1
|
Gao H, Pei X, Song X, Wang S, Yang Z, Zhu J, Lin Q, Zhu Q, Yang X. Application and development of CRISPR technology in the secondary metabolic pathway of the active ingredients of phytopharmaceuticals. FRONTIERS IN PLANT SCIENCE 2025; 15:1477894. [PMID: 39850214 PMCID: PMC11753916 DOI: 10.3389/fpls.2024.1477894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/22/2024] [Indexed: 01/25/2025]
Abstract
As an efficient gene editing tool, the CRISPR/Cas9 system has been widely employed to investigate and regulate the biosynthetic pathways of active ingredients in medicinal plants. CRISPR technology holds significant potential for enhancing both the yield and quality of active ingredients in medicinal plants. By precisely regulating the expression of key enzymes and transcription factors, CRISPR technology not only deepens our understanding of secondary metabolic pathways in medicinal plants but also opens new avenues for drug development and the modernization of traditional Chinese medicine. This article introduces the principles of CRISPR technology and its efficacy in gene editing, followed by a detailed discussion of its applications in the secondary metabolism of medicinal plants. This includes an examination of the composition of active ingredients and the implementation of CRISPR strategies within metabolic pathways, as well as the influence of Cas9 protein variants and advanced CRISPR systems in the field. In addition, this article examines the long-term impact of CRISPR technology on the progress of medicinal plant research and development. It also raises existing issues in research, including off-target effects, complexity of genome structure, low transformation efficiency, and insufficient understanding of metabolic pathways. At the same time, this article puts forward some insights in order to provide new ideas for the subsequent application of CRISPR in medicinal plants. In summary, CRISPR technology presents broad application prospects in the study of secondary metabolism in medicinal plants and is poised to facilitate further advancements in biomedicine and agricultural science. As technological advancements continue and challenges are progressively addressed, CRISPR technology is expected to play an increasingly vital role in the research of active ingredients in medicinal plants.
Collapse
Affiliation(s)
- Haixin Gao
- College of Life Sciences, Northwest Agricultural and Forestry University, Yangling, Shaanxi, China
| | - Xinyi Pei
- College of Life Sciences, Northwest Agricultural and Forestry University, Yangling, Shaanxi, China
| | - Xianshui Song
- Zhejiang Key Agricultural Enterprise Institute of Tiefengtang Dendrobium Officinale, Wenzhou, Zhejiang, China
| | - Shiying Wang
- College of Resources and Environment, ABA Teachers College, Wenchuan, Sichuan, China
| | - Zisong Yang
- College of Resources and Environment, ABA Teachers College, Wenchuan, Sichuan, China
| | - Jianjun Zhu
- College of Landscape and Hydraulic Engineering, Wenzhou Vocational College of Science and Technology, Wenzhou, Zhejiang, China
| | - Qiupeng Lin
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qinlong Zhu
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiangna Yang
- College of Life Sciences, Northwest Agricultural and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Zhao X, Hussain MH, Mohsin A, Liu Z, Xu Z, Li Z, Guo W, Guo M. Mechanistic insight for improving butenyl-spinosyn production through combined ARTP/UV mutagenesis and ribosome engineering in Saccharopolyspora pogona. Front Bioeng Biotechnol 2024; 11:1329859. [PMID: 38292303 PMCID: PMC10825966 DOI: 10.3389/fbioe.2023.1329859] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024] Open
Abstract
Butenyl-spinosyn is a highly effective, wide-spectrum and environmentally-friendly biological insecticide produced by Saccharopolyspora pogona. However, its scale-up is impeded due to its lower titer in wild-type strains. In this work, ARTP/UV mutagenesis and ribosome engineering were employed to enhance the butenyl-spinosyn production, and a stable mutant Saccharopolyspora pogona aG6 with high butenyl-spinosyn yield was successfully obtained. For the first time, the fermentation results in the 5 L bioreactor demonstrated that the butenyl-spinosyn produced by mutant Saccharopolyspora pogona aG6 reached the maximum value of 130 mg/L, almost 4-fold increase over the wild-type strain WT. Furthermore, comparative genomic, transcriptome and target metabolomic analysis revealed that the accumulation of butenyl-spinosyn was promoted by alterations in ribosomal proteins, branched-chain amino acid degradation and oxidative phosphorylation. Conclusively, the proposed model of ribosome engineering combined with ARTP/UV showed the improved biosynthesis regulation of butenyl-spinosyn in S. pogona.
Collapse
Affiliation(s)
- Xueli Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Muhammad Hammad Hussain
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zebo Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhixian Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhanxia Li
- Department of Respiratory Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqun Guo
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Guo S, Leng T, Sun X, Zheng J, Li R, Chen J, Hu F, Liu F, Hua Q. Global Regulator AdpA_1075 Regulates Morphological Differentiation and Ansamitocin Production in Actinosynnema pretiosum subsp. auranticum. Bioengineering (Basel) 2022; 9:719. [PMID: 36421120 PMCID: PMC9687425 DOI: 10.3390/bioengineering9110719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 09/08/2024] Open
Abstract
Actinosynnema pretiosum is a well-known producer of maytansinoid antibiotic ansamitocin P-3 (AP-3). Growth of A. pretiosum in submerged culture was characterized by the formation of complex mycelial particles strongly affecting AP-3 production. However, the genetic determinants involved in mycelial morphology are poorly understood in this genus. Herein a continuum of morphological types of a morphologically stable variant was observed during submerged cultures. Expression analysis revealed that the ssgA_6663 and ftsZ_5883 genes are involved in mycelial aggregation and entanglement. Combing morphology observation and morphology engineering, ssgA_6663 was identified to be responsible for the mycelial intertwining during liquid culture. However, down-regulation of ssgA_6663 transcription was caused by inactivation of adpA_1075, gene coding for an AdpA-like protein. Additionally, the overexpression of adpA_1075 led to an 85% increase in AP-3 production. Electrophoretic mobility shift assays (EMSA) revealed that AdpA_1075 may bind the promoter regions of asm28 gene in asm gene cluster as well as the promoter regions of ssgA_6663. These results confirm that adpA_1075 plays a positive role in AP-3 biosynthesis and morphological differentiation.
Collapse
Affiliation(s)
- Siyu Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Tingting Leng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xueyuan Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiawei Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ruihua Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jun Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Fengxian Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Feng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|