1
|
Li S, Zhu Y, Spencer BA, Wang G. Single-Subject Deep-Learning Image Reconstruction With a Neural Optimization Transfer Algorithm for PET-Enabled Dual-Energy CT Imaging. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2024; 33:4075-4089. [PMID: 38941203 DOI: 10.1109/tip.2024.3418347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Combining dual-energy computed tomography (DECT) with positron emission tomography (PET) offers many potential clinical applications but typically requires expensive hardware upgrades or increases radiation doses on PET/CT scanners due to an extra X-ray CT scan. The recent PET-enabled DECT method allows DECT imaging on PET/CT without requiring a second X-ray CT scan. It combines the already existing X-ray CT image with a 511 keV γ -ray CT (gCT) image reconstructed from time-of-flight PET emission data. A kernelized framework has been developed for reconstructing gCT image but this method has not fully exploited the potential of prior knowledge. Use of deep neural networks may explore the power of deep learning in this application. However, common approaches require a large database for training, which is impractical for a new imaging method like PET-enabled DECT. Here, we propose a single-subject method by using neural-network representation as a deep coefficient prior to improving gCT image reconstruction without population-based pre-training. The resulting optimization problem becomes the tomographic estimation of nonlinear neural-network parameters from gCT projection data. This complicated problem can be efficiently solved by utilizing the optimization transfer strategy with quadratic surrogates. Each iteration of the proposed neural optimization transfer algorithm includes: PET activity image update; gCT image update; and least-square neural-network learning in the gCT image domain. This algorithm is guaranteed to monotonically increase the data likelihood. Results from computer simulation, real phantom data and real patient data have demonstrated that the proposed method can significantly improve gCT image quality and consequent multi-material decomposition as compared to other methods.
Collapse
|
2
|
Ren Z, Sidky EY, Barber RF, Kao CM, Pan X. Simultaneous Activity and Attenuation Estimation in TOF-PET With TV-Constrained Nonconvex Optimization. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2347-2357. [PMID: 38354078 PMCID: PMC11249361 DOI: 10.1109/tmi.2024.3365302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
An alternating direction method of multipliers (ADMM) framework is developed for nonsmooth biconvex optimization for inverse problems in imaging. In particular, the simultaneous estimation of activity and attenuation (SAA) problem in time-of-flight positron emission tomography (TOF-PET) has such a structure when maximum likelihood estimation (MLE) is employed. The ADMM framework is applied to MLE for SAA in TOF-PET, resulting in the ADMM-SAA algorithm. This algorithm is extended by imposing total variation (TV) constraints on both the activity and attenuation map, resulting in the ADMM-TVSAA algorithm. The performance of this algorithm is illustrated using the penalized maximum likelihood activity and attenuation estimation (P-MLAA) algorithm as a reference.
Collapse
|
3
|
Ren Z, Sidky EY, Barber RF, Kao CM, Pan X. Simultaneous activity and attenuation estimation in TOF-PET with TV-constrained nonconvex optimization. ARXIV 2024:arXiv:2303.17042v2. [PMID: 37033460 PMCID: PMC10081343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
An alternating direction method of multipliers (ADMM) framework is developed for nonsmooth biconvex optimization for inverse problems in imaging. In particular, the simultaneous estimation of activity and attenuation (SAA) problem in time-of-flight positron emission tomography (TOF-PET) has such a structure when maximum likelihood estimation (MLE) is employed. The ADMM framework is applied to MLE for SAA in TOF-PET, resulting in the ADMM-SAA algorithm. This algorithm is extended by imposing total variation (TV) constraints on both the activity and attenuation map, resulting in the ADMM-TVSAA algorithm. The performance of this algorithm is illustrated using the penalized maximum likelihood activity and attenuation estimation (P-MLAA) algorithm as a reference. Additional results on step-size tuning and on the use of unconstrained ADMM-SAA are presented in the previous arXiv submission: arXiv:2303.17042v1.
