1
|
Kuo PH, Cella P, Chou YH, Arkhipenko A, Fisher JM. Optimal DaTQUANT Thresholds for Diagnostic Accuracy of Dementia with Lewy Bodies (DLB) and Parkinson's Disease (PD). Tomography 2024; 10:1608-1621. [PMID: 39453036 PMCID: PMC11511568 DOI: 10.3390/tomography10100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Quantitative thresholds are helpful to define an abnormal DaT SPECT in patients with suspected nigrostriatal degenerative diseases (NSDD). The optimal DaTQUANT threshold for diagnostic accuracy of DaT SPECT across combined movement and cognitive disorder populations has been previously described. Methods: We established optimal DaTQUANT thresholds that enhance the discrimination between dementia with Lewy bodies (DLB) and non-DLB dementia types, as well as between Parkinsonian syndromes (PS) and conditions not characterized by nigrostriatal degeneration (non-PS). Results: Data from a total of 303 patients were used in this retrospective analysis. Posterior putamen of the more affected hemisphere (MAH) was shown to be an accurate single-variable predictor for both DLB and PS and was comparable to the most accurate multi-variable models. Conclusions: Automated quantification with DaTQUANT can accurately aid in the differentiation of DLB from non-DLB dementias and PS from non-PS. Optimal thresholds for assisting a diagnosis of DLB are striatal binding ratio (SBR) ≤ 0.65, z-score ≤ -2.36, and a percent deviation ≤ -0.54 for the posterior putamen of the MAH. Optimal posterior putamen thresholds for assisting a diagnosis of PS are SBR ≤ 0.92, z-score ≤ -1.53, and a percent deviation ≤ -0.33, which are similar to our previously reported posterior putamen threshold values using a blended patient pool from multiple study populations.
Collapse
Affiliation(s)
- Phillip H. Kuo
- Department of Radiology, City of Hope National Medical Center, Duarte, CA 91010, USA;
- Departments of Medical Imaging, Medicine, and Biomedical Engineering, University of Arizona, Tucson, AZ 85724, USA
| | - Patrick Cella
- GE HealthCare, Life Sciences, Imaging R&D, Marlborough, MA 01752, USA;
| | - Ying-Hui Chou
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA;
| | | | - Julia M. Fisher
- Statistics Consulting Laboratory, BIO5 Institute, University of Arizona, Tucson, AZ 85719, USA
| |
Collapse
|
2
|
Wakasugi N, Takano H, Abe M, Sawamoto N, Murai T, Mizuno T, Matsuoka T, Yamakuni R, Yabe H, Matsuda H, Hanakawa T. Harmonizing multisite data with the ComBat method for enhanced Parkinson's disease diagnosis via DAT-SPECT. Front Neurol 2024; 15:1306546. [PMID: 38440115 PMCID: PMC10911132 DOI: 10.3389/fneur.2024.1306546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/22/2024] [Indexed: 03/06/2024] Open
Abstract
Background Dopamine transporter single-photon emission computed tomography (DAT-SPECT) is a crucial tool for evaluating patients with Parkinson's disease (PD). However, its implication is limited by inter-site variability in large multisite clinical trials. To overcome the limitation, a conventional prospective correction method employs linear regression with phantom scanning, which is effective yet available only in a prospective manner. An alternative, although relatively underexplored, involves retrospective modeling using a statistical method known as "combatting batch effects when combining batches of gene expression microarray data" (ComBat). Methods We analyzed DAT-SPECT-specific binding ratios (SBRs) derived from 72 healthy older adults and 81 patients with PD registered in four clinical sites. We applied both the prospective correction and the retrospective ComBat correction to the original SBRs. Next, we compared the performance of the original and two corrected SBRs to differentiate the PD patients from the healthy controls. Diagnostic accuracy was assessed using the area under the receiver operating characteristic curve (AUC-ROC). Results The original SBRs were 6.13 ± 1.54 (mean ± standard deviation) and 2.03 ± 1.41 in the control and PD groups, respectively. After the prospective correction, the mean SBRs were 6.52 ± 1.06 and 2.40 ± 0.99 in the control and PD groups, respectively. After the retrospective ComBat correction, the SBRs were 5.25 ± 0.89 and 2.01 ± 0.73 in the control and PD groups, respectively, resulting in substantial changes in mean values with fewer variances. The original SBRs demonstrated fair performance in differentiating PD from controls (Hedges's g = 2.76; AUC-ROC = 0.936). Both correction methods improved discrimination performance. The ComBat-corrected SBR demonstrated comparable performance (g = 3.99 and AUC-ROC = 0.987) to the prospectively corrected SBR (g = 4.32 and AUC-ROC = 0.992) for discrimination. Conclusion Although we confirmed that SBRs fairly discriminated PD from healthy older adults without any correction, the correction methods improved their discrimination performance in a multisite setting. Our results support the utility of harmonization methods with ComBat for consolidating SBR-based diagnosis or stratification of PD in multisite studies. Nonetheless, given the substantial changes in the mean values of ComBat-corrected SBRs, caution is advised when interpreting them.
