1
|
Datta Gupta SS, Shamim SA, Gamanagatti S, Gupta P, Khan MA, Mallia MB, Chirayil V, Dash A, Bal C. Re-188 lipiodol in hepatocellular carcinoma with portal vein thrombosis: a pilot study using novel chelating agent N-DEDC and its comparison with (A)HDD. Nucl Med Commun 2024; 45:510-518. [PMID: 38632971 DOI: 10.1097/mnm.0000000000001840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) with portal vein thrombosis (PVT) have limited therapeutic options, Re-188 lipiodol transarterial therapy being one of them. We aimed to assess the safety and efficacy of Re-188 lipiodol exclusively in HCC with PVT as well as to compare two chelating agents for the synthesis of Re-188 lipiodol: novel bis-(diethyldithiocarbamato) nitrido (N-DEDC) with existing acetylated 4-hexadecyl 1-2,9,9-tetramethyl-4,7-diaza-1,10-decanethiol [(A)HDD]. METHODS Patients with radiological diagnosis of HCC with PVT having Eastern Cooperative Oncology Group (ECOG) performance status ≤2 and Child Pugh score (PS) A or B were recruited. Patients received an empirical dose of transarterial Re-188 lipiodol, labelled with (A)HDD or N-DEDC. Radiological response on MRI (modified response evaluation criteria in solid tumors), biochemical response with serum alpha fetoprotein and clinical response with ECOG PS was assessed at three months and survival was estimated at the end of the study. RESULTS Fifteen therapies were performed in 14 patients with a median age of 62 years (range: 41-70 years). Eight therapies were with Re-188 (A)HDD lipiodol and seven with Re-188 N-DEDC lipiodol. Overall mean injected dose was 2.6 ± 0.37 GBq. Radiological objective response rate was 31% and disease control rate was 85%. Mean overall survival was 14.21 months and mean progression free survival was 10.23 months. Percentage survival assessed at 3, 6 and 9 months was 93%, 64% and 57%, respectively. Safety parameters, response and survival outcome were comparable for (A)HDD and N-DEDC groups. CONCLUSION Transarterial Re-188 lipiodol in HCC with PVT is safe and effective in disease control as well as improving survival outcome. Additionally, cost-effective and high-yielding novel agent N-DEDC appears to be a comparable alternative to (A)HDD for the same.
Collapse
Affiliation(s)
| | - Shamim A Shamim
- Department of Nuclear Medicine
- Department of Gastroenterology
| | | | | | - Maroof A Khan
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Madhav B Mallia
- Radiopharmaceuticals Division, Bhabha Atomic Research Center, Mumbai, India
| | - Viju Chirayil
- Radiopharmaceuticals Division, Bhabha Atomic Research Center, Mumbai, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Center, Mumbai, India
| | | |
Collapse
|
2
|
Shukla J, Goyal A, Chhabra A, Rathore Y, Bansal K, Pandey S, Parmar M, Singhal S, Kalra N, Duseja A, Mittal BR. Cold kit for Rhenium-188 microspheres based selective intra-arterial therapy (SIRT): Preparation, characterization and feasibility study. Appl Radiat Isot 2022; 190:110423. [PMID: 36183659 DOI: 10.1016/j.apradiso.2022.110423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 12/24/2022]
Abstract
Selective-intra-arterial radionuclide therapy (SIRT) using radiolabeled microspheres are being widely employed for the delivery of therapeutic radioisotope to liver cancers by exploiting the dual blood supply to liver. It delivers the therapeutic radiations to tumor and spares the healthy liver. Several radiolabeled microspheres formulations, labelled with 90Y, are commercially available. However, high-cost leads to unaffordability for several patients. 188Re-based therapy seems affordable due to commercial availability of 188W/188Re generator that have long shelf-life of more than 6 months. To provide affordable solution, the microsphere cold kit with quick and facile methodology for 188Re radiolabeling has been developed. The microsphere cold kit has been characterized for their physicochemical properties. The Quality Control (QC) tests were also performed for clinical application. The feasibility studies were performed to study distribution and retention of 188Re microspheres in tumor. The results demonstrated that the developed cold kit enables facile and quick radiolabeling with 188Re. 188Re microspheres showed good retention in tumor and found suitable for SIRT.