Collapse
Affiliation(s)
- Zhimei Ren
- Dept. of Statistics and Data Science, University of Pennsylvania
| | | | | | | | | |
Collapse
|
4
|
Choi CH, Felder J, Lerche C, Shah NJ. MRI Coil Development Strategies for Hybrid MR-PET Systems: A Review. IEEE Rev Biomed Eng 2024; 17:342-350. [PMID: 37015609 DOI: 10.1109/rbme.2022.3227337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Simultaneously operating MR-PET systems have the potential to provide synergetic multi-parametric information, and, as such, interest surrounding their use and development is increasing. However, despite the potential advantages offered by fully combined MR-PET systems, implementing this hybrid integration is technically laborious, and any factors degrading the quality of either modality must be circumvented to ensure optimal performance. In order to attain the best possible quality from both systems, most full MR-PET integrations tend to place the shielded PET system inside the MRI system, close to the target volume of the subject. The radiofrequency (RF) coil used in MRI systems is a key factor in determining the quality of the MR images, and, in simultaneous acquisition, it is generally positioned inside the PET system and PET imaging region, potentially resulting in attenuation and artefacts in the PET images. Therefore, when designing hybrid MR-PET systems, it is imperative that consideration be given to the RF coils inside the PET system. In this review, we present current state-of-the-art RF coil designs used for hybrid MR-PET experiments and discuss various design strategies for constructing PET transparent RF coils.
Collapse
|
5
|
Krokos G, MacKewn J, Dunn J, Marsden P. A review of PET attenuation correction methods for PET-MR. EJNMMI Phys 2023; 10:52. [PMID: 37695384 PMCID: PMC10495310 DOI: 10.1186/s40658-023-00569-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Despite being thirteen years since the installation of the first PET-MR system, the scanners constitute a very small proportion of the total hybrid PET systems installed. This is in stark contrast to the rapid expansion of the PET-CT scanner, which quickly established its importance in patient diagnosis within a similar timeframe. One of the main hurdles is the development of an accurate, reproducible and easy-to-use method for attenuation correction. Quantitative discrepancies in PET images between the manufacturer-provided MR methods and the more established CT- or transmission-based attenuation correction methods have led the scientific community in a continuous effort to develop a robust and accurate alternative. These can be divided into four broad categories: (i) MR-based, (ii) emission-based, (iii) atlas-based and the (iv) machine learning-based attenuation correction, which is rapidly gaining momentum. The first is based on segmenting the MR images in various tissues and allocating a predefined attenuation coefficient for each tissue. Emission-based attenuation correction methods aim in utilising the PET emission data by simultaneously reconstructing the radioactivity distribution and the attenuation image. Atlas-based attenuation correction methods aim to predict a CT or transmission image given an MR image of a new patient, by using databases containing CT or transmission images from the general population. Finally, in machine learning methods, a model that could predict the required image given the acquired MR or non-attenuation-corrected PET image is developed by exploiting the underlying features of the images. Deep learning methods are the dominant approach in this category. Compared to the more traditional machine learning, which uses structured data for building a model, deep learning makes direct use of the acquired images to identify underlying features. This up-to-date review goes through the literature of attenuation correction approaches in PET-MR after categorising them. The various approaches in each category are described and discussed. After exploring each category separately, a general overview is given of the current status and potential future approaches along with a comparison of the four outlined categories.
Collapse
Affiliation(s)
- Georgios Krokos
- School of Biomedical Engineering and Imaging Sciences, The PET Centre at St Thomas' Hospital London, King's College London, 1st Floor Lambeth Wing, Westminster Bridge Road, London, SE1 7EH, UK.