Collapse
Affiliation(s)
- Noritaka Wakasugi
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Harumasa Takano
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Mitsunari Abe
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Nobukatsu Sawamoto
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiya Murai
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Teruyuki Matsuoka
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Psychiatry, NHO Maizuru Medical Center, Kyoto, Japan
| | - Ryo Yamakuni
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University, Fukushima, Japan
| | - Hirooki Yabe
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Matsuda
- Department of Biofunctional Imaging, Fukushima Medical University, Fukushima, Japan
| | - Takashi Hanakawa
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | |
Collapse
|
3
|
Apostolova I, Schiebler T, Lange C, Mathies FL, Lehnert W, Klutmann S, Buchert R. Stereotactical normalization with multiple templates representative of normal and Parkinson-typical reduction of striatal uptake improves the discriminative power of automatic semi-quantitative analysis in dopamine transporter SPECT. EJNMMI Phys 2023; 10:25. [PMID: 36991245 DOI: 10.1186/s40658-023-00544-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND The specific binding ratio (SBR) of 123I-FP-CIT in the putamen is widely used to support the interpretation of dopamine transporter (DAT) SPECT. Automatic methods for computation of the putamen SBR often include stereotactical normalization of the individual DAT-SPECT image to an anatomical standard space. This study compared using a single 123I-FP-CIT template image as target for stereotactical normalization versus multiple templates representative of normal and different levels of Parkinson-typical reduction of striatal 123I-FP-CIT uptake. METHODS 1702 clinical 123I-FP-CIT SPECT images were stereotactically normalized (affine) to the anatomical space of the Montreal Neurological Institute (MNI) with SPM12 either using a single custom-made 123I-FP-CIT template representative of normal striatal uptake or using eight different templates representative of normal and different levels of Parkinson-typical reduction of striatal FP-CIT uptake with and without attenuation and scatter correction. In the latter case, SPM finds the linear combination of the multiple templates that best matches the patient's image. The putamen SBR was obtained using hottest voxels analysis in large unilateral regions-of-interest predefined in MNI space. The histogram of the putamen SBR in the whole sample was fitted by the sum of two Gaussians. The power to differentiate between reduced and normal SBR was estimated by the effect size of the distance between the two Gaussians computed as the differences between their mean values scaled to their pooled standard deviation. RESULTS The effect size of the distance between the two Gaussians was 3.83 with the single template versus 3.96 with multiple templates for stereotactical normalization. CONCLUSIONS Multiple templates representative of normal and different levels of Parkinson-typical reduction for stereotactical normalization of DAT-SPECT might provide improved separation between normal and reduced putamen SBR that could result in slightly improved power for the detection of nigrostriatal degeneration.