Collapse
Affiliation(s)
- Jaya Shukla
- Department of Nuclear Medicine and PET, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Ankita Goyal
- Department of Chemistry, Post Graduate Government College for Girls, Sector-42, Chandigarh, India
| | - Anupriya Chhabra
- Department of Nuclear Medicine and PET, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Yogesh Rathore
- Department of Nuclear Medicine and PET, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Kavita Bansal
- Department of Nuclear Medicine and PET, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Somit Pandey
- Department of Nuclear Medicine and PET, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Madan Parmar
- Department of Nuclear Medicine and PET, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sonal Singhal
- Department of Chemistry, Panjab University, Chandigarh, India
| | - Naveen Kalra
- Department of Radiodiagnosis and Imaging, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ajay Duseja
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Bhagwant Rai Mittal
- Department of Nuclear Medicine and PET, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
3
|
Uccelli L, Martini P, Urso L, Ghirardi T, Marvelli L, Cittanti C, Carnevale A, Giganti M, Bartolomei M, Boschi A. Rhenium Radioisotopes for Medicine, a Focus on Production and Applications. Molecules 2022; 27:5283. [PMID: 36014521 PMCID: PMC9412410 DOI: 10.3390/molecules27165283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/08/2022] [Accepted: 08/17/2022] [Indexed: 11/28/2022] Open
Abstract
In recent decades, the use of alpha; pure beta; or beta/gamma emitters in oncology, endocrinology, and interventional cardiology rheumatology, has proved to be an important alternative to the most common therapeutic regimens. Among radionuclides used for therapy in nuclear medicine, two rhenium radioisotopes are of particular relevance: rhenium-186 and rhenium-188. The first is routinely produced in nuclear reactors by direct neutron activation of rhenium-186 via 185Re(n,γ)186Re nuclear reaction. Rhenium-188 is produced by the decay of the parent tungsten-188. Separation of rhenium-188 is mainly performed using a chromatographic 188W/188Re generator in which tungsten-188 is adsorbed on the alumina column, similar to the 99Mo/99mTc generator system, and the radionuclide eluted in saline solution. The application of rhenium-186 and rhenium-188 depends on their specific activity. Rhenium-186 is produced in low specific activity and is mainly used for labeling particles or diphosphonates for bone pain palliation. Whereas, rhenium-188 of high specific activity can be used for labeling peptides or bioactive molecules. One of the advantages of rhenium is its chemical similarity with technetium. So, diagnostic technetium analogs labeled with radiorhenium can be developed for therapeutic applications. Clinical trials promoting the use of 186/188Re-radiopharmaceuticals is, in particular, are discussed.
Collapse
Affiliation(s)
- Licia Uccelli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Nuclear Medicine Unit, University Hospital, 44124 Ferrara, Italy
| | - Petra Martini
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Luca Urso
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Nuclear Medicine Unit, University Hospital, 44124 Ferrara, Italy
| | - Teresa Ghirardi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Lorenza Marvelli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Corrado Cittanti
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Nuclear Medicine Unit, University Hospital, 44124 Ferrara, Italy
| | - Aldo Carnevale
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Radiology Unit, University Hospital, 44124 Ferrara, Italy
| | - Melchiore Giganti
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Radiology Unit, University Hospital, 44124 Ferrara, Italy
| | - Mirco Bartolomei
- Nuclear Medicine Unit, University Hospital, 44124 Ferrara, Italy
| | - Alessandra Boschi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
4
|
Piwowarska-Bilska H, Kurkowska S, Birkenfeld B. Individualization of Radionuclide Therapies: Challenges and Prospects. Cancers (Basel) 2022; 14:cancers14143418. [PMID: 35884478 PMCID: PMC9316481 DOI: 10.3390/cancers14143418] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Currently, patient-specific treatment plans and dosimetry calculations are not routinely performed for radionuclide therapies. In external beam radiotherapy, it is quite the opposite. As a result, a small fraction of patients receives optimal radioactivity. This conservative approach provides “radiation safety” to healthy tissues but delivers a lower than indicated absorbed dose to the tumors, resulting in a lower response rate and a higher disease relapse rate. Evidence shows that better and more predictable outcomes can be achieved with patient-individualized dose assessment. Therefore, the incorporation of individual planning into radionuclide therapies is a high priority for nuclear medicine physicians and medical physicists alike. Internal dosimetry is used in tumor therapy to optimize the absorbed dose to the target tissue. The main reasons for the difficulties in incorporating patients’ internal dosimetry into routine clinical practice are discussed. The article presents