| | - Jane MacKewn
- School of Biomedical Engineering and Imaging Sciences, The PET Centre at St Thomas' Hospital London, King's College London, 1st Floor Lambeth Wing, Westminster Bridge Road, London, SE1 7EH, UK
| | - Joel Dunn
- School of Biomedical Engineering and Imaging Sciences, The PET Centre at St Thomas' Hospital London, King's College London, 1st Floor Lambeth Wing, Westminster Bridge Road, London, SE1 7EH, UK
| | - Paul Marsden
- School of Biomedical Engineering and Imaging Sciences, The PET Centre at St Thomas' Hospital London, King's College London, 1st Floor Lambeth Wing, Westminster Bridge Road, London, SE1 7EH, UK
| |
Collapse
|
6
|
Zhang H, Wang J, Li N, Zhang Y, Cui J, Huo L, Zhang H. A quantitative clinical evaluation of simultaneous reconstruction of attenuation and activity in time-of-flight PET. BMC Med Imaging 2023; 23:35. [PMID: 36849906 PMCID: PMC9972693 DOI: 10.1186/s12880-023-00987-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/03/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND The maximum likelihood activity and attenuation (MLAA) reconstruction algorithm has been proposed to jointly estimate tracer activity and attenuation at the same time, and proven to be a promising solution to the CT attenuation correction (CT-AC) artifacts in PET images. This study aimed to perform a quantitative evaluation and clinical validation of the MLAA method. METHODS A uniform cylinder phantom filled with 18F-FDG solution was scanned to optimize the reconstruction parameters for the implemented MLAA algorithm. 67 patients who underwent whole-body 18F-FDG PET/CT scan were retrospectively recruited. PET images were reconstructed using MLAA and clinical standard OSEM algorithm with CT-AC (CT-OSEM). The mean and maximum standardized uptake values (SUVmean and SUVmax) in regions of interest (ROIs) of organs, high uptake lesions and areas affected by metal implants and respiration motion artifacts were quantitatively analyzed. RESULTS In quantitative analysis, SUVs in patient's organ ROIs between two methods showed R2 ranging from 0.91 to 0.98 and k ranging from 0.90 to 1.06, and the average SUVmax and SUVmean differences between two methods were within 10% range, except for the lung ROI, which was 10.5% and 16.73% respectively. The average SUVmax and SUVmean differences of a total of 117 high uptake lesions were 7.25% and 7.10% respectively. 20 patients were identified to have apparent respiration motion artifacts in the liver in CT-OSEM images, and the SUVs differences between two methods measured at dome of the liver were significantly larger than measured at middle part of the liver. 10 regions with obvious metal artifacts were identified in CT-OSEM images and the average SUVmean and SUVmax differences in metal implants affected regions were reported to be 52.90% and 56.20% respectively. CONCLUSIONS PET images reconstructed using MLAA are clinically acceptable in terms of image quality as well as quantification and it is a useful tool in clinical practice, especially when CT-AC may cause respiration motion and metal artifacts. Moreover, this study also provides technical reference and data support for the future iteration and development of PET reconstruction technology of SUV accurate quantification.
Collapse
Affiliation(s)
- Haiqiong Zhang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.,Medical Science Research Center (MRC), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jingnan Wang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Nan Li
- SinoUnion (Beijing) Healthcare Technologies Co., Ltd, Beijing, 100082, China
| | - Yue Zhang
- SinoUnion (Beijing) Healthcare Technologies Co., Ltd, Beijing, 100082, China
| | - Jie Cui
- SinoUnion (Beijing) Healthcare Technologies Co., Ltd, Beijing, 100082, China
| | - Li Huo
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Hui Zhang
- SinoUnion (Beijing) Healthcare Technologies Co., Ltd, Beijing, 100082, China. .,Department of Biomedical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
7
|
Lennie E, Tsoumpas C, Sourbron S. Multimodal phantoms for clinical PET/MRI. EJNMMI Phys 2021; 8:62. [PMID: 34436671 PMCID: PMC8390737 DOI: 10.1186/s40658-021-00408-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/10/2021] [Indexed: 12/02/2022] Open
Abstract
Phantoms are commonly used throughout medical imaging and medical physics for a multitude of applications, the designs of which vary between modalities and clinical or research requirements. Within positron emission tomography (PET) and nuclear medicine, phantoms have a well-established role in the validation of imaging protocols so as to reduce the administration of radioisotope to volunteers. Similarly, phantoms are used within magnetic resonance imaging (MRI) to perform quality assurance on clinical scanners, and gel-based phantoms have a longstanding use within the MRI research community as tissue equivalent phantoms. In recent years, combined PET/MRI scanners for simultaneous acquisition have entered both research and clinical use. This review explores the designs and applications of phantom work within the field of simultaneous acquisition PET/MRI as published over the period of a decade. Common themes in the design, manufacture and materials used within phantoms are identified and the solutions they provided to research in PET/MRI are summarised. Finally, the challenges remaining in creating multimodal phantoms for use with simultaneous acquisition PET/MRI are discussed. No phantoms currently exist commercially that have been designed and optimised for simultaneous PET/MRI acquisition. Subsequently, commercially available PET and nuclear medicine phantoms are often utilised, with CT-based attenuation maps substituted for MR-based attenuation maps due to the lack of MR visibility in phantom housing. Tissue equivalent and anthropomorphic phantoms are often developed by research groups in-house and provide customisable alternatives to overcome barriers such as MR-based attenuation correction, or to address specific areas of study such as motion correction. Further work to characterise materials and manufacture methods used in phantom design would facilitate the ability to reproduce phantoms across sites.
