1
|
Gonzalez-Montoro A, Pavón N, Barberá J, Cuarella N, González AJ, Jiménez-Serrano S, Lucero A, Moliner L, Sánchez D, Vidal K, Benlloch JM. Design and proof of concept of a double-panel TOF-PET system. EJNMMI Phys 2024; 11:73. [PMID: 39174856 PMCID: PMC11341523 DOI: 10.1186/s40658-024-00674-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024] Open
Abstract
OBJECTIVE Positron Emission Tomography (PET) is a well-known imaging technology for the diagnosis, treatment, and monitoring of several diseases. Most PET scanners use a Ring-Shaped Detector Configuration (RSDC), which helps obtain homogeneous image quality but are restricted to an invariable Field-of-View (FOV), scarce spatial resolution, and low sensitivity. Alternatively, few PET systems use Open Detector Configurations (ODC) to permit an accessible FOV adaptable to different target sizes, thus optimizing sensitivity. Yet, to compensate the lack of angular coverage in ODC-PET, developing a detector with high-timing performance is mandatory to enable Time-of-Flight (TOF) techniques during reconstruction. The main goal of this work is to provide a proof of concept PET scanner appropriate for constructing the new generation of ODC-PET suitable for biopsy guidance and clinical intervention during acquisition. The designed detector has to be compact and robust, and its requirements in terms of performance are spatial and time resolutions < 2 mm and < 200 ps, respectively. METHODS The present work includes a simulation study of an ODC-PET based on 2-panels with variable distance. The image quality (IQ) and Derenzo phantoms have been simulated and evaluated. The phantom simulations have also been performed using a ring-shaped PET for comparison purposes of the ODC approach with conventional systems. Then, an experimental evaluation of a prototype detector that has been designed following the simulation results is presented. This study focused on tuning the ASIC parameters and evaluating the scintillator surface treatment (ESR and TiO2), and configuration that yields the best Coincidence Time Resolution (CTR). Moreover, the scalability of the prototype to a module of 64 × 64mm2 and its preliminary evaluation regarding pixel identification are provided. RESULTS The simulation results reported sensitivity (%) values at the center of the FOV of 1.96, 1.63, and 1.18 for panel distances of 200, 250, and 300 mm, respectively. The IQ reconstructed image reported good uniformity (87%) and optimal CRC values, and the Derenzo phantom reconstruction suggests a system resolution of 1.6-2 mm. The experimental results demonstrate that using TiO2 coating yielded better detector performance than ESR. Acquired data was filtered by applying an energy window of ± 30% at the photopeak level. After filtering, best CTR of 230 ± 2 ps was achieved for an 8 × 8 LYSO pixel block with 2 × 2 × 12mm3 each. The detector performance remained constant after scaling-up the prototype to a module of 64 × 64mm2, and the flood map demonstrates the module's capabilities to distinguish the small pixels; thus, a spatial resolution < 2 mm (pixel size) is achieved. CONCLUSIONS The simulated results of this biplanar scanner show high performance in terms of image quality and sensitivity. These results are comparable to state-of-the-art PET technology and, demonstrate that including TOF information minimizes the image artifacts due to the lack of angular projections. The experimental results concluded that using TiO2 coating provide the best performance. The results suggest that this scanner may be suitable for organ study, breast, prostate, or cardiac applications, with good uniformity and CRC.
Collapse
Affiliation(s)
- Andrea Gonzalez-Montoro
- Centro Mixto CSIC - UPV, Instituto de Instrumentación Para Imagen Molecular, Camino de Vera S/N, 46022, Valencia, Spain.
| | - Noriel Pavón
- Centro Mixto CSIC - UPV, Instituto de Instrumentación Para Imagen Molecular, Camino de Vera S/N, 46022, Valencia, Spain
| | - Julio Barberá
- Oncovision, C/Jerónimo de Monsoriu, 92 Bajo, Valencia, Spain
| | - Neus Cuarella
- Centro Mixto CSIC - UPV, Instituto de Instrumentación Para Imagen Molecular, Camino de Vera S/N, 46022, Valencia, Spain
| | - Antonio J González
- Centro Mixto CSIC - UPV, Instituto de Instrumentación Para Imagen Molecular, Camino de Vera S/N, 46022, Valencia, Spain
| | - Santiago Jiménez-Serrano
- Centro Mixto CSIC - UPV, Instituto de Instrumentación Para Imagen Molecular, Camino de Vera S/N, 46022, Valencia, Spain
| | - Alejandro Lucero
- Centro Mixto CSIC - UPV, Instituto de Instrumentación Para Imagen Molecular, Camino de Vera S/N, 46022, Valencia, Spain
| | - Laura Moliner
- Centro Mixto CSIC - UPV, Instituto de Instrumentación Para Imagen Molecular, Camino de Vera S/N, 46022, Valencia, Spain
| | - David Sánchez
- Centro Mixto CSIC - UPV, Instituto de Instrumentación Para Imagen Molecular, Camino de Vera S/N, 46022, Valencia, Spain
| | - Koldo Vidal
- Centro Mixto CSIC - UPV, Instituto de Instrumentación Para Imagen Molecular, Camino de Vera S/N, 46022, Valencia, Spain
| | - José M Benlloch
- Centro Mixto CSIC - UPV, Instituto de Instrumentación Para Imagen Molecular, Camino de Vera S/N, 46022, Valencia, Spain
| |
Collapse
|
2
|
Salvadori J, Merlet A, Presles B, Cabello J, Su KH, Cochet A, Etxebeste A, Vrigneaud JM, Sarrut D. PET digitization chain for Monte Carlo simulation in GATE. Phys Med Biol 2024; 69:165013. [PMID: 39009009 DOI: 10.1088/1361-6560/ad638c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