the prospects for the routine implementation of personalized radionuclide therapies. Abstract The article presents the problems of clinical implementation of personalized radioisotope therapy. The use of radioactive drugs in the treatment of malignant and benign diseases is rapidly expanding. Currently, in the majority of nuclear medicine departments worldwide, patients receive standard activities of therapeutic radiopharmaceuticals. Intensively conducted clinical trials constantly provide more evidence of a close relationship between the dose of radiopharmaceutical absorbed in pathological tissues and the therapeutic effect of radioisotope therapy. Due to the lack of individual internal dosimetry (based on the quantitative analysis of a series of diagnostic images) before or during the treatment, only a small fraction of patients receives optimal radioactivity. The vast majority of patients receive too-low doses of ionizing radiation to the target tissues. This conservative approach provides “radiation safety” to healthy tissues, but also delivers lower radiopharmaceutical activity to the neoplastic tissue, resulting in a low level of response and a higher relapse rate. The article presents information on the currently used radionuclides in individual radioisotope therapies and on radionuclides newly introduced to the therapeutic market. It discusses the causes of difficulties with the implementation of individualized radioisotope therapies as well as possible changes in the current clinical situation.
Collapse
|
5
|
Subramanian S, Mallia MB, Shinto AS, Mathew AS. Clinical Management of Liver Cancer in India and Other Developing Nations: A Focus on Radiation Based Strategies. Oncol Ther 2021; 9:273-295. [PMID: 34046873 PMCID: PMC8593115 DOI: 10.1007/s40487-021-00154-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a global killer with preponderance in Asian and African countries. It poses a challenge for successful management in less affluent or developing nations like India, with large populations and limited infrastructures. This review aims to assess the available options and future directions for management of HCC applicable to such countries. While summarizing current and emerging clinical strategies for detection, staging and therapy of the disease, it highlights radioisotope- and radioactivity-based strategies as part of an overall program. Using the widely accepted Barcelona Clinic Liver Cancer (BCLC) staging system as a base, it evaluates the applicability of different therapeutic approaches and their synergistic combination(s) in the context of a patient-specific dynamic results-based strategy. It distills the conclusions of multiple HCC management-focused consensus recommendations to provide a picture of clinical strategies, especially radiation-related approaches. Additionally, it discusses the logistical and economic feasibility of these approaches in the context of the limitations of the burdened public health infrastructure in India (and like nations) and highlights possible strategies both at the clinical level and in terms of an administrative health policy on HCC to provide the maximum possible benefit to the widest swathe of the affected population.
Collapse
Affiliation(s)
- Suresh Subramanian
- Radiopharmaceuticals Division, RLG Building, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, 400085, India.
| | - Madhava B Mallia
- Radiopharmaceuticals Division, RLG Building, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, 400085, India
| | - Ajit S Shinto
- Apollo Proton Cancer Centre, Chennai, 600096, Tamil Nadu, India
| | | |
Collapse
|
6
|
Freeze-dried microspheres for selective intra-arterial radionuclide therapy: an affordable solution. Nucl Med Commun 2021; 41:817-823. [PMID: 32516242 DOI: 10.1097/mnm.0000000000001225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Selective intra-arterial radionuclide therapy (SIRT) using radiolabelled microspheres is for the delivery of therapeutic radioisotope to liver cancers and thus, sparing healthy liver. Several radiolabelled microspheres are commercially available. The main issue associated with these microspheres is affordability. Re-188 is a generator produced radionuclide, emits high energy therapeutic beta particle and imageable gamma photons for pre- and post-therapy dosimetry. METHODS Tc-99m/Re-188 labelled microspheres have been developed and quality control tests have been performed for suitable clinical use. The clinical studies with Re-188 microspheres for SIRT have been performed. Post-therapy images were acquired for dosimetry. RESULTS The microspheres were found to possess spherical morphology of less than 20 µm size. The quality control revealed the suitability of microspheres for intravenous administration. The preliminary studies in thirty patients demonstrated good retention in tumor and high tumor to normal liver ratio. Re-188 microspheres were well tolerated by patients. Same microspheres labelled with either Tc-99m or Re-188 were used for pretherapy dosimetry and Re-188 labeled microspheres for therapy (SIRT) as a single-day procedure. CONCLUSION The freeze-dried microspheres may emerge as highly cost-effective candidates for both pre-therapy dosimetry and SIRT and may benefit a large population with inoperable liver cancer.