Collapse
Affiliation(s)
- Eve Lennie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Charalampos Tsoumpas
- Biomedical Imaging Science Department, University of Leeds, Leeds, UK
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Steven Sourbron
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
8
|
Lee JS. A Review of Deep-Learning-Based Approaches for Attenuation Correction in Positron Emission Tomography. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3009269] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Standard MRI-based attenuation correction for PET/MRI phantoms: a novel concept using MRI-visible polymer. EJNMMI Phys 2021; 8:18. [PMID: 33599876 PMCID: PMC7892652 DOI: 10.1186/s40658-021-00364-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
Background PET/MRI phantom studies are challenged by the need of phantom-specific attenuation templates to account for attenuation properties of the phantom material. We present a PET/MRI phantom built from MRI-visible material for which attenuation correction (AC) can be performed using the standard MRI-based AC. Methods A water-fillable phantom was 3D-printed with a commercially available MRI-visible polymer. The phantom had a cylindrical shape and the fillable compartment consisted of a homogeneous region and a region containing solid rods of different diameters. The phantom was filled with a solution of water and [18F]FDG. A 30 min PET/MRI acquisition including the standard Dixon-based MR-AC method was performed. In addition, a CT scan of the phantom was acquired on a PET/CT system. From the Dixon in-phase, opposed-phase and fat images, a phantom-specific AC map (Phantom MR-AC) was produced by separating the phantom material from the water compartment using a thresholding-based method and assigning fixed attenuation coefficients to the individual compartments. The PET data was reconstructed using the Phantom MR-AC, the original Dixon MR-AC, and an MR-AC just containing the water compartment (NoWall-AC) to estimate the error of ignoring the phantom walls. CT-based AC was employed as the reference standard. Average %-differences in measured activity between the CT corrected PET and the PET corrected with the other AC methods were calculated. Results The phantom housing and the liquid compartment were both visible and distinguishable from each other in the Dixon images and allowed the segmentation of a phantom-specific MR-based AC. Compared to the CT-AC PET, average differences in measured activity in the whole water compartment in the phantom of −0.3%, 9.4%, and −24.1% were found for Dixon phantom MR-AC, MR-AC, and NoWall-AC based PET, respectively. Average differences near the phantom wall in the homogeneous region were −0.3%, 6.6%, and −34.3%, respectively. Around the rods, activity differed from the CT-AC PET by 0.7%, 8.9%, and −45.5%, respectively. Conclusion The presented phantom material is visible using standard MR sequences, and thus, supports the use of standard, phantom-independent MR measurements for MR-AC in PET/MRI phantom studies.
Collapse
|
10
|
Wang G. PET-enabled dual-energy CT: image reconstruction and a proof-of-concept computer simulation study. Phys Med Biol 2020; 65:245028. [PMID: 33120376 DOI: 10.1088/1361-6560/abc5ca] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Standard dual-energy computed tomography (CT) uses two different x-ray energies to obtain energy-dependent tissue attenuation information to allow quantitative material decomposition. The combined use of dual-energy CT and positron emission tomography (PET) may provide a more comprehensive characterization of disease states in cancer and other diseases. However, the integration of dual-energy CT with PET is not trivial, either requiring costly hardware upgrades or increasing radiation exposure. This paper proposes a different dual-energy CT imaging method that is enabled by PET. Instead of using a second x-ray CT scan with a different energy, this method exploits time-of-flight PET image reconstruction via the maximum likelihood attenuation and activity (MLAA) algorithm to obtain a 511 keV gamma-ray attenuation image from PET emission data. The high-energy gamma-ray attenuation image is then combined with the low-energy x-ray CT of PET/CT to provide a pair of dual-energy CT images. A major challenge with the standard MLAA reconstruction is the high noise present in the reconstructed 511 keV attenuation map, which would not compromise the PET activity reconstruction too much but may significantly affect the performance of the gamma-ray attenuation image for material decomposition. To overcome the problem, we further propose a kernel MLAA algorithm to exploit the prior information from the available x-ray CT image. We conducted a computer simulation to test the concept and algorithm for the task of material decomposition. The simulation results demonstrate that this PET-enabled dual-energy CT method is promising for quantitative material decomposition. The proposed method can be readily implemented on time-of-flight PET/CT scanners to enable simultaneous PET and dual-energy CT imaging.