Objective. We introduce a versatile methodology for the accurate modelling of PET imaging systems via Monte Carlo simulations, using the Geant4 application for tomographic emission (GATE) platform. Accurate Monte Carlo modelling involves the incorporation of a complete analytical signal processing chain, called the digitizer in GATE, to emulate the different count rates encountered in actual positron emission tomography (PET) systems.Approach. The proposed approach consists of two steps: (1) modelling the digitizer to replicate the detection chain of real systems, covering all available parameters, whether publicly accessible or supplied by manufacturers; (2) estimating the remaining parameters, i.e. background noise level, detection efficiency, and pile-up, using optimisation techniques based on experimental single and prompt event rates. We show that this two-step optimisation reproduces the other experimental count rates (true, scatter, and random), without the need for additional adjustments. This method has been applied and validated with experimental data derived from the NEMA count losses test for three state-of-the-art SiPM-based time-of-flight (TOF)-PET systems: Philips Vereos, Siemens Biograph Vision 600 and GE Discovery MI 4-ring.Main results. The results show good agreement between experiments and simulations for the three PET systems, with absolute relative discrepancies below 3%, 6%, 6%, 7% and 12% for prompt, random, true, scatter and noise equivalent count rates, respectively, within the 0-10 kBq·ml-1activity concentration range typically observed in whole-body18F scans.Significance. Overall, the proposed digitizer optimisation method was shown to be effective in reproducing count rates and NECR for three of the latest generation SiPM-based TOF-PET imaging systems. The proposed methodology could be applied to other PET scanners.
Collapse
Affiliation(s)
- Julien Salvadori
- Groupement de Coopération Sanitaire, Institut de Cancérologie Strasbourg Europe (ICANS), Nuclear medicine, Strasbourg, France
| | - Antoine Merlet
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, University of Burgundy, Dijon, France
| | - Benoit Presles
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, University of Burgundy, Dijon, France
| | - Jorge Cabello
- Siemens Medical Solutions, USA, Inc., Knoxville, TN, United States of America
| | - Kuan-Hao Su
- GE Healthcare, Waukesha, WI, United States of America
| | - Alexandre Cochet
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, University of Burgundy, Dijon, France
- Department of Nuclear Medicine, Georges-François Leclerc Cancer Centre, Dijon, France
| | - Ane Etxebeste
- Université de Lyon, CREATIS; CNRS UMR5220, Inserm U1044, INSA-Lyon; Université Lyon 1, Centre Léon Bérard, France
| | - Jean-Marc Vrigneaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, University of Burgundy, Dijon, France
- Department of Nuclear Medicine, Georges-François Leclerc Cancer Centre, Dijon, France
| | - David Sarrut
- Université de Lyon, CREATIS; CNRS UMR5220, Inserm U1044, INSA-Lyon; Université Lyon 1, Centre Léon Bérard, France
| |
Collapse
|
3
|
Merlet A, Presles B, Su KH, Salvadori J, Sayah F, Jozi H, Cochet A, Vrigneaud JM. Validation of a discovery MI 4-ring model according to the NEMA NU 2-2018 standards: from Monte Carlo simulations to clinical-like reconstructions. EJNMMI Phys 2024; 11:13. [PMID: 38294624 PMCID: PMC11266333 DOI: 10.1186/s40658-024-00616-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND We propose a comprehensive evaluation of a Discovery MI 4-ring (DMI) model, using a Monte Carlo simulator (GATE) and a clinical reconstruction software package (PET toolbox). The following performance characteristics were compared with actual measurements according to NEMA NU 2-2018 guidelines: system sensitivity, count losses and scatter fraction (SF), coincidence time resolution (CTR), spatial resolution (SR), and image quality (IQ). For SR and IQ tests, reconstruction of time-of-flight (TOF) simulated data was performed using the manufacturer's reconstruction software. RESULTS Simulated prompt, random, true, scatter and noise equivalent count rates closely matched the experimental rates with maximum relative differences of 1.6%, 5.3%, 7.8%, 6.6%, and 16.5%, respectively, in a clinical range of less than 10 kBq/mL. A 3.6% maximum relative difference was found between experimental and simulated sensitivities. The simulated spatial resolution was better than the experimental one. Simulated image quality metrics were relatively close to the experimental results. CONCLUSIONS The current model is able to reproduce the behaviour of the DMI count rates in the clinical range and generate clinical-like images with a reasonable match in terms of contrast and noise.
Collapse
Affiliation(s)
- Antoine Merlet
- Imagerie et Vision artificielle, ImViA EA 7535, University of Burgundy, Dijon, France
| | - Benoît Presles
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, University of Burgundy, Dijon, France
| | | | - Julien Salvadori
- ICANS, Institut de cancérologie Strasbourg Europe, Strasbourg, France
| | - Farzam Sayah
- Department of Nuclear Medicine, Georges-François Leclerc Cancer Centre, Dijon, France
| | - Hanieh Jozi
- Department of Nuclear Medicine, Georges-François Leclerc Cancer Centre, Dijon, France
| | - Alexandre Cochet
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, University of Burgundy, Dijon, France
- Department of Nuclear Medicine, Georges-François Leclerc Cancer Centre, Dijon, France
| | - Jean-Marc Vrigneaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, University of Burgundy, Dijon, France.
