1
|
Zhang J, Noor ZZ, Baharuddin NH, Setu SA, Mohd Hamzah MAA, Zakaria ZA. Removal of Heavy Metals by Pseudomonas sp. - Model Fitting and Interpretation. Curr Microbiol 2024; 81:312. [PMID: 39155344 DOI: 10.1007/s00284-024-03832-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024]
Abstract
Industrial and urban modernization processes generate significant amounts of heavy metal wastewater, which brings great harm to human production and health. The biotechnology developed in recent years has gained increasing attention in the field of wastewater treatment due to its repeatable regeneration and lack of secondary pollutants. Pseudomonas, being among the several bacterial biosorbents, possesses notable benefits in the removal of heavy metals. These advantages encompass its extensive adsorption capacity, broad adaptability, capacity for biotransformation, potential for genetic engineering transformation, cost-effectiveness, and environmentally sustainable nature. The process of bacterial adsorption is a complex phenomenon involving several physical and chemical processes, including adsorption, ion exchange, and surface and contact phenomena. A comprehensive investigation of parameters is necessary in order to develop a mathematical model that effectively measures metal ion recovery and process performance. The aim of this study was to explore the latest advancements in high-tolerance Pseudomonas isolated from natural environments and evaluate its potential as a biological adsorbent. The study investigated the adsorption process of this bacterium, examining key factors such as strain type, contact time, initial metal concentration, and pH that influenced its effectiveness. By utilizing dynamic mathematical models, the research summarized the biosorption process, including adsorption kinetics, equilibrium, and thermodynamics. The findings indicated that Pseudomonas can effectively purify water contaminated with heavy metals and future research will aim to enhance its adsorption performance and expand its application scope for broader environmental purification purposes.
Collapse
Affiliation(s)
- Jianhui Zhang
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor, Bahru, Johor, Malaysia
| | - Zainura Zainon Noor
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor, Bahru, Johor, Malaysia
- Centre for Environmental Sustainability and Water Security (IPASA), Universiti Teknologi Malaysia, 81310 Johor, Bahru, Johor, Malaysia
| | - Nurul Huda Baharuddin
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor, Bahru, Johor, Malaysia
| | - Siti Aminah Setu
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor, Bahru, Johor, Malaysia
| | - Mohd Amir Asyraf Mohd Hamzah
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor, Bahru, Johor, Malaysia
| | - Zainul Akmar Zakaria
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor, Bahru, Johor, Malaysia.
| |
Collapse
|
2
|
Sujiritha PB, Vikash VL, Ponesakki G, Ayyadurai N, Kamini NR. Microbially induced carbonate precipitation with Arthrobacter creatinolyticus: An eco-friendly strategy for mitigation of chromium contamination. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121300. [PMID: 38955041 DOI: 10.1016/j.jenvman.2024.121300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/14/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Chromium contamination from abandoned industrial sites and inadequately managed waste disposal areas poses substantial environmental threat. Microbially induced carbonate precipitation (MICP) has shown promising, eco-friendly solution to remediate Cr(VI) and divalent heavy metals. In this study, MICP was carried out for chromium immobilization by an ureolytic bacterium Arthrobacter creatinolyticus which is capable of reducing Cr(VI) to less toxic Cr(III) via extracellular polymeric substances (EPS) production. The efficacy of EPS driven reduction was confirmed by cellular fraction analysis. MICP carried out in aqueous solution with 100 ppm of Cr(VI) co-precipitated 82.21% of chromium with CaCO3 and the co-precipitation is positively correlated with reduction of Cr(VI). The organism was utilized to remediate chromium spiked sand and found that MICP treatment decreased the exchangeable fraction of chromium to 0.54 ± 0.11% and increased the carbonate bound fraction to 26.1 ± 1.15% compared to control. XRD and SEM analysis revealed that Cr(III) produced during reduction, influenced the polymorph selection of vaterite during precipitation. Evaluation of MICP to remediate Cr polluted soil sample collected from Ranipet, Tamil Nadu also showed effective immobilization of chromium. Thus, A. creatinolyticus proves to be viable option for encapsulating chromium contaminated soil via MICP process, and effectively mitigating the infiltration of Cr(VI) into groundwater and adjacent water bodies.
