1
|
Lennartz S, Zopfs D, Große Hokamp N. Dual-energy CT revisited: a focused review of clinical use cases. ROFO-FORTSCHR RONTG 2024; 196:794-806. [PMID: 38176436 DOI: 10.1055/a-2203-2945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Affiliation(s)
- Simon Lennartz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David Zopfs
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nils Große Hokamp
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Lortie J, Gage G, Rush B, Heymsfield SB, Szczykutowicz TP, Kuchnia AJ. The effect of computed tomography parameters on sarcopenia and myosteatosis assessment: a scoping review. J Cachexia Sarcopenia Muscle 2022; 13:2807-2819. [PMID: 36065509 PMCID: PMC9745495 DOI: 10.1002/jcsm.13068] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/21/2022] [Accepted: 07/20/2022] [Indexed: 12/15/2022] Open
Abstract
Computed tomography (CT) is a valuable assessment method for muscle pathologies such as sarcopenia, cachexia, and myosteatosis. However, several key underappreciated scan imaging parameters need consideration for both research and clinical use, specifically CT kilovoltage and the use of contrast material. We conducted a scoping review to assess these effects on CT muscle measures. We reviewed articles from PubMed, Scopus, and Web of Science from 1970 to 2020 on the effect of intravenous contrast material and variation in CT kilovoltage on muscle mass and density. We identified 971 articles on contrast and 277 articles on kilovoltage. The number of articles that met inclusion criteria for contrast and kilovoltage was 11 and 7, respectively. Ten studies evaluated the effect of contrast on muscle density of which nine found that contrast significantly increases CT muscle density (arterial phase 6-23% increase, venous phase 19-57% increase, and delayed phase 23-43% increase). Seven out of 10 studies evaluating the effect of contrast on muscle area found significant increases in area due to contrast (≤2.58%). Six studies evaluating kilovoltage on muscle density found that lower kilovoltage resulted in a higher muscle density (14-40% increase). One study reported a significant decrease in muscle area when reducing kilovoltage (2.9%). The use of contrast and kilovoltage variations can have dramatic effects on skeletal muscle analysis and should be considered and reported in CT muscle analysis research. These significant factors in CT skeletal muscle analysis can alter clinical and research outcomes and are therefore a barrier to clinical application unless better appreciated.
Collapse
Affiliation(s)
- Jevin Lortie
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Grace Gage
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Benjamin Rush
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Steven B Heymsfield
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | | | - Adam J Kuchnia
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
3
|
Seah HM, Choi HC, Bajic N, Oakden‐Rayner L, Gormly KL. Assessment of a single‐pass venous phase
CT
chest, abdomen and pelvis and dual‐energy
CT
in general oncology outpatients. J Med Imaging Radiat Oncol 2022. [DOI: 10.1111/1754-9485.13490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Huey Ming Seah
- South Australia Medical Imaging Adelaide South Australia Australia
| | - Hau Cher Choi
- South Australia Medical Imaging Adelaide South Australia Australia
| | - Nicholas Bajic
- South Australia Medical Imaging Adelaide South Australia Australia
- Jones Radiology Adelaide South Australia Australia
| | - Lauren Oakden‐Rayner
- South Australia Medical Imaging Adelaide South Australia Australia
- Jones Radiology Adelaide South Australia Australia
- Australian Institute for Machine Learning University of Adelaide Adelaide South Australia Australia
- The University of Adelaide Adelaide South Australia Australia
| | - Kirsten L Gormly
- Jones Radiology Adelaide South Australia Australia
- The University of Adelaide Adelaide South Australia Australia
| |
Collapse
|
4
|
Mahmoudi S, Lange M, Lenga L, Yel I, Koch V, Booz C, Martin S, Bernatz S, Vogl T, Albrecht M, Scholtz JE. Salvaging low contrast abdominal CT studies using noise-optimised virtual monoenergetic image reconstruction. BJR Open 2022; 4:20220006. [PMID: 36105416 PMCID: PMC9446156 DOI: 10.1259/bjro.20220006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives To assess the impact of noise-optimised virtual monoenergetic imaging (VMI+) on image quality and diagnostic evaluation in abdominal dual-energy CT scans with impaired portal-venous contrast. Methods We screened 11,746 patients who underwent portal-venous abdominal dual-energy CT for cancer staging between 08/2014 and 11/2019 and identified those with poor portal-venous contrast.Standard linearly-blended image series and VMI+ image series at 40, 50, and 60 keV were reconstructed. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of abdominal organs and vascular structures were calculated. Image noise, image contrast and overall image quality were rated by three radiologists using 5-point Likert scale. Results 452 of 11,746 (4%) exams were poorly opacified. We excluded 190 cases due to incomplete datasets or multiple exams of the same patient with a final study group of 262. Highest CNR values in all abdominal organs (liver, 6.4 ± 3.0; kidney, 17.4 ± 7.5; spleen, 8.0 ± 3.5) and vascular structures (aorta, 16.0 ± 7.3; intrahepatic vein, 11.3 ± 4.7; portal vein, 15.5 ± 6.7) were measured at 40 keV VMI+ with significantly superior values compared to all other series. In subjective analysis, highest image contrast was seen at 40 keV VMI+ (4.8 ± 0.4), whereas overall image quality peaked at 50 keV VMI+ (4.2 ± 0.5) with significantly superior results compared to all other series (p < 0.001). Conclusions Image reconstruction using VMI+ algorithm at 50 keV significantly improves image contrast and image quality of originally poorly opacified abdominal CT scans and reduces the number of non-diagnostic scans. Advances in knowledge We validated the impact of VMI+ reconstructions in poorly attenuated DECT studies of the abdomen in a big data cohort.
Collapse
Affiliation(s)
- Scherwin Mahmoudi
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai, Frankfurt, Germany
| | - Marvin Lange
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai, Frankfurt, Germany
| | - Lukas Lenga
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai, Frankfurt, Germany
| | - Ibrahim Yel
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai, Frankfurt, Germany
| | - Vitali Koch
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai, Frankfurt, Germany
| | - Christian Booz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai, Frankfurt, Germany
| | - Simon Martin
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai, Frankfurt, Germany
| | - Simon Bernatz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai, Frankfurt, Germany
| | - Thomas Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai, Frankfurt, Germany
| | - Moritz Albrecht
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai, Frankfurt, Germany
| | - Jan-Erik Scholtz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai, Frankfurt, Germany
| |
Collapse
|
5
|
Reimer RP, Gertz RJ, Pennig L, Henze J, Celik E, Lennartz S, Maintz D, Zopfs D, Große Hokamp N. Value of spectral detector computed tomography to differentiate infected from noninfected thoracoabominal fluid collections. Eur J Radiol 2021; 145:110037. [PMID: 34808580 DOI: 10.1016/j.ejrad.2021.110037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/01/2021] [Accepted: 11/12/2021] [Indexed: 12/28/2022]
Abstract
PURPOSE To investigate the diagnostic value of spectral detector CT (SDCT)-derived virtual non-contrast (VNC), virtual monoenergetic images (VMI) and iodine overlays (IO) for distinguishing infected from noninfected fluid collections (FC) in the chest or abdomen. METHOD This retrospective study included 58 patients with venous phase SDCT with 77 FC. For all included FC, microbiological analysis of aspirated fluid served as reference. For quantitative analysis, wall thickness was measured, and (ROI)-based analysis performed within the fluid, the FC's wall (if any) and the aorta. Two radiologists qualitatively evaluated visibility of wall enhancement, diagnostic confidence regarding infection of fluid collection, confidence of CT-guided drainage catheter placement and visibility of anatomical landmarks in conventional images (CI) and VNC, VMI40keV, IO. RESULTS Wall thickness significantly differed between infected (n = 46) and noninfected (n = 31) FC (3.5 ± 1.8 mm vs. 1.4 ± 1.8 mm, AUC = 0.81; p < 0.05). Fluid attenuation and wall enhancement was significantly higher in infected as compared to noninfected FC in all reconstructions (p < 0.05, respectively). Highest AUC regarding A) attenuation in fluid was yielded in CI and VMI70,80keV (0.75); B) wall enhancement in CI (0.88) followed by iodine concentration (0.86). Contrast-to-noise ratio of wall vs. fluid was highest in VMI40keV (p < 0.05). All assessed qualitative parameters received significantly higher ratings when using spectral reconstructions vs. CI (p for all <0.05), except for visibility of wall enhancement. CONCLUSION Spectral reconstructions improve the assessment of infected from noninfected thoracoabdominal fluid collections and depiction of wall enhancement. Diagnostic performance of the quantitative measurements in spectral reconstructions were comparable with measurements in conventional images.