- Department of Nuclear Medicine, Georges-François Leclerc Cancer Centre, Dijon, France.
| |
Collapse
|
4
|
Lee H, Cheon BW, Feld JW, Grogg K, Perl J, Ramos-Méndez JA, Faddegon B, Min CH, Paganetti H, Schuemann J. TOPAS-imaging: extensions to the TOPAS simulation toolkit for medical imaging systems. Phys Med Biol 2023; 68:10.1088/1361-6560/acc565. [PMID: 36930985 PMCID: PMC10164408 DOI: 10.1088/1361-6560/acc565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/17/2023] [Indexed: 03/19/2023]
Abstract
Objective. The TOol for PArticle Simulation (TOPAS) is a Geant4-based Monte Carlo software application that has been used for both research and clinical studies in medical physics. So far, most users of TOPAS have focused on radiotherapy-related studies, such as modeling radiation therapy delivery systems or patient dose calculation. Here, we present the first set of TOPAS extensions to make it easier for TOPAS users to model medical imaging systems.Approach. We used the extension system of TOPAS to implement pre-built, user-configurable geometry components such as detectors (e.g. flat-panel and multi-planar detectors) for various imaging modalities and pre-built, user-configurable scorers for medical imaging systems (e.g. digitizer chain).Main results. We developed a flexible set of extensions that can be adapted to solve research questions for a variety of imaging modalities. We then utilized these extensions to model specific examples of cone-beam CT (CBCT), positron emission tomography (PET), and prompt gamma (PG) systems. The first of these new geometry components, the FlatImager, was used to model example CBCT and PG systems. Detected signals were accumulated in each detector pixel to obtain the intensity of x-rays penetrating objects or prompt gammas from proton-nuclear interaction. The second of these new geometry components, the RingImager, was used to model an example PET system. Positron-electron annihilation signals were recorded in crystals of the RingImager and coincidences were detected. The simulated data were processed using corresponding post-processing algorithms for each modality and obtained results in good agreement with the expected true signals or experimental measurement.Significance. The newly developed extension is a first step to making it easier for TOPAS users to build and simulate medical imaging systems. Together with existing TOPAS tools, this extension can help integrate medical imaging systems with radiotherapy simulations for image-guided radiotherapy.
Collapse
Affiliation(s)
- Hoyeon Lee
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Bo-Wi Cheon
- Department of Radiation Convergence Engineering, Yonsei University, Wonju, Gangwon-do 26493, Republic of Korea
| | - Joseph W Feld
- Electrical Engineering and Computer Science Department, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Kira Grogg
- The Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Joseph Perl
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025 United States of America
| | - José A Ramos-Méndez
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94115 United States of America
| | - Bruce Faddegon
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94115 United States of America
| | - Chul Hee Min
- Department of Radiation Convergence Engineering, Yonsei University, Wonju, Gangwon-do 26493, Republic of Korea
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| |
Collapse
|
5
|
Pommranz CM, Schmidt FP, Mannheim JG, Diebold SJ, Tenzer C, Santangelo A, Pichler BJ. Design and performance simulation studies of a breast PET insert integrable into a clinical whole-body PET/MRI scanner. Phys Med Biol 2023; 68. [PMID: 36753773 DOI: 10.1088/1361-6560/acba77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/08/2023] [Indexed: 02/10/2023]
Abstract
Objective. Three different breast positron emission tomography (PET) insert geometries are proposed for integration into an existing magnetic resonance imaging (MRI) breast coil (Breast Biopsy Coil, NORAS MRI products) to be used inside a whole-body PET/MRI scanner (Biograph mMR, Siemens Healthineers) to enhance the sensitivity and spatial resolution of imaging inside the breast.Approach. Monte Carlo simulations were performed to predict and compare the performance characteristics of the three geometries in terms of the sensitivity, spatial resolution, scatter fraction, and noise equivalent count rate (NECR). In addition, the background single count rate due to organ uptake in a clinical scan scenario was predicted using a realistic anthropomorphic phantom.Main results. In the center of the field of view (cFOV), absolute sensitivities of 3.1%, 2.7%, and 2.2% were found for Geometry A (detectors arranged in two cylinders), Geometry B (detectors arranged in two partial cylinders), and Geometry C (detectors arranged in two half cylinders combined with two plates), respectively. The full width at half maximum spatial resolution was determined to be 1.7 mm (Geometry A), 1.8 mm (Geometry B) and 2.0 mm (Geometry C) at 5 mm from the cFOV. Designs with multiple scintillation-crystal layers capable of determining the depth of interaction (DOI) strongly improved the spatial resolution at larger distances from the transaxial cFOV. The system scatter fractions were 33.1% (Geometries A and B) and 32.3% (Geometry C). The peak NECRs occurred at source activities of 300 MBq (Geometry A), 310 MBq (Geometry B) and 340 MBq (Geometry C). The background single-event count rates were 17.1 × 106cps (Geometry A), 15.3 × 106cps (Geometry B) and 14.8 × 106cps (Geometry C). Geometry A in the three-layer DOI variant exhibited the best PET performance characteristics but could be challenging to manufacture. Geometry C had the lowest impact on the spatial resolution and the lowest sensitivity among the investigated geometries.Significance. Geometry B in the two-layer DOI variant represented an effective compromise between the PET performance and manufacturing difficulty and was found to be a promising candidate for the future breast PET insert.