Collapse
|
7
|
Lohar S, Jadhav S, Chakravarty R, Chakraborty S, Sarma HD, Dash A. A kit based methodology for convenient formulation of 166Ho-Chitosan complex for treatment of liver cancer. Appl Radiat Isot 2020; 161:109161. [PMID: 32250846 DOI: 10.1016/j.apradiso.2020.109161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 02/26/2020] [Accepted: 03/27/2020] [Indexed: 11/30/2022]
Abstract
The effectiveness of 166Ho-chitosan complex as a radiopharmaceutical for trans-arterial radiation therapy of liver cancer has been established in clinical trials. We have developed a simple kit-bade strategy for convenient formulation of therapeutically relevant doses of 166Ho-chitosan complex in a hospital radiopharmacy in order to facilitate its widespread utilization. Quality control studies established the suitability of the radiopharmaceutical formulated using the developed strategy for in vivo administration. Biodistribution studies in normal Wistar rats showed excellent retention of the radiopharmaceutical in the liver, thus, paving the way towards utility of this approach in clinical context.
Collapse
Affiliation(s)
- Sharad Lohar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Sachin Jadhav
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India.
| | - Sudipta Chakraborty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India
| | - Haladhar Dev Sarma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India
| |
Collapse
|
8
|
Lepareur N, Lacœuille F, Bouvry C, Hindré F, Garcion E, Chérel M, Noiret N, Garin E, Knapp FFR. Rhenium-188 Labeled Radiopharmaceuticals: Current Clinical Applications in Oncology and Promising Perspectives. Front Med (Lausanne) 2019; 6:132. [PMID: 31259173 PMCID: PMC6587137 DOI: 10.3389/fmed.2019.00132] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022] Open
Abstract
Rhenium-188 (188Re) is a high energy beta-emitting radioisotope with a short 16.9 h physical half-life, which has been shown to be a very attractive candidate for use in therapeutic nuclear medicine. The high beta emission has an average energy of 784 keV and a maximum energy of 2.12 MeV, sufficient to penetrate and destroy targeted abnormal tissues. In addition, the low-abundant gamma emission of 155 keV (15%) is efficient for imaging and for dosimetric calculations. These key characteristics identify 188Re as an important therapeutic radioisotope for routine clinical use. Moreover, the highly reproducible on-demand availability of 188Re from the 188W/188Re generator system is an important feature and permits installation in hospital-based or central radiopharmacies for cost-effective availability of no-carrier-added (NCA) 188Re. Rhenium-188 and technetium-99 m exhibit similar chemical properties and represent a “theranostic pair.” Thus, preparation and targeting of 188Re agents for therapy is similar to imaging agents prepared with 99mTc, the most commonly used diagnostic radionuclide. Over the last three decades, radiopharmaceuticals based on 188Re-labeled small molecules, including peptides, antibodies, Lipiodol and particulates have been reported. The successful application of these 188Re-labeled therapeutic radiopharmaceuticals has been reported in multiple early phase clinical trials for the management of various primary tumors, bone metastasis, rheumatoid arthritis, and endocoronary interventions. This article reviews the use of 188Re-radiopharmaceuticals which have been investigated in patients for cancer treatment, demonstrating that 188Re represents a cost effective alternative for routine clinical use in comparison to more expensive and/or less readily available therapeutic radioisotopes.