Collapse
Affiliation(s)
- Robert Peter Reimer
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Kerpener Str. 62, 50937 Cologne, Germany.
| | - Roman Johannes Gertz
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Kerpener Str. 62, 50937 Cologne, Germany
| | - Lenhard Pennig
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Kerpener Str. 62, 50937 Cologne, Germany
| | - Jörn Henze
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Kerpener Str. 62, 50937 Cologne, Germany
| | - Erkan Celik
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Kerpener Str. 62, 50937 Cologne, Germany
| | - Simon Lennartz
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Kerpener Str. 62, 50937 Cologne, Germany
| | - David Maintz
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Kerpener Str. 62, 50937 Cologne, Germany
| | - David Zopfs
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Kerpener Str. 62, 50937 Cologne, Germany
| | - Nils Große Hokamp
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|
6
|
Reimer RP, Hokamp NG, Niehoff J, Zopfs D, Lennartz S, Heidar M, Wahba R, Stippel D, Maintz D, dos Santos DP, Wybranski C. Value of spectral detector computed tomography for the early assessment of technique efficacy after microwave ablation of hepatocellular carcinoma. PLoS One 2021; 16:e0252678. [PMID: 34129650 PMCID: PMC8205161 DOI: 10.1371/journal.pone.0252678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES To investigate whether virtual monoenergetic images (VMI) and iodine maps derived from spectral detector computed tomography (SDCT) improve early assessment of technique efficacy in patients who underwent microwave ablation (MWA) for hepatocellular carcinoma (HCC) in liver cirrhosis. METHODS This retrospective study comprised 39 patients with 49 HCC lesions treated with MWA. Biphasic SDCT was performed 7.7±4.0 days after ablation. Conventional images (CI), VMI and IM were reconstructed. Signal- and contrast-to-noise ratio (SNR, CNR) in the ablation zone (AZ), hyperemic rim (HR) and liver parenchyma were calculated using regions-of-interest analysis and compared between CI and VMI between 40-100 keV. Iodine concentration and perfusion ratio of HR and residual tumor (RT) were measured. Two readers evaluated subjective contrast of AZ and HR, technique efficacy (complete vs. incomplete ablation) and diagnostic confidence at determining technique efficacy. RESULTS Attenuation of liver parenchyma, HR and RT, SNR of liver parenchyma and HR, CNR of AZ and HR were significantly higher in low-keV VMI compared to CI (all p<0.05). Iodine concentration and perfusion ratio differed significantly between HR and RT (all p<0.05; e.g. iodine concentration, 1.6±0.5 vs. 2.7±1.3 mg/ml). VMI50keV improved subjective AZ-to-liver contrast, HR-to-liver contrast, visualization of AZ margin and vessels adjacent to AZ compared to CI (all p<0.05). Diagnostic accuracy for detection of incomplete ablation was slightly higher in VMI50keV compared to CI (0.92 vs. 0.89), while diagnostic confidence was significantly higher in VMI50keV (p<0.05). CONCLUSIONS Spectral detector computed tomography derived low-keV virtual monoenergetic images and iodine maps provide superior early assessment of technique efficacy of MWA in HCC compared to CI.