Collapse
Affiliation(s)
- C M Pommranz
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 13, D-72076 Tuebingen, Germany.,Institute for Astronomy and Astrophysics, Eberhard Karls University Tuebingen, Sand 1, D-72076 Tuebingen, Germany
| | - F P Schmidt
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 13, D-72076 Tuebingen, Germany.,Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Otfried-Mueller-Strasse 14, D-72076 Tuebingen, Germany
| | - J G Mannheim
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 13, D-72076 Tuebingen, Germany.,Cluster of Excellence iFIT (EXC 2180) Image Guided and Functionally Instructed Tumor Therapies, University of Tuebingen, Tuebingen, Germany
| | - S J Diebold
- Institute for Astronomy and Astrophysics, Eberhard Karls University Tuebingen, Sand 1, D-72076 Tuebingen, Germany
| | - C Tenzer
- Institute for Astronomy and Astrophysics, Eberhard Karls University Tuebingen, Sand 1, D-72076 Tuebingen, Germany
| | - A Santangelo
- Institute for Astronomy and Astrophysics, Eberhard Karls University Tuebingen, Sand 1, D-72076 Tuebingen, Germany
| | - B J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 13, D-72076 Tuebingen, Germany.,Cluster of Excellence iFIT (EXC 2180) Image Guided and Functionally Instructed Tumor Therapies, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
6
|
Herald M, Nicuşan A, Wheldon TK, Seville J, Windows-Yule C. Autonomous digitizer calibration of a Monte Carlo detector model through evolutionary simulation. Sci Rep 2022; 12:19535. [PMID: 36376375 PMCID: PMC9663564 DOI: 10.1038/s41598-022-24022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Simulating the response of a radiation detector is a modelling challenge due to the stochastic nature of radiation, often complex geometries, and multi-stage signal processing. While sophisticated tools for Monte Carlo simulation have been developed for radiation transport, emulating signal processing and data loss must be accomplished using a simplified model of the electronics called the digitizer. Due to a large number of free parameters, calibrating a digitizer quickly becomes an optimisation problem. To address this, we propose a novel technique by which evolutionary algorithms calibrate a digitizer autonomously. We demonstrate this by calibrating six free parameters in a digitizer model for the ADAC Forte. The accuracy of solutions is quantified via a cost function measuring the absolute percent difference between simulated and experimental coincidence count rates across a robust characterisation data set, including three detector configurations and a range of source activities. Ultimately, this calibration produces a count rate response with 5.8% mean difference to the experiment, improving from 18.3% difference when manually calibrated. Using evolutionary algorithms for model calibration is a notable advancement because this method is novel, autonomous, fault-tolerant, and achieved through a direct comparison of simulation to reality. The software used in this work has been made freely available through a GitHub repository.
Collapse
Affiliation(s)
- Matthew Herald
- School of Chemical Engineering, University of Birmingham, Birmingham, UK.
| | - Andrei Nicuşan
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Tzany Kokalova Wheldon
- School of Physics and Astronomy, University of Birmingham, Birmingham, UK
- Positron Imaging Centre, University of Birmingham, Birmingham, UK
| | - Jonathan Seville
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
- Positron Imaging Centre, University of Birmingham, Birmingham, UK
| | - Christopher Windows-Yule
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
- Positron Imaging Centre, University of Birmingham, Birmingham, UK
| |
Collapse
|
7
|
Towards efficient Monte Carlo N-Particle simulation of a positron emission tomography (PET) via source volume definition. Appl Radiat Isot 2022; 189:110418. [PMID: 36029640 DOI: 10.1016/j.apradiso.2022.110418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022]
Abstract
Monte Carlo N-Particle (MCNP) simulation has been extensively proven in nuclear medicine imaging systems, most notably in designing and optimizing new medical imaging tools. It enables more complicated geometries and the simulation of particles passing through and interacting with materials. However, a relatively long simulation time is a drawback of Monte Carlo simulation, mainly when complex geometry exists. The current study presents an alternative variance reduction technique for a modeled positron emission tomography (PET) camera by reducing the height of the source volume definition while maintaining the geometry of the simulated model. The National Electrical Manufacturers Association (NEMA) of the International Electrotechnical Commission (IEC) PET's phantom was used with a 1 cm diameter and 7 cm height of line source placed in the middle. The first geometry was fully filled the line source with 0.50 mCi radioactivity. In contrast, the second geometry decreased the source definition to 2.4 cm in height, covering 1 cm above and below the sub-block detector level. The source volume definition approach led to a 71% reduction in the total photons to be simulated. Results showed that the proposed variance reduction strategy could produce spatial resolution as precise as fully filled geometry and sped up the simulation time by approximately 65%. Hence, this strategy can be utilized for further PET optimizing simulation studies.
