking C-5' O-methylation, therefore confirming that PieB1 specifically catalyses the tailoring modification. Moreover, bioactivity analysis of the mutant-derived products provided clues regarding the structure-function relationship for antitumor activity. The work addresses two previously unidentified steps involved in pyridyl pharmacophore formation during piericidin biosynthesis, facilitating the rational bioengineering of the biosynthetic pathway towards valuable antitumor agents.
Collapse
Affiliation(s)
- Wanlu Li
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wenyu Zhang
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yijia Cheng
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yaoyao Shen
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jianzhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yongjun Zhou
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
5
|
Guo S, Sun X, Li R, Zhang T, Hu F, Liu F, Hua Q. Two strategies to improve the supply of PKS extender units for ansamitocin P-3 biosynthesis by CRISPR-Cas9. BIORESOUR BIOPROCESS 2022; 9:90. [PMID: 38647752 PMCID: PMC10991131 DOI: 10.1186/s40643-022-00583-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
Ansamitocin P-3 (AP-3) produced by Actinosynnema pretiosum is a potent antitumor agent. However, lack of efficient genome editing tools greatly hinders the AP-3 overproduction in A. pretiosum. To solve this problem, a tailor-made pCRISPR-Cas9apre system was developed from pCRISPR-Cas9 for increasing the accessibility of A. pretiosum to genetic engineering, by optimizing cas9 for the host codon preference and replacing pSG5 with pIJ101 replicon. Using pCRISPR-Cas9apre, five large-size gene clusters for putative competition pathway were individually deleted with homology-directed repair (HDR) and their effects on AP-3 yield were investigated. Especially, inactivation of T1PKS-15 increased AP-3 production by 27%, which was most likely due to the improved intracellular triacylglycerol (TAG) pool for essential precursor supply of AP-3 biosynthesis. To enhance a "glycolate" extender unit, two combined bidirectional promoters (BDPs) ermEp-kasOp and j23119p-kasOp were knocked into asm12-asm13 spacer in the center region of gene cluster, respectively, by pCRISPR-Cas9apre. It is shown that in the two engineered strains BDP-ek and BDP-jk, the gene transcription levels of asm13-17 were significantly upregulated to improve the methoxymalonyl-acyl carrier protein (MM-ACP) biosynthetic pathway and part of the post-PKS pathway. The AP-3 yields of BDP-ek and BDP-jk were finally increased by 30% and 50% compared to the parent strain L40. Both CRISPR-Cas9-mediated engineering strategies employed in this study contributed to the availability of AP-3 PKS extender units and paved the way for further metabolic engineering of ansamitocin overproduction.
Collapse
Affiliation(s)
- Siyu Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xueyuan Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ruihua Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Tianyao Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Fengxian Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Feng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|