Collapse
Affiliation(s)
- Guobao Wang
- Department of Radiology, University of California, Davis, CA, United States of America
| |
Collapse
|
11
|
Taeubert L, Berker Y, Beuthien-Baumann B, Hoffmann AL, Troost EGC, Kachelrieß M, Gillmann C. CT-based attenuation correction of whole-body radiotherapy treatment positioning devices in PET/MRI hybrid imaging. ACTA ACUST UNITED AC 2020; 65:23NT02. [DOI: 10.1088/1361-6560/abb7c3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Wang T, Lei Y, Fu Y, Curran WJ, Liu T, Nye JA, Yang X. Machine learning in quantitative PET: A review of attenuation correction and low-count image reconstruction methods. Phys Med 2020; 76:294-306. [PMID: 32738777 PMCID: PMC7484241 DOI: 10.1016/j.ejmp.2020.07.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 02/08/2023] Open
Abstract
The rapid expansion of machine learning is offering a new wave of opportunities for nuclear medicine. This paper reviews applications of machine learning for the study of attenuation correction (AC) and low-count image reconstruction in quantitative positron emission tomography (PET). Specifically, we present the developments of machine learning methodology, ranging from random forest and dictionary learning to the latest convolutional neural network-based architectures. For application in PET attenuation correction, two general strategies are reviewed: 1) generating synthetic CT from MR or non-AC PET for the purposes of PET AC, and 2) direct conversion from non-AC PET to AC PET. For low-count PET reconstruction, recent deep learning-based studies and the potential advantages over conventional machine learning-based methods are presented and discussed. In each application, the proposed methods, study designs and performance of published studies are listed and compared with a brief discussion. Finally, the overall contributions and remaining challenges are summarized.
Collapse
Affiliation(s)
- Tonghe Wang
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Yang Lei
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Yabo Fu
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Walter J Curran
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Tian Liu
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jonathon A Nye
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
13
|
Mackewn JE, Stirling J, Jeljeli S, Gould SM, Johnstone RI, Merida I, Pike LC, McGinnity CJ, Beck K, Howes O, Hammers A, Marsden PK. Practical issues and limitations of brain attenuation correction on a simultaneous PET-MR scanner. EJNMMI Phys 2020; 7:24. [PMID: 32372135 PMCID: PMC7200964 DOI: 10.1186/s40658-020-00295-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/27/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Despite the advent of clinical PET-MR imaging for routine use in 2011 and the development of several methods to address the problem of attenuation correction, some challenges remain. We have identified and investigated several issues that might affect the reliability and accuracy of current attenuation correction methods when these are implemented for clinical and research studies of the brain. These are (1) the accuracy of converting CT Hounsfield units, obtained from an independently acquired CT scan, to 511 keV linear attenuation coefficients; (2) the effect of padding used in the MR head coil; (3) the presence of close-packed hair; (4) the effect of headphones. For each of these, we have examined the effect on reconstructed PET images and evaluated practical mitigating measures. RESULTS Our major findings were (1) for both Siemens and GE PET-MR systems, CT data from either a Siemens or a GE PET-CT scanner may be used, provided the conversion to 511 keV μ-map is performed by the PET-MR vendor's own method, as implemented on their PET-CT scanner; (2) the effect of the head coil pads is minimal; (3) the effect of dense hair in the field of view is marked (> 10% error in reconstructed PET images); and (4) using headphones and not including them in the attenuation map causes significant errors in reconstructed PET images, but the risk of scanning without them may be acceptable following sound level measurements. CONCLUSIONS It is important that the limitations of attenuation correction in PET-MR are considered when designing research and clinical PET-MR protocols in order to enable accurate quantification of brain PET scans. Whilst the effect of pads is not significant, dense hair, the use of headphones and the use of an independently acquired CT-scan can all lead to non-negligible effects on PET quantification. Although seemingly trivial, these effects add complications to setting up protocols for clinical and research PET-MR studies that do not occur with PET-CT. In the absence of more sophisticated PET-MR brain attenuation correction, the effect of all of the issues above can be minimised if the pragmatic approaches presented in this work are followed.