Collapse
|
8
|
Kalaitzidis P, Gustafsson J, Hindorf C, Ljungberg M. Validation of a computational chain from PET Monte Carlo simulations to reconstructed images. Heliyon 2022; 8:e09316. [PMID: 35520630 PMCID: PMC9062260 DOI: 10.1016/j.heliyon.2022.e09316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/25/2021] [Accepted: 04/19/2022] [Indexed: 01/21/2023] Open
Abstract
The study aimed to create a pipeline from Monte Carlo simulated projections of a Gate PET system to reconstructed images. The PET system was modelled after the GE Discovery MI (DMI) PET/CT, and the simulated projections were reconstructed with the stand-alone reconstruction software CASToR. Attenuation correction, normalisation calibration, random estimation, and scatter estimation for the simulations were computed with in-house programs. The pipeline was compared in both projection and image space with data acquired on a clinical DMI and reconstructed with GE's off-line PET reconstruction software (PET Toolbox) and CASToR. The simulated and measured data were compared for the number of prompt coincidences, scatter fraction, contrast recovery coefficient (CRC), signal-to-noise ratio (SNR), background variability, residual lung error, and image profiles. A slight discrepancy was noted in the projection space, but good agreements were generally achieved in image space between simulated and measured data. The CRC was found to be 81 % for Gate – CASToR, 84 % for GE – CASToR, and 84 % for GE - PET Toolbox for the largest sphere of the NEMA image quality (IQ) phantom, and the SNR was found to be 98 for Gate – CASToR, 91 for GE – CASToR, and 93 for GE – PET Toolbox. Profiles drawn over the spheres for the NEMA IQ phantom and the Data Spectrum (DS) phantom show a good match between measurement and simulation. The results indicate feasibility to utilise the pipeline as a tool for off-line simulation-based studies. A complete pipeline introduces possibilities to study the impact of single parameters in the whole chain from simulation to reconstructed images.
Collapse
Affiliation(s)
- Philip Kalaitzidis
- Medical Radiation Physics, Lund, Lund University, Lund, Sweden
- Corresponding author.
| | | | - Cecilia Hindorf
- Medical Radiation Physics, Lund, Lund University, Lund, Sweden
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Solna, Stockholm, Sweden
| | | |
Collapse
|
9
|
Kersting D, Settelmeier S, Mavroeidi IA, Herrmann K, Seifert R, Rischpler C. Shining Damaged Hearts: Immunotherapy-Related Cardiotoxicity in the Spotlight of Nuclear Cardiology. Int J Mol Sci 2022; 23:3802. [PMID: 35409161 PMCID: PMC8998973 DOI: 10.3390/ijms23073802] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
The emerging use of immunotherapies in cancer treatment increases the risk of immunotherapy-related cardiotoxicity. In contrast to conventional chemotherapy, these novel therapies have expanded the forms and presentations of cardiovascular damage to a broad spectrum from asymptomatic changes to fulminant short- and long-term complications in terms of cardiomyopathy, arrythmia, and vascular disease. In cancer patients and, particularly, cancer patients undergoing (immune-)therapy, cardio-oncological monitoring is a complex interplay between pretherapeutic risk assessment, identification of impending cardiotoxicity, and post-therapeutic surveillance. For these purposes, the cardio-oncologist can revert to a broad spectrum of nuclear cardiological diagnostic workup. The most promising commonly used nuclear medicine imaging techniques in relation to immunotherapy will be discussed in this review article with a special focus on the continuous development of highly specific molecular markers and steadily improving methods of image generation. The review closes with an outlook on possible new developments of molecular imaging and advanced image evaluation techniques in this exciting and increasingly growing field of immunotherapy-related cardiotoxicity.
Collapse
Affiliation(s)
- David Kersting
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, 45147 Essen, Germany; (K.H.); (R.S.); (C.R.)
- German Cancer Consortium (DKTK, Partner Site Essen/Düsseldorf), 45147 Essen, Germany;
| | - Stephan Settelmeier
- Department of Cardiology and Vascular Medicine, University Hospital Essen, West German Heart and Vascular Center, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Ilektra-Antonia Mavroeidi
- German Cancer Consortium (DKTK, Partner Site Essen/Düsseldorf), 45147 Essen, Germany;
- Clinic for Internal Medicine (Tumor Research), University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, 45147 Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, 45147 Essen, Germany; (K.H.); (R.S.); (C.R.)
- German Cancer Consortium (DKTK, Partner Site Essen/Düsseldorf), 45147 Essen, Germany;
| | - Robert Seifert
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, 45147 Essen, Germany; (K.H.); (R.S.); (C.R.)
- German Cancer Consortium (DKTK, Partner Site Essen/Düsseldorf), 45147 Essen, Germany;
| | - Christoph Rischpler
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, 45147 Essen, Germany; (K.H.); (R.S.); (C.R.)