Collapse
Affiliation(s)
- Ivayla Apostolova
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Tassilo Schiebler
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Catharina Lange
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Franziska Lara Mathies
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Wencke Lehnert
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Susanne Klutmann
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ralph Buchert
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
4
|
Thiele F, Schau F, Rogasch JMM, Wetz C, Bluemel S, Brenner W, Amthauer H, Lange C, Schatka I. Same same but different: dopamine transporter SPECT on scanners with CZT vs. NaI detectors. EJNMMI Res 2023; 13:24. [PMID: 36949290 PMCID: PMC10033816 DOI: 10.1186/s13550-023-00973-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/12/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND The aims of this study were to establish a normal database (NDB) for semiquantification of dopamine transporter (DAT) single-photon emission computed tomography (SPECT) with [123I]FP-CIT on a cadmium zinc telluride (CZT) camera, test the preexisting NaI-derived NDB for use in CZT scans, and compare the diagnostic findings in subjects imaged with a CZT scanner with either the preexisting NaI-based NDB or our newly defined CZT NDB. METHODS The sample comprised 73 subjects with clinically uncertain parkinsonian syndrome (PS) who prospectively underwent [123I]FP-CIT SPECT on a CZT camera according to standard guidelines with identical acquisition and reconstruction protocols (DaTQUANT). Two experienced readers visually assessed the images and binarized the subjects into "non-neurodegenerative PS" and "neurodegenerative PS". Twenty-five subjects from the "non-neurodegenerative PS" subgroup were randomly selected to establish a CZT NDB. The remaining 48 subjects were defined as "test group". DaTQUANT was used to determine the specific binding ratio (SBR). For the test group, SBR values were transformed to z-scores for the putamen utilizing both the CZT NDB and the manufacturer-provided NaI-based NDB (GE NDB). A predefined fixed cut-off of -2 was used for dichotomization of z-scores to classify neurodegenerative and non-neurodegenerative PS. Performance of semiquantification using the two NDB to identify subjects with neurodegenerative PS was assessed in comparison with the visual rating. Furthermore, a randomized head-to-head comparison of both detector systems was performed semiquantitatively in a subset of 32 out of all 73 subjects. RESULTS Compared to the visual rating as reference, semiquantification based on the dedicated CZT NDB led to fewer discordant ratings than the GE NDB in CZT scans (3 vs. 8 out of 48 subjects). This can be attributed to the putaminal z-scores being consistently higher with the GE NDB on a CZT camera (median absolute difference of 1.68), suggesting an optimal cut-off of -0.5 for the GE NDB instead of -2.0. Average binding ratios and z-scores were significantly lower in CZT compared to NaI data. CONCLUSIONS Use of a dedicated, CZT-derived NDB is recommended in [123I]FP-CIT SPECT with a CZT camera since it improves agreement between semiquantification and visual assessment.
Collapse
Affiliation(s)
- Felix Thiele
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.
| | - Franziska Schau
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Julian M M Rogasch
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Wetz
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Stephanie Bluemel
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Winfried Brenner
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Holger Amthauer
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Catharina Lange
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Imke Schatka
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| |
Collapse
|
5
|
Different z-score cut-offs for striatal binding ratio (SBR) of DaT SPECT are needed to support the diagnosis of Parkinson's Disease (PD) and dementia with Lewy bodies (DLB). Eur J Nucl Med Mol Imaging 2023; 50:1090-1102. [PMID: 36471041 DOI: 10.1007/s00259-022-06069-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE A cut-off of -2 z-score for striatal or putaminal SBR has been to date arbitrarily used to define an abnormal DaT SPECT in patients with suspected neurodegenerative parkinsonism. We aimed to experimentally identify the most accurate z-score cut-offs for SBR of striatal and substriatal regions to independently discriminate PD and DLB, with respect to essential tremor (ET) and Alzheimer's disease (AD) respectively. METHODS Two-hundred twenty-five patients undergoing DaT SPECT were enrolled (seventy-five de novo PD, eighty ET, fifty DLB, and twenty AD). Semiquantification was computed by means of Datquant® software which returns measures of striatal SBR and z-scores with respect to 118 healthy volunteers belonging to the Parkinson's Progression Markers Initiative (PPMI). ROC analysis was used to identify most accurate cut-offs for z-score for striatum and substriatal regions (clinical diagnosis at follow-up as gold standard). RESULTS Posterior putamen of the most affected hemisphere (MAH) with a z-score cut-off of - 1.27 demonstrated the highest accuracy to differentiate between PD and ET (sensitivity 0.97, specificity 0.94). The whole putamen (z-score cut-off - 0.96) was the most accurate parameter to support the diagnosis of DLB (sensitivity 0.74, specificity 0.95). Putamen to caudate ratio was accurate to detect PD (especially in early stages) while not DLB patients. CONCLUSION We experimentally demonstrated that different substriatal regions and cut-offs for z-score of SBR should be considered to support the diagnosis of either PD or DLB. The identified less conservative cut-offs showed higher sensitivity without a measurable reduction in specificity with respect to the arbitrary - 2 z-score.