Collapse
Affiliation(s)
- Robert Peter Reimer
- Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany
- * E-mail:
| | - Nils Große Hokamp
- Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany
| | - Julius Niehoff
- Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany
| | - David Zopfs
- Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany
| | - Simon Lennartz
- Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Mariam Heidar
- Faculty of Medicine, University Cologne, Cologne, Germany
| | - Roger Wahba
- Faculty of Medicine and University Hospital Cologne, Department of General-, Visceral, Cancer and Transplant Surgery, University of Cologne, Cologne, Germany
| | - Dirk Stippel
- Faculty of Medicine and University Hospital Cologne, Department of General-, Visceral, Cancer and Transplant Surgery, University of Cologne, Cologne, Germany
| | - David Maintz
- Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany
| | - Daniel Pinto dos Santos
- Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany
| | - Christian Wybranski
- Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Bernsen MLE, Veendrick PB, Martens JM, Pijl MEJ, Hofmeijer J, van Gorp MJ. Initial experience with dual-layer detector spectral CT for diagnosis of blood or contrast after endovascular treatment for ischemic stroke. Neuroradiology 2021; 64:69-76. [PMID: 34046731 DOI: 10.1007/s00234-021-02736-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/20/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE To determine whether spectral detector CT (SDCT) with a plain non-enhanced monochromatic CT, a water-weighted image after iodine removal, an iodine map, and Mono energetic images changes the diagnosis and classification of intracranial hemorrhage based on single energy CT after endovascular treatment (EVT) for ischemic stroke. METHODS Two readers evaluated single energy and SD CT data collected from 63 patients within one week after EVT. They diagnosed ICH or contrast staining, and graded ICH according to the Heidelberg and Safe Implementation of Thrombolysis in Stroke-Monitoring Study (SITS-MOST) classification. Differences in diagnosis between single energy and SD CT were tested with Pearson's chi-squared test. Diagnostic values of single energy CT were calculated. Interrater agreement was based on Cohen's Kappa. RESULTS When spectral data were added to single energy CT, the diagnosis of ICH changed in 8 CT scans (13%): in 4, the diagnosis of ICH was rejected and in 4, initially undetected ICH was diagnosed. In an additional 3 patients, the ICH grade was modified. CT alone had 88% sensitivity, 87% specificity, 88% positive diagnostic value, 87% negative diagnostic value, and 87% overall accuracy for ICH compared to SDCT. Interreader agreement on the presence of ICH was 0.84 (95% CI 0.51-0.86) for spectral CT and 0.84 (95% CI 0.73-0.97) for single energy CT. CONCLUSION SD CT after endovascular treatment contributes to the distinction between intracranial hemorrhage and contrast staining.
Collapse
Affiliation(s)
- Marie Louise E Bernsen
- Department of Radiology, Rijnstate Hospital, Wagnerlaan 55, 6815 AD, Arnhem, The Netherlands.
| | - Peter B Veendrick
- Department of Radiology, Rijnstate Hospital, Wagnerlaan 55, 6815 AD, Arnhem, The Netherlands
| | - Jasper M Martens
- Department of Radiology, Rijnstate Hospital, Wagnerlaan 55, 6815 AD, Arnhem, The Netherlands
| | - Milan E J Pijl
- Department of Radiology, Rijnstate Hospital, Wagnerlaan 55, 6815 AD, Arnhem, The Netherlands
| | - Jeannette Hofmeijer
- Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands.,Clinical Neurophysiology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Maarten J van Gorp
- Department of Radiology, Rijnstate Hospital, Wagnerlaan 55, 6815 AD, Arnhem, The Netherlands
| |
Collapse
|
8
|
Reduction of CT artifacts from cardiac implantable electronic devices using a combination of virtual monoenergetic images and post-processing algorithms. Eur Radiol 2021; 31:7151-7161. [PMID: 33630164 PMCID: PMC8379133 DOI: 10.1007/s00330-021-07746-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/16/2020] [Accepted: 02/04/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To evaluate the reduction of artifacts from cardiac implantable electronic devices (CIEDs) by virtual monoenergetic images (VMI), metal artifact reduction (MAR) algorithms, and their combination (VMIMAR) derived from spectral detector CT (SDCT) of the chest compared to conventional CT images (CI). METHODS In this retrospective study, we included 34 patients (mean age 74.6 ± 8.6 years), who underwent a SDCT of the chest and had a CIED in place. CI, MAR, VMI, and VMIMAR (10 keV increment, range: 100-200 keV) were reconstructed. Mean and standard deviation of attenuation (HU) among hypo- and hyperdense artifacts adjacent to CIED generator and leads were determined using ROIs. Two radiologists qualitatively evaluated artifact reduction and diagnostic assessment of adjacent tissue. RESULTS Compared to CI, MAR and VMIMAR ≥ 100 keV significantly increased attenuation in hypodense and significantly decreased attenuation in hyperdense artifacts at CIED generator and leads (p < 0.05). VMI ≥ 100 keV alone only significantly decreased hyperdense artifacts at the generator (p < 0.05). Qualitatively, VMI ≥ 100 keV, MAR, and VMIMAR ≥ 100 keV provided significant reduction of hyper- and hypodense artifacts resulting from the generator and improved diagnostic assessment of surrounding structures (p < 0.05). Diagnostic assessment of structures adjoining to the leads was only improved by MAR and VMIMAR 100 keV (p < 0.05), whereas keV values ≥ 140 with and without MAR significantly worsened diagnostic assessment (p < 0.05). CONCLUSIONS The combination of VMI and MAR as well as MAR as a standalone approach provides effective reduction of artifacts from CIEDs. Still, higher keV values should be applied with caution due to a loss of soft tissue and vessel contrast along the leads. KEY POINTS • The combination of VMI and MAR as well as MAR as a standalone approach enables effective reduction of artifacts from CIEDs. • Higher keV values of both VMI and VMIMAR at CIED leads should be applied with caution since diagnostic assessment can be hampered by a loss of soft tissue and vessel contrast. • Recommended keV values for CIED generators are between 140 and 200 keV and for leads around 100 keV.