- German Cancer Consortium (DKTK, Partner Site Essen/Düsseldorf), 45147 Essen, Germany;
| |
Collapse
|
10
|
Tiwari A, Merrick M, Graves SA, Sunderland J. Monte Carlo evaluation of hypothetical long axial field-of-view PET scanner using GE discovery MI PET front-end architecture. Med Phys 2021; 49:1139-1152. [PMID: 34954831 DOI: 10.1002/mp.15422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE The development of total-body PET scanners is of growing interest in the PET community. Investigation into the imaging properties of a hypothetical extended axial field-of-view (AFOV) GE Healthcare SiPM-based Discovery MI (DMI) system architecture has not yet been performed. In this work, we assessed its potential as a whole-body scanner using Monte Carlo simulations. The aim of this work was to (1) develop and validate a Monte Carlo model of a 4-ring scanner and (2) extend its AFOV up to 2 m to evaluate performance gain through NEMA-based evaluation. METHODS The DMI 4-ring geometry and its pulse digitization scheme were modeled within the GATE Monte Carlo platform using published literature. The GATE scanner model was validated by comparing results against published NEMA performance measurements. Following the validation of the 4-ring model, the model was extended to simulate 8, 20, 30, and 40-ring systems. Spatial resolution, sensitivity, NECR, and scatter fraction were characterized with modified NEMA NU-2 2018 standards; however, the image quality measurements were not acquired due to computational limitations. Spatial resolutions were simulated for all scanner ring configurations using point sources to examine the effects of parallax errors. NEMA count rates were estimated using a standard 70 cm scatter phantom and an extended version of scatter phantom of length 200 cm with (1-800) MBq of 18 F for all scanners. Sensitivity was evaluated using NEMA methods with a 70 cm standard and a 200 cm long line source. RESULTS The average FWHM of the radial/tangential/axial spatial resolution reconstructed with filtered back-projection at 1 and 10 cm from the scanner center were 3.94/4.10/4.41 mm and 5.29/4.89/5.90 mm for the 4-ring scanner. Sensitivity was determined to be 14.86 cps/kBq at the center of the FOV for the 4-ring scanner using a 70 cm line source. Sensitivity enhancement up to 21-fold and 60-fold were observed for 1 m and 2 m AFOV scanners compared to 4-ring scanner using a 200 cm long line source. Spatial resolution simulations in a 2 m AFOV scanner suggest a maximum degradation of ∼23.8% in the axial resolution compared to the 4-ring scanner. However, the transverse resolution was found to be relatively constant when increasing the axial acceptance angle up to ±70°. The peak NECR was 212.92 kcps at 22.70 kBq/mL with a scatter fraction of 38.9% for a 4-ring scanner with a 70 cm scatter phantom. Comparison of peak NECR using the 200 cm long scatter phantom relative to the 4-ring scanner resulted in a NECR gain of 15 for the 20-ring and 28 for the 40-ring geometry. Spatial resolution, sensitivity, and scatter fraction showed an agreement within ∼7% compared with published measured values. CONCLUSIONS The 4-ring DMI scanner simulation was successfully validated against published NEMA measurements. Sensitivity and NECR performance of extended 1 and 2 meters AFOV scanners based upon the DMI architecture were subsequently simulated. Increases in sensitivity and count-rate performance are consistent with prior simulation studies utilizing extensions of the Siemens mCT architecture and published NEMA measurements with the uEXPLORER system. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ashok Tiwari
- Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., Iowa City, IA, 52242, USA.,Department of Physics and Astronomy, University of Iowa, 203 Van Allen Hall, Iowa City, IA, 52242, USA
| | - Michael Merrick
- Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., Iowa City, IA, 52242, USA.,Department of Biomedical Engineering, University of Iowa, 5601 Seamans Center, Iowa City, IA, 52242, USA
| | - Stephen A Graves
- Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., Iowa City, IA, 52242, USA.,Department of Biomedical Engineering, University of Iowa, 5601 Seamans Center, Iowa City, IA, 52242, USA.,Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., Iowa City, IA, 52242, USA
| | - John Sunderland
- Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., Iowa City, IA, 52242, USA.,Department of Physics and Astronomy, University of Iowa, 203 Van Allen Hall, Iowa City, IA, 52242, USA.,Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., Iowa City, IA, 52242, USA
| |
Collapse
|
11
|
Quénot L, Brun E, Létang JM, Langer M. Evaluation of simulators for x-ray speckle-based phase contrast imaging. Phys Med Biol 2021; 66. [PMID: 34412046 DOI: 10.1088/1361-6560/ac1f38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/19/2021] [Indexed: 11/12/2022]
Abstract
X-ray phase contrast imaging (PCI) denotes a group of highly sensitive imaging techniques that permits imaging at scales ranging from nanoscopic to the medical. Recently introduced, speckle-based imaging has seen a rapid development because of its experimental simplicity and its capability to retrieve the refraction, the scattering and the absorption of a sample using a conventional x-ray set-up. Precise simulation would permit to optimise the imaging setups for different applications, but until now works on simulation of x-ray speckle-based PCI have been very few. In this work we evaluate different simulation codes, based on Monte-Carlo, analytical ray-tracing and wave-optics Fresnel propagation. The simulation results are compared to both synchrotron and conventional imaging experiments to permits their validation. We obtain a strong similarity between simulated and experimental data. We discuss the validity and applicability of each approach.
