1
|
Roth D, Larsson E, Ljungberg M, Sjögreen Gleisner K. Monte Carlo modelling of a compact CZT-based gamma camera with application to 177Lu imaging. EJNMMI Phys 2022; 9:35. [PMID: 35526172 PMCID: PMC9081070 DOI: 10.1186/s40658-022-00463-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/20/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Semiconductor gamma-camera systems based on cadmium zinc telluride (CZT) detectors present new challenges due to an energy-response that includes effects of low-energy tailing. In particular, such energy tails produce effects that need to be considered when imaging radionuclides with multiple emissions such as $$^{177}{\mathrm {Lu}}$$
177
Lu
. Monte Carlo simulation can be used to investigate the behaviour of such systems and optimise their use, provided that the detector model closely reflects the real physical detector. The aim of this work is to develop a CZT model applicable for simulation of CZT-based gamma cameras.
Methods
The equations describing the charge transport and signal induction are considered in three dimensions and are solved numerically, and the CZT model is then realised by coupling the detector-response to the photon-transport handled by the SIMIND Monte Carlo program. The CZT model is tuned to reproduce experimentally measured energy spectra of a hand-held gamma camera system for multiple radionuclides ($$^{99\mathrm {m}}{\mathrm {Tc}}$$
99
m
Tc
, $$^{123}{\mathrm {I}}$$
123
I
and $$^{177}{\mathrm {Lu}}$$
177
Lu
) and parallel-hole collimators (MEGP, LEHR) as well as an uncollimated system.
Results
Overall, the model results agree well with measurements across the range of experimental conditions. The applicability of the model is demonstrated by separating energy spectra into components to investigate the interference of high-energy photons on lower energy-windows, where pronounced effects of low-energy tailing for $$^{177}{\mathrm {Lu}}$$
177
Lu
are observed.
Conclusions
The developed model provides understanding of the specifics of the camera response and is expected to be helpful for future optimisation of gamma camera applications.
Collapse
|
2
|
Sakai M, Parajuli RK, Kubota Y, Kubo N, Yamaguchi M, Nagao Y, Kawachi N, Kikuchi M, Arakawa K, Tashiro M. Crosstalk Reduction Using a Dual Energy Window Scatter Correction in Compton Imaging. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2453. [PMID: 32357411 PMCID: PMC7249665 DOI: 10.3390/s20092453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/14/2020] [Accepted: 04/23/2020] [Indexed: 11/17/2022]
Abstract
Compton cameras can simultaneously detect multi-isotopes; however, when simultaneous imaging is performed, crosstalk artifacts appear on the images obtained using a low-energy window. In conventional single-photon emission computed tomography, a dual energy window (DEW) subtraction method is used to reduce crosstalk. This study aimed to evaluate the effectiveness of employing the DEW technique to reduce crosstalk artifacts in Compton images obtained using low-energy windows. To this end, in this study, we compared reconstructed images obtained using either a photo-peak window or a scatter window by performing image subtraction based on the differences between the two images. Simulation calculations were performed to obtain the list data for the Compton camera using a 171 and a 511 keV point source. In the images reconstructed using these data, crosstalk artifacts were clearly observed in the images obtained using a 171 keV photo-peak energy window. In the images obtained using a scatter window (176-186 keV), only crosstalk artifacts were visible. The DEW method could eliminate the influence of high-energy sources on the images obtained with a photo-peak window, thereby improving quantitative capability. This was also observed when the DEW method was used on experimentally obtained images.
Collapse
Affiliation(s)
- Makoto Sakai
- Graduate School of Medicine, Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| | - Raj Kumar Parajuli
- Graduate School of Medicine, Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba 263-8555, Japan
| | - Yoshiki Kubota
- Graduate School of Medicine, Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| | - Nobuteru Kubo
- Department of Radiation Oncology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| | - Mitsutaka Yamaguchi
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki-Machi, Takasaki 370-1292, Japan
| | - Yuto Nagao
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki-Machi, Takasaki 370-1292, Japan
| | - Naoki Kawachi
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki-Machi, Takasaki 370-1292, Japan
| | - Mikiko Kikuchi
- Graduate School of Medicine, Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| | - Kazuo Arakawa
- Graduate School of Medicine, Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| | - Mutsumi Tashiro
- Graduate School of Medicine, Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| |
Collapse
|
4
|
Heinzmann K, Carter LM, Lewis JS, Aboagye EO. Multiplexed imaging for diagnosis and therapy. Nat Biomed Eng 2017; 1:697-713. [PMID: 31015673 DOI: 10.1038/s41551-017-0131-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/02/2017] [Indexed: 12/12/2022]
Abstract
Complex molecular and metabolic phenotypes depict cancers as a constellation of different diseases with common themes. Precision imaging of such phenotypes requires flexible and tunable modalities capable of identifying phenotypic fingerprints by using a restricted number of parameters while ensuring sensitivity to dynamic biological regulation. Common phenotypes can be detected by in vivo imaging technologies, and effectively define the emerging standards for disease classification and patient stratification in radiology. However, for the imaging data to accurately represent a complex fingerprint, the individual imaging parameters need to be measured and analysed in relation to their wider spatial and molecular context. In this respect, targeted palettes of molecular imaging probes facilitate the detection of heterogeneity in oncogene-driven alterations and their response to treatment, and lead to the expansion of rational-design elements for the combination of imaging experiments. In this Review, we evaluate criteria for conducting multiplexed imaging, and discuss its opportunities for improving patient diagnosis and the monitoring of therapy.
Collapse
Affiliation(s)
- Kathrin Heinzmann
- Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Lukas M Carter
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Eric O Aboagye
- Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
5
|
Suzuki A, Takeuchi W, Ishitsu T, Takahashi I, Ueno Y, Kobashi K, Kubo N, Shiga T, Tamaki N. Quantitative Measurement of Dual-Radioisotopes of Technetium-99m and Iodine-123 in Blood Samples With a Cadmium-Telluride-Based Counting Device. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2017. [DOI: 10.1109/trpms.2017.2686397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Abbaspour S, Mahmoudian B, Islamian JP. Cadmium Telluride Semiconductor Detector for Improved Spatial and Energy Resolution Radioisotopic Imaging. World J Nucl Med 2017; 16:101-107. [PMID: 28553175 PMCID: PMC5436314 DOI: 10.4103/1450-1147.203079] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The detector in single-photon emission computed tomography has played a key role in the quality of the images. Over the past few decades, developments in semiconductor detector technology provided an appropriate substitution for scintillation detectors in terms of high sensitivity, better energy resolution, and also high spatial resolution. One of the considered detectors is cadmium telluride (CdTe). The purpose of this paper is to review the CdTe semiconductor detector used in preclinical studies, small organ and small animal imaging, also research in nuclear medicine and other medical imaging modalities by a complete inspect on the material characteristics, irradiation principles, applications, and epitaxial growth method.
Collapse
Affiliation(s)
- Samira Abbaspour
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Mahmoudian
- Department of Radiology, Nuclear Medicine Unit, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalil Pirayesh Islamian
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|