Collapse
|
9
|
Abstract
Metastatic bone disease (MBD) is common—it is detected in up to 65–75% of patients with breast or prostate cancer, in over 35% of patients with lung cancer; and almost all patients with symptomatic multiple myeloma have focal lesions or a diffuse bone marrow infiltration. Metastatic bone disease can cause a variety of symptoms and is often associated with a poorer prognosis, with high social and health-care costs. Population-based cohort studies confirm significantly increased health-care utilization costs in patients presenting with cancer with MBD compared with those without MBD. The prolonged survival of patients with bone metastasis thanks to advances in therapy presents an opportunity for better treatments for this patient cohort. Early and accurate diagnosis of bone metastases is therefore crucial. The patterns and presentation of MBD are quite heterogeneous and necessitate good knowledge of the possibilities and limitations of each imaging modality. Here, we review the state-of-the-art imaging techniques, assess the need for evidence-based and cost-effective patient care pathways, and advocate multidisciplinary management based on collaborations between orthopedic surgeons, pathologists, oncologists, radiotherapists, and radiologists aimed at improving patient outcomes. Radiologists play a key role in this multidisciplinary approach to decision-making through correlating the tumor entity, the tumor biology, the impact on the surrounding tissues and progression, as well as the overall condition of the patient. This approach helps to choose the best patient-tailored imaging plan advocating a “choose wisely” strategy throughout the initial diagnosis, minimally invasive treatment procedures, as well as follow-up care plans.
Collapse
|
10
|
Zopfs D, Große Hokamp N, Reimer R, Bratke G, Maintz D, Bruns C, Mallmann C, Persigehl T, Haneder S, Lennartz S. Value of spectral detector CT for pretherapeutic, locoregional assessment of esophageal cancer. Eur J Radiol 2020; 134:109423. [PMID: 33302024 DOI: 10.1016/j.ejrad.2020.109423] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/01/2020] [Accepted: 11/14/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE To investigate the diagnostic value of spectral detector dual-energy CT-derived low-keV virtual monoenergetic images (VMI) and iodine overlays (IO) for locoregional, pretherapeutic assessment of esophageal cancer. METHOD 74 patients with biopsy-proven esophageal cancer who underwent pre-therapeutic, portal-venous-phase staging examinations of the chest and abdomen were retrospectively included. Quantitative image analysis was performed ROI-based within the tumor, healthy esophageal wall, peri-esophageal lymph nodes, azygos vein, aorta, liver, diaphragm, and mediastinal fat. Two radiologists evaluated delineation of the primary tumor and locoregional lymph nodes, assessment of the celiac trunk and diagnostic certainty regarding tumor infiltration in conventional images (CI), VMI from 40 to 70 keV and IO. Moreover, presence/absence of advanced tumor infiltration (T3/T4) was determined binary using all available images. RESULTS VMI40-60keV showed significantly higher attenuation and signal-to-noise ratio compared to CI for all assessed ROIs, peaking at VMI40keV (p < 0.05). Contrast-to-noise ratio of tumor/esophagus (VMI40keV/CI: 7.7 ± 4.7 vs. 2.3 ± 1.5), tumor/diaphragm (VMI40keV/CI: 9.0 ± 5.5 vs. 2.2 ± 1.7) and tumor/liver (4.3 ± 5.5 vs. 1.9 ± 2.1) were all significantly higher compared to CI (p < 0.05). Qualitatively, lymph node delineation and diagnostic certainty regarding tumor infiltration received highest ratings both in IO and VMI40keV, whereas vascular assessment was rated highest in VMI40keV and primary tumor delineation in IO. Sensitivity/Specificity/Accuracy for detecting advanced tumor infiltration using the combination of CI, VMI40-70keV and IO was 42.4 %/82.0 %/56.3 %. CONCLUSIONS IO and VMI40-60keV improve qualitative assessment of the primary tumor and depiction of lymph nodes and vessels at pretherapeutic SDCT of esophageal cancer patients yet do not mitigate the limitations of CT in determining tumor infiltration.