Collapse
Affiliation(s)
- L Quénot
- Inserm UA7 Strobe, Université Grenoble Alpes, Grenoble, France
| | - E Brun
- Inserm UA7 Strobe, Université Grenoble Alpes, Grenoble, France
| | - J M Létang
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, UJM-Saint Étienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F-69373, Lyon, France
| | - M Langer
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, UJM-Saint Étienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F-69373, Lyon, France.,Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| |
Collapse
|
12
|
Labour J, Boissard P, Baudier T, Khayi F, Kryza D, Durebex PV, Martino SPD, Mognetti T, Sarrut D, Badel JN. Yttrium-90 quantitative phantom study using digital photon counting PET. EJNMMI Phys 2021; 8:56. [PMID: 34318383 PMCID: PMC8316557 DOI: 10.1186/s40658-021-00402-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND PET imaging of 90Y-microsphere distribution following radioembolisation is challenging due to the count-starved statistics from the low branching ratio of e+/e- pair production during 90Y decay. PET systems using silicon photo-multipliers have shown better 90Y image quality compared to conventional photo-multiplier tubes. The main goal of the present study was to evaluate reconstruction parameters for different phantom configurations and varying listmode acquisition lengths to improve quantitative accuracy in 90Y dosimetry, using digital photon counting PET/CT. METHODS Quantitative PET and dosimetry accuracy were evaluated using two uniform cylindrical phantoms specific for PET calibration validation. A third body phantom with a 9:1 hot sphere-to-background ratio was scanned at different activity concentrations of 90Y. Reconstructions were performed using OSEM algorithm with varying parameters. Time-of-flight and point-spread function modellings were included in all reconstructions. Absorbed dose calculations were carried out using voxel S-values convolution and were compared to reference Monte Carlo simulations. Dose-volume histograms and root-mean-square deviations were used to evaluate reconstruction parameter sets. Using listmode data, phantom and patient datasets were rebinned into various lengths of time to assess the influence of count statistics on the calculation of absorbed dose. Comparisons between the local energy deposition method and the absorbed dose calculations were performed. RESULTS Using a 2-mm full width at half maximum post-reconstruction Gaussian filter, the dosimetric accuracy was found to be similar to that found with no filter applied but also reduced noise. Larger filter sizes should not be used. An acquisition length of more than 10 min/bed reduces image noise but has no significant impact in the quantification of phantom or patient data for the digital photon counting PET. 3 iterations with 10 subsets were found suitable for large spheres whereas 1 iteration with 30 subsets could improve dosimetry for smaller spheres. CONCLUSION The best choice of the combination of iterations and subsets depends on the size of the spheres. However, one should be careful on this choice, depending on the imaging conditions and setup. This study can be useful in this choice for future studies for more accurate 90Y post-dosimetry using a digital photon counting PET/CT.
Collapse
Affiliation(s)
- Joey Labour
- CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon; Université Lyon 1, Lyon, France
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
| | | | - Thomas Baudier
- CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon; Université Lyon 1, Lyon, France
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
| | - Fouzi Khayi
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
| | - David Kryza
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
- Hospices Civils de Lyon; Université de Lyon; Université Claude Bernard Lyon 1; LAGEPP UMR 5007 CNRS, Lyon, France
| | | | | | | | - David Sarrut
- CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon; Université Lyon 1, Lyon, France
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
| | - Jean-Noël Badel
- CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon; Université Lyon 1, Lyon, France
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
| |
Collapse
|
13
|
Sarrut D, Bała M, Bardiès M, Bert J, Chauvin M, Chatzipapas K, Dupont M, Etxebeste A, M Fanchon L, Jan S, Kayal G, S Kirov A, Kowalski P, Krzemien W, Labour J, Lenz M, Loudos G, Mehadji B, Ménard L, Morel C, Papadimitroulas P, Rafecas M, Salvadori J, Seiter D, Stockhoff M, Testa E, Trigila C, Pietrzyk U, Vandenberghe S, Verdier MA, Visvikis D, Ziemons K, Zvolský M, Roncali E. Advanced Monte Carlo simulations of emission tomography imaging systems with GATE. Phys Med Biol 2021; 66:10.1088/1361-6560/abf276. [PMID: 33770774 PMCID: PMC10549966 DOI: 10.1088/1361-6560/abf276] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/26/2021] [Indexed: 12/13/2022]
Abstract
Built on top of the Geant4 toolkit, GATE is collaboratively developed for more than 15 years to design Monte Carlo simulations of nuclear-based imaging systems. It is, in particular, used by researchers and industrials to design, optimize, understand and create innovative emission tomography systems. In this paper, we reviewed the recent developments that have been proposed to simulate modern detectors and provide a comprehensive report on imaging systems that have been simulated and evaluated in GATE. Additionally, some methodological developments that are not specific for imaging but that can improve detector modeling and provide computation time gains, such as Variance Reduction Techniques and Artificial Intelligence integration, are described and discussed.
Collapse
Affiliation(s)
- David Sarrut
- Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1294, INSA-Lyon, Université Lyon 1, Lyon, France
| | | | - Manuel Bardiès
- Cancer Research Institute of Montpellier, U1194 INSERM/ICM/Montpellier University, 208 Av des Apothicaires, F-34298 Montpellier cedex 5, France
| | - Julien Bert
- LaTIM, INSERM UMR 1101, IBRBS, Faculty of Medicine, Univ Brest, 22 avenue Camille Desmoulins, F-29238, Brest, France
| | - Maxime Chauvin
- CRCT, UMR 1037, INSERM, Université Toulouse III Paul Sabatier, Toulouse, France
| | | | | | - Ane Etxebeste
- Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1294, INSA-Lyon, Université Lyon 1, Lyon, France