Collapse
Affiliation(s)
- Nicolas Lepareur
- Comprehensive Cancer Center Eugène Marquis Rennes, France.,Univ Rennes Inra, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer)-UMR_A 1341, UMR_S 1241, Rennes, France
| | - Franck Lacœuille
- Angers University Hospital Angers, France.,Univ Angers Univ Nantes, Inserm, CNRS, CRCINA (Centre de Recherche en Cancérologie et Immunologie Nantes-Angers)-UMR 1232, ERL 6001, Nantes, France
| | - Christelle Bouvry
- Comprehensive Cancer Center Eugène Marquis Rennes, France.,Univ Rennes CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Rennes, France
| | - François Hindré
- Univ Angers Univ Nantes, Inserm, CNRS, CRCINA (Centre de Recherche en Cancérologie et Immunologie Nantes-Angers)-UMR 1232, ERL 6001, Nantes, France.,Univ Angers PRIMEX (Plateforme de Radiobiologie et d'Imagerie EXperimentale), Angers, France
| | - Emmanuel Garcion
- Univ Angers Univ Nantes, Inserm, CNRS, CRCINA (Centre de Recherche en Cancérologie et Immunologie Nantes-Angers)-UMR 1232, ERL 6001, Nantes, France.,Univ Angers PRIMEX (Plateforme de Radiobiologie et d'Imagerie EXperimentale), Angers, France
| | - Michel Chérel
- Univ Angers Univ Nantes, Inserm, CNRS, CRCINA (Centre de Recherche en Cancérologie et Immunologie Nantes-Angers)-UMR 1232, ERL 6001, Nantes, France.,ICO (Institut de Cancérologie de l'Ouest) Comprehensive Cancer Center René Gauducheau, Saint-Herblain, France
| | - Nicolas Noiret
- Univ Rennes CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Rennes, France.,ENSCR (Ecole Nationale Supérieure de Chimie de Rennes) Rennes, France
| | - Etienne Garin
- Comprehensive Cancer Center Eugène Marquis Rennes, France.,Univ Rennes Inra, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer)-UMR_A 1341, UMR_S 1241, Rennes, France
| | - F F Russ Knapp
- Emeritus Medical Radioisotopes Program, ORNL (Oak Ridge National Laboratory), Oak Ridge, TN, United States
| |
Collapse
|
9
|
Vega JCDL, Esquinas PL, Rodríguez-Rodríguez C, Bokharaei M, Moskalev I, Liu D, Saatchi K, Häfeli UO. Radioembolization of Hepatocellular Carcinoma with Built-In Dosimetry: First in vivo Results with Uniformly-Sized, Biodegradable Microspheres Labeled with 188Re. Theranostics 2019; 9:868-883. [PMID: 30809314 PMCID: PMC6376476 DOI: 10.7150/thno.29381] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/02/2019] [Indexed: 12/28/2022] Open
Abstract
A common form of treatment for patients with hepatocellular carcinoma (HCC) is transarterial radioembolization (TARE) with non-degradable glass or resin microspheres (MS) labeled with 90Y (90Y-MS). To further simplify the dosimetry calculations in the clinical setting, to have more control over the particle size and to change the permanent embolization to a temporary one, we developed uniformly-sized, biodegradable 188Re-labeled MS (188Re-MS) as a new and easily imageable TARE agent. Methods: MS made of poly(L-lactic acid) were produced in a flow focusing microchip. The MS were labeled with 188Re using a customized kit. An orthotopic HCC animal model was developed in male Sprague Dawley rats by injecting N1-S1 cells directly into the liver using ultrasound guidance. A suspension of 188Re-MS was administered via hepatic intra-arterial catheterization 2 weeks post-inoculation of the N1-S1 cells. The rats were imaged by SPECT 1, 24, 48, and 72 h post-radioembolization. Results: The spherical 188Re-MS had a diameter of 41.8 ± 6.0 µm (CV = 14.5%). The site and the depth of the injection of N1-S1 cells were controlled by visualization of the liver in sonograms. Single 0.5 g tumors were grown in all rats. 188Re-MS accumulated in the liver with no deposition in the lungs. 188Re decays to stable 188Os by emission of β¯ particles with similar energy to those emitted by 90Y while simultaneously emitting γ photons, which were imaged directly by single photon computed tomography (SPECT). Using Monte Carlo methods, the dose to the tumors was calculated to be 3-6 times larger than to the healthy liver tissue. Conclusions:188Re-MS have the potential to become the next generation of β¯-emitting MS for TARE. Future work revolves around the investigation of the therapeutic potential of 188Re-MS in a large-scale, long-term preclinical study as well as the evaluation of the clinical outcomes of using 188Re-MS with different sizes, from 20 to 50 µm.
Collapse
|