Collapse
Affiliation(s)
- Parthasarathy Baskaran Sujiritha
- Department of Biochemistry and Biotechnology, CSIR - Central Leather Research Institute, Chennai, 600020, Tamil Nadu, India; University of Madras, Chennai, 600005, Tamil Nadu, India
| | - Vijan Lal Vikash
- Department of Biochemistry and Biotechnology, CSIR - Central Leather Research Institute, Chennai, 600020, Tamil Nadu, India
| | - Ganesan Ponesakki
- Department of Biochemistry and Biotechnology, CSIR - Central Leather Research Institute, Chennai, 600020, Tamil Nadu, India
| | - Niraikulam Ayyadurai
- Department of Biochemistry and Biotechnology, CSIR - Central Leather Research Institute, Chennai, 600020, Tamil Nadu, India
| | - Numbi Ramudu Kamini
- Department of Biochemistry and Biotechnology, CSIR - Central Leather Research Institute, Chennai, 600020, Tamil Nadu, India.
| |
Collapse
|
3
|
Thakur M, Yadav V, Kumar Y, Pramanik A, Dubey KK. How to deal with xenobiotic compounds through environment friendly approach? Crit Rev Biotechnol 2024:1-20. [PMID: 38710611 DOI: 10.1080/07388551.2024.2336527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 03/13/2024] [Indexed: 05/08/2024]
Abstract
Every year, a huge amount of lethal compounds, such as synthetic dyes, pesticides, pharmaceuticals, hydrocarbons, etc. are mass produced worldwide, which negatively affect soil, air, and water quality. At present, pesticides are used very frequently to meet the requirements of modernized agriculture. The Food and Agriculture Organization of the United Nations (FAO) estimates that food production will increase by 80% by 2050 to keep up with the growing population, consequently pesticides will continue to play a role in agriculture. However, improper handling of these highly persistent chemicals leads to pollution of the environment and accumulation in food chain. These effects necessitate the development of technologies to eliminate or degrade these pollutants. Degradation of these compounds by physical and chemical processes is expensive and usually results in secondary compounds with higher toxicity. The biological strategies proposed for the degradation of these compounds are both cost-effective and eco-friendly. Microbes play an imperative role in the degradation of xenobiotic compounds that have toxic effects on the environment. This review on the fate of xenobiotic compounds in the environment presents cutting-edge insights and novel contributions in different fields. Microbial community dynamics in water bodies, genetic modification for enhanced pesticide degradation and the use of fungi for pharmaceutical removal, white-rot fungi's versatile ligninolytic enzymes and biodegradation potential are highlighted. Here we emphasize the factors influencing bioremediation, such as microbial interactions and carbon catabolism repression, along with a nuanced view of challenges and limitations. Overall, this review provides a comprehensive perspective on the bioremediation strategies.
Collapse
Affiliation(s)
- Mony Thakur
- Department of Microbiology, Central University of Haryana, Mahendergarh, India
| | - Vinod Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh, India
| | - Yatin Kumar
- Department of Microbiology, Central University of Haryana, Mahendergarh, India
| | - Avijit Pramanik
- Department of Microbiology, Central University of Haryana, Mahendergarh, India
| | | |
Collapse
|
4
|
Zhang Q, Miao R, Feng R, Yan J, Wang T, Gan Y, Zhao J, Lin J, Gan B. Application of Atmospheric and Room-Temperature Plasma (ARTP) to Microbial Breeding. Curr Issues Mol Biol 2023; 45:6466-6484. [PMID: 37623227 PMCID: PMC10453651 DOI: 10.3390/cimb45080408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Atmospheric and room-temperature plasma (ARTP) is an efficient microbial mutagenesis method with broad application prospects. Compared to traditional methods, ARTP technology can more effectively induce DNA damage and generate stable mutant strains. It is characterized by its simplicity, cost-effectiveness, and avoidance of hazardous chemicals, presenting a vast potential for application. The ARTP technology is widely used in bacterial, fungal, and microalgal mutagenesis for increasing productivity and improving characteristics. In conclusion, ARTP technology holds significant promise in the field of microbial breeding. Through ARTP technology, we can create mutant strains with specific genetic traits and improved performance, thereby increasing yield, improving quality, and meeting market demands. The field of microbial breeding will witness further innovation and progress with continuous refinement and optimization of ARTP technology.
Collapse
Affiliation(s)
- Qin Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Q.Z.); (R.M.); (R.F.); (J.Y.); (T.W.); (Y.G.); (J.Z.); (J.L.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Renyun Miao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Q.Z.); (R.M.); (R.F.); (J.Y.); (T.W.); (Y.G.); (J.Z.); (J.L.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Rencai Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Q.Z.); (R.M.); (R.F.); (J.Y.); (T.W.); (Y.G.); (J.Z.); (J.L.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Junjie Yan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Q.Z.); (R.M.); (R.F.); (J.Y.); (T.W.); (Y.G.); (J.Z.); (J.L.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Tao Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Q.Z.); (R.M.); (R.F.); (J.Y.); (T.W.); (Y.G.); (J.Z.); (J.L.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Ying Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Q.Z.); (R.M.); (R.F.); (J.Y.); (T.W.); (Y.G.); (J.Z.); (J.L.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Jin Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Q.Z.); (R.M.); (R.F.); (J.Y.); (T.W.); (Y.G.); (J.Z.); (J.L.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Junbin Lin
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Q.Z.); (R.M.); (R.F.); (J.Y.); (T.W.); (Y.G.); (J.Z.); (J.L.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Bingcheng Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Q.Z.); (R.M.); (R.F.); (J.Y.); (T.W.); (Y.G.); (J.Z.); (J.L.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| |
Collapse
|