Collapse
Affiliation(s)
- J. E. Mackewn
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - J. Stirling
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - S. Jeljeli
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - S-M. Gould
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - R. I. Johnstone
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - I. Merida
- CERMEP-Imagerie du vivant, Lyon, France
| | - L. C. Pike
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - C. J. McGinnity
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - K. Beck
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, UK
- South London and the Maudsley NHS Foundation Trust, London, UK
| | - O. Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, UK
- South London and the Maudsley NHS Foundation Trust, London, UK
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, London, UK
| | - A. Hammers
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - P. K. Marsden
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| |
Collapse
|
14
|
Tellmann L, Herzog H, Boers F, Lerche C, Shah NJ. Alternative headphones for patient noise protection and communication in PET-MR studies of the brain. EJNMMI Res 2018; 8:106. [PMID: 30511194 PMCID: PMC6277401 DOI: 10.1186/s13550-018-0457-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/14/2018] [Indexed: 11/24/2022] Open
Abstract
Introduction Due to the high noise emission generated by the gradients in magnetic resonance imaging (MRI), an efficient method of noise protection is mandatory. In addition to providing hearing protection, appropriate headphone systems also serve to facilitate communication between the operator and the patient. However, in combined PET-MR devices, use of common pneumatic headphones, as delivered by the manufacturer, is problematic due to the potential generation of attenuation artefacts in the PET measurement. Furthermore, modern multichannel head coils rarely provide space for conventional headphones. This work presents an alternative system, which aims to address these limitations while still being appropriate for both patient noise protection and communication in PET-MR. Material and methods As an alternative to the standard headphones supplied with the PET-MR (3T MR-BrainPET, Siemens), the possibility of using earphones built out of commercially available earplugs has been investigated. The air channel (E-A-RLink) of the earplug is connected to the tubes of the original headphones. The attenuation characteristics of the conventional headphones and of the modified earphones were measured using a dedicated PET system with a 68Ge transmission source. For this purpose, the headphones, and then the earphones, were attached to a non-radioactive head phantom. To investigate the influence of the different phones on PET emission images, measurements of the head phantom, filled with 18F solution, were performed in the PET-MR. A measurement of the head phantom without headphones or earphones was used as a reference. Results The linear attenuation coefficient of the headphones was 0.11 cm-1 and that of the head phantom 0.10 cm-1. The earphones were not identifiable in the transmission image. The emission image showed an activity underestimation of 10% near the headphones, compared to the reference image, whereas the earphones did not affect the image. Communication with the patient via the earphones was successful, and the noise protection—as confirmed by investigated subjects—was satisfying. Conclusion The presented earphones, which can be connected to the existing patient communication system, are a preferable alternative to the conventional headphones, as, in contrast to the use of headphones, qualitative and quantitative errors in the PET images can be avoided. Patient acceptance of the earphones was high, despite the increase in preparation time before the PET-MR study.
Collapse
Affiliation(s)
- Lutz Tellmann
- Institute of Neuroscience and Medicine - 4, INM-4, Forschungszentrum Jülich, Leo-Brandt-Str., Jülich, 52425, Germany.
| | - Hans Herzog
- Institute of Neuroscience and Medicine - 4, INM-4, Forschungszentrum Jülich, Leo-Brandt-Str., Jülich, 52425, Germany
| | - Frank Boers
- Institute of Neuroscience and Medicine - 4, INM-4, Forschungszentrum Jülich, Leo-Brandt-Str., Jülich, 52425, Germany
| | - Christoph Lerche
- Institute of Neuroscience and Medicine - 4, INM-4, Forschungszentrum Jülich, Leo-Brandt-Str., Jülich, 52425, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine - 4, INM-4, Forschungszentrum Jülich, Leo-Brandt-Str., Jülich, 52425, Germany
| |
Collapse
|
15
|
Masuda A, Nemoto A, Takeishi Y. Technical aspects of cardiac PET/MRI. J Nucl Cardiol 2018; 25:1023-1028. [PMID: 29468469 DOI: 10.1007/s12350-018-1237-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/24/2018] [Indexed: 11/24/2022]
Abstract
PET/MRI is a novel modality that enables to combine PET and MR images, and has significant potential to evaluate various cardiac diseases through the combination of PET molecular imaging and MRI functional imaging. Precise management of technical issues, however, is necessary for cardiac PET/MRI. This article describes several technical points, including patient preparation, MR attenuation correction, parallel acquisition of PET with MRI, clinical aspects, and image quality control.