Collapse
Affiliation(s)
- David Zopfs
- University Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany
| | - Nils Große Hokamp
- University Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany
| | - Robert Reimer
- University Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany
| | - Grischa Bratke
- University Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany
| | - David Maintz
- University Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany
| | - Christiane Bruns
- Department of General, Visceral and Cancer Surgery, University of Cologne, Kerpener Str. 32, 50937, Cologne, Germany
| | - Christoph Mallmann
- Department of General, Visceral and Cancer Surgery, University of Cologne, Kerpener Str. 32, 50937, Cologne, Germany
| | - Thorsten Persigehl
- University Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany
| | - Stefan Haneder
- University Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany
| | - Simon Lennartz
- University Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany; Department of Radiology, Division of Abdominal Imaging and Intervention, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, White 270, Boston, MA, 02114, USA.
| |
Collapse
|
11
|
Ishikawa T, Suzuki S, Katada Y, Takayanagi T, Fukui R, Yamamoto Y, Tanigaki K. Evaluation of three-dimensional iterative image reconstruction in virtual monochromatic imaging at 40 kilo-electron volts: phantom and clinical studies to assess the image noise and image quality in comparison with other reconstruction techniques. Br J Radiol 2020; 93:20190675. [PMID: 32208973 PMCID: PMC10993219 DOI: 10.1259/bjr.20190675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/03/2019] [Accepted: 03/24/2020] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE The purpose of this study was to evaluate the image quality in virtual monochromatic imaging (VMI) at 40 kilo-electron volts (keV) with three-dimensional iterative image reconstruction (3D-IIR). METHODS A phantom study and clinical study (31 patients) were performed with dual-energy CT (DECT). VMI at 40 keV was obtained and the images were reconstructed using filtered back projection (FBP), 50% adaptive statistical iterative reconstruction (ASiR), and 3D-IIR. We conducted subjective and objective evaluations of the image quality with each reconstruction technique. RESULTS The image contrast-to-noise ratio and image noise in both the clinical and phantom studies were significantly better with 3D-IIR than with 50% ASiR, and with 50% ASiR than with FBP (all, p < 0.05). The standard deviation and noise power spectra of the reconstructed images decreased in the order of 3D-IIR to 50% ASiR to FBP, while the modulation transfer function was maintained across the three reconstruction techniques. In most subjective evaluations in the clinical study, the image quality was significantly better with 3D-IIR than with 50% ASiR, and with 50% ASiR than with FBP (all, p < 0.001). Regarding the diagnostic acceptability, all images using 3D-IIR were evaluated as being fully or probably acceptable. CONCLUSIONS The quality of VMI at 40 keV is improved by 3D-IIR, which allows the image noise to be reduced and structural details to be maintained. ADVANCES IN KNOWLEDGE The improvement of the image quality of VMI at 40 keV by 3D-IIR may increase the subjective acceptance in the clinical setting.
Collapse
Affiliation(s)
- Takuya Ishikawa
- Department of Radiology, Tokyo Women's Medical University
Medical Center East, 2-1-10 Nishiogu, Arakawa-ku,
Tokyo 116-8567, Japan
| | - Shigeru Suzuki
- Department of Radiology, Tokyo Women's Medical University
Medical Center East, 2-1-10 Nishiogu, Arakawa-ku,
Tokyo 116-8567, Japan
| | - Yoshiaki Katada
- Department of Radiology, Tokyo Women's Medical University
Medical Center East, 2-1-10 Nishiogu, Arakawa-ku,
Tokyo 116-8567, Japan
| | - Tomoko Takayanagi
- Department of Radiology, Graduate School of Medicine,
University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo, 113-8655, Japan
| | - Rika Fukui
- Department of Radiology, Tokyo Women's Medical University
Medical Center East, 2-1-10 Nishiogu, Arakawa-ku,
Tokyo 116-8567, Japan
| | - Yuzo Yamamoto
- Department of Radiology, Tokyo Women's Medical University
Medical Center East, 2-1-10 Nishiogu, Arakawa-ku,
Tokyo 116-8567, Japan
| | - Koji Tanigaki
- Department of Radiology, Tokyo Women's Medical University
Medical Center East, 2-1-10 Nishiogu, Arakawa-ku,
Tokyo 116-8567, Japan
| |
Collapse
|