| | - Louise M Fanchon
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, United States of America
| | - Sébastien Jan
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, F-91401, Orsay, France
| | - Gunjan Kayal
- CRCT, UMR 1037, INSERM, Université Toulouse III Paul Sabatier, Toulouse, France
- SCK CEN, Belgian Nuclear Research Centre, Boeretang 200, Mol 2400, Belgium
| | - Assen S Kirov
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, United States of America
| | - Paweł Kowalski
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Wojciech Krzemien
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Joey Labour
- Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1294, INSA-Lyon, Université Lyon 1, Lyon, France
| | - Mirjam Lenz
- FH Aachen University of Applied Sciences, Forschungszentrum Jülich, Jülich, Germany
- Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - George Loudos
- Bioemission Technology Solutions (BIOEMTECH), Alexandras Av. 116, Athens, Greece
| | | | - Laurent Ménard
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, F-91405 Orsay, France
- Université de Paris, IJCLab, F-91405 Orsay France
| | | | | | - Magdalena Rafecas
- Institute of Medical Engineering, University of Lübeck, Lübeck, Germany
| | - Julien Salvadori
- Department of Nuclear Medicine and Nancyclotep molecular imaging platform, CHRU-Nancy, Université de Lorraine, F-54000, Nancy, France
| | - Daniel Seiter
- Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, 53705, United States of America
| | - Mariele Stockhoff
- Medical Image and Signal Processing (MEDISIP), Ghent University, Ghent, Belgium
| | - Etienne Testa
- Univ. Lyon, Univ. Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622, Villeurbanne, France
| | - Carlotta Trigila
- Department of Biomedical Engineering, University of California, Davis, CA 95616 United States of America
| | - Uwe Pietrzyk
- Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | | | - Marc-Antoine Verdier
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, F-91405 Orsay, France
- Université de Paris, IJCLab, F-91405 Orsay France
| | - Dimitris Visvikis
- LaTIM, INSERM UMR 1101, IBRBS, Faculty of Medicine, Univ Brest, 22 avenue Camille Desmoulins, F-29238, Brest, France
| | - Karl Ziemons
- FH Aachen University of Applied Sciences, Forschungszentrum Jülich, Jülich, Germany
| | - Milan Zvolský
- Institute of Medical Engineering, University of Lübeck, Lübeck, Germany
| | - Emilie Roncali
- Department of Biomedical Engineering, University of California, Davis, CA 95616 United States of America
| |
Collapse
|
14
|
Salvadori J, Odille F, Karcher G, Marie PY, Imbert L. Fully digital PET is unaffected by any deterioration in TOF resolution and TOF image quality in the wide range of routine PET count rates. EJNMMI Phys 2021; 8:1. [PMID: 33409746 PMCID: PMC7788141 DOI: 10.1186/s40658-020-00344-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Digital PET involving silicon photomultipliers (SiPM) provides an enhanced time-of-flight (TOF) resolution as compared with photomultiplier (PMT)-based PET, but also a better prevention of the count-related rises in dead time and pile-up effects mainly due to smaller trigger domains (i.e., the detection surfaces associated with each trigger circuit). This study aimed to determine whether this latter property could help prevent against deteriorations in TOF resolution and TOF image quality in the wide range of PET count rates documented in clinical routine. METHODS Variations, according to count rates, in timing resolution and in TOF-related enhancement of the quality of phantom images were compared between the first fully digital PET (Vereos) and a PMT-based PET (Ingenuity). Single-count rate values were additionally extracted from the list-mode data of routine analog- and digital-PET exams at each 500-ms interval, in order to determine the ranges of routine PET count rates. RESULTS Routine PET count rates were lower for the Vereos than for the Ingenuity. For Ingenuity, the upper limits were estimated at approximately 21.7 and 33.2 Mcps after injection of respectively 3 and 5 MBq.kg-1 of current 18F-labeled tracers. At 5.8 Mcps, corresponding to the lower limit of the routine count rates documented with the Ingenuity, timing resolutions provided by the scatter phantom were 326 and 621 ps for Vereos and Ingenuity, respectively. At higher count rates, timing resolution was remarkably stable for Vereos but exhibited a progressive deterioration for Ingenuity, respectively reaching 732 and 847 ps at the upper limits of 21.7 and 33.2 Mcps. The averaged TOF-related gain in signal/noise ratio was stable at approximately 2 for Vereos but decreased from 1.36 at 5.8 Mcps to 1.14 and 1.00 at respectively 21.7 and 33.2 Mcps for Ingenuity. CONCLUSION Contrary to the Ingenuity PMT-based PET, the Vereos fully digital PET is unaffected by any deterioration in TOF resolution and consequently, in the quality of TOF images, in the wide range of routine PET count rates. This advantage is even more striking with higher count-rates for which the preferential use of digital PET should be further recommended (i.e., dynamic PET recording, higher injected activities).
Collapse
Affiliation(s)
- Julien Salvadori
- Department of Nuclear Medicine and Nancyclotep Molecular Imaging Platform, CHRU-Nancy, Université de Lorraine, F54000, Nancy, France. .,Université de Lorraine, INSERM, UMR 1254, F54000, Nancy, France.
| | - Freddy Odille
- Department of Nuclear Medicine and Nancyclotep Molecular Imaging Platform, CHRU-Nancy, Université de Lorraine, F54000, Nancy, France.,Université de Lorraine, INSERM, UMR 1254, F54000, Nancy, France
| | - Gilles Karcher
- Department of Nuclear Medicine and Nancyclotep Molecular Imaging Platform, CHRU-Nancy, Université de Lorraine, F54000, Nancy, France.,Université de Lorraine, INSERM, UMR 1254, F54000, Nancy, France
| | - Pierre-Yves Marie
- Department of Nuclear Medicine and Nancyclotep Molecular Imaging Platform, CHRU-Nancy, Université de Lorraine, F54000, Nancy, France.,Université de Lorraine, INSERM, UMR 1116, F54000, Nancy, France
| | - Laetitia Imbert
- Department of Nuclear Medicine and Nancyclotep Molecular Imaging Platform, CHRU-Nancy, Université de Lorraine, F54000, Nancy, France.,Université de Lorraine, INSERM, UMR 1254, F54000, Nancy, France
| |
Collapse
|