Collapse
Affiliation(s)
- Atsuro Masuda
- Department of Cardiovascular Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima-shi, Fukushima, 960-1295, Japan.
| | - Ayaka Nemoto
- Advanced Clinical Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima-shi, Fukushima, 960-1295, Japan
| | - Yasuchika Takeishi
- Department of Cardiovascular Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima-shi, Fukushima, 960-1295, Japan
| |
Collapse
|
16
|
Ahn S, Cheng L, Shanbhag DD, Qian H, Kaushik SS, Jansen FP, Wiesinger F. Joint estimation of activity and attenuation for PET using pragmatic MR-based prior: application to clinical TOF PET/MR whole-body data for FDG and non-FDG tracers. Phys Med Biol 2018; 63:045006. [PMID: 29345242 DOI: 10.1088/1361-6560/aaa8a6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Accurate and robust attenuation correction remains challenging in hybrid PET/MR particularly for torsos because it is difficult to segment bones, lungs and internal air in MR images. Additionally, MR suffers from susceptibility artifacts when a metallic implant is present. Recently, joint estimation (JE) of activity and attenuation based on PET data, also known as maximum likelihood reconstruction of activity and attenuation, has gained considerable interest because of (1) its promise to address the challenges in MR-based attenuation correction (MRAC), and (2) recent advances in time-of-flight (TOF) technology, which is known to be the key to the success of JE. In this paper, we implement a JE algorithm using an MR-based prior and evaluate the algorithm using whole-body PET/MR patient data, for both FDG and non-FDG tracers, acquired from GE SIGNA PET/MR scanners with TOF capability. The weight of the MR-based prior is spatially modulated, based on MR signal strength, to control the balance between MRAC and JE. Large prior weights are used in strong MR signal regions such as soft tissue and fat (i.e. MR tissue classification with a high degree of certainty) and small weights are used in low MR signal regions (i.e. MR tissue classification with a low degree of certainty). The MR-based prior is pragmatic in the sense that it is convex and does not require training or population statistics while exploiting synergies between MRAC and JE. We demonstrate the JE algorithm has the potential to improve the robustness and accuracy of MRAC by recovering the attenuation of metallic implants, internal air and some bones and by better delineating lung boundaries, not only for FDG but also for more specific non-FDG tracers such as 68Ga-DOTATOC and 18F-Fluoride.
Collapse
Affiliation(s)
- Sangtae Ahn
- GE Global Research, Niskayuna, NY, United States of America
- Author to whom any correspondence should be addressed
| | - Lishui Cheng
- GE Global Research, Niskayuna, NY, United States of America
| | | | - Hua Qian
- GE Global Research, Niskayuna, NY, United States of America
| | | | | | | |
Collapse
|
17
|
Lerche CW, Kaltsas T, Caldeira L, Scheins J, Rota Kops E, Tellmann L, Pietrzyk U, Herzog H, Shah NJ. PET attenuation correction for rigid MR Tx/Rx coils from 176Lu background activity. Phys Med Biol 2018; 63:035039. [PMID: 29328049 DOI: 10.1088/1361-6560/aaa72a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One challenge for PET-MR hybrid imaging is the correction for attenuation of the 511 keV annihilation radiation by the required RF transmit and/or RF receive coils. Although there are strategies for building PET transparent Tx/Rx coils, such optimised coils still cause significant attenuation of the annihilation radiation leading to artefacts and biases in the reconstructed activity concentrations. We present a straightforward method to measure the attenuation of Tx/Rx coils in simultaneous MR-PET imaging based on the natural 176Lu background contained in the scintillator of the PET detector without the requirement of an external CT scanner or PET scanner with transmission source. The method was evaluated on a prototype 3T MR-BrainPET produced by Siemens Healthcare GmbH, both with phantom studies and with true emission images from patient/volunteer examinations. Furthermore, the count rate stability of the PET scanner and the x-ray properties of the Tx/Rx head coil were investigated. Even without energy extrapolation from the two dominant γ energies of 176Lu to 511 keV, the presented method for attenuation correction, based on the measurement of 176Lu background attenuation, shows slightly better performance than the coil attenuation correction currently used. The coil attenuation correction currently used is based on an external transmission scan with rotating 68Ge sources acquired on a Siemens ECAT HR + PET scanner. However, the main advantage of the presented approach is its straightforwardness and ready availability without the need for additional accessories.
Collapse
Affiliation(s)
- Christoph W Lerche
- Medical Imaging Physics Department, Institute for Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Frohwein LJ, Heß M, Schlicher D, Bolwin K, Büther F, Jiang X, Schäfers KP. PET attenuation correction for flexible MRI surface coils in hybrid PET/MRI using a 3D depth camera. ACTA ACUST UNITED AC 2018; 63:025033. [DOI: 10.1088/1361-6560/aa9e2f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|