Collapse
|
6
|
Prange S, Theis H, Banwinkler M, van Eimeren T. Molecular Imaging in Parkinsonian Disorders—What’s New and Hot? Brain Sci 2022; 12:brainsci12091146. [PMID: 36138882 PMCID: PMC9496752 DOI: 10.3390/brainsci12091146] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Highlights Abstract Neurodegenerative parkinsonian disorders are characterized by a great diversity of clinical symptoms and underlying neuropathology, yet differential diagnosis during lifetime remains probabilistic. Molecular imaging is a powerful method to detect pathological changes in vivo on a cellular and molecular level with high specificity. Thereby, molecular imaging enables to investigate functional changes and pathological hallmarks in neurodegenerative disorders, thus allowing to better differentiate between different forms of degenerative parkinsonism, improve the accuracy of the clinical diagnosis and disentangle the pathophysiology of disease-related symptoms. The past decade led to significant progress in the field of molecular imaging, including the development of multiple new and promising radioactive tracers for single photon emission computed tomography (SPECT) and positron emission tomography (PET) as well as novel analytical methods. Here, we review the most recent advances in molecular imaging for the diagnosis, prognosis, and mechanistic understanding of parkinsonian disorders. First, advances in imaging of neurotransmission abnormalities, metabolism, synaptic density, inflammation, and pathological protein aggregation are reviewed, highlighting our renewed understanding regarding the multiplicity of neurodegenerative processes involved in parkinsonian disorders. Consequently, we review the role of molecular imaging in the context of disease-modifying interventions to follow neurodegeneration, ensure stratification, and target engagement in clinical trials.
Collapse
Affiliation(s)
- Stéphane Prange
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Université de Lyon, 69675 Bron, France
- Correspondence: (S.P.); (T.v.E.); Tel.: +49-221-47882843 (T.v.E.)
| | - Hendrik Theis
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Department of Neurology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Magdalena Banwinkler
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Department of Neurology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Correspondence: (S.P.); (T.v.E.); Tel.: +49-221-47882843 (T.v.E.)
| |
Collapse
|
7
|
Schmitz-Steinkrüger H, Lange C, Apostolova I, Mathies FL, Frings L, Klutmann S, Hellwig S, Meyer PT, Buchert R. Impact of age and sex correction on the diagnostic performance of dopamine transporter SPECT. Eur J Nucl Med Mol Imaging 2020; 48:1445-1459. [PMID: 33130960 PMCID: PMC8113204 DOI: 10.1007/s00259-020-05085-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022]
Abstract
Purpose The specific binding ratio (SBR) of 123I-FP-CIT (FP-CIT) in the putamen decreases with age by about 5% per decade and most likely is about 10% higher in females. However, the clinical utility of age and sex correction of the SBR is still a matter of debate. This study tested the impact of age and sex correction on the diagnostic performance of the putamen SBR in three independent patient samples. Methods Research sample: 207 healthy controls (HC) and 438 Parkinson’s disease (PD) patients. Clinical sample A: 183 patients with neurodegenerative parkinsonian syndrome (PS) and 183 patients with non-neurodegenerative PS from one site. Clinical sample B: 84 patients with neurodegenerative PS and 38 patients with non-neurodegenerative PS from another site. Correction for age and sex of the putamen SBR was based on linear regression in the HC or non-neurodegenerative PS, separately in each sample. The area under the ROC curve (AUC) was used as performance measure. Results The putamen SBR was higher in females compared to males (PPMI: 14%, p < 0.0005; clinical sample A: 7%, p < 0.0005; clinical sample B: 6%, p = 0.361). Age-related decline of the putamen SBR ranged between 3.3 and 10.4% (p ≤ 0.019). In subjects ≥ 50 years, age and sex explained < 10% of SBR between-subjects variance. Correction of the putamen SBR for age and sex resulted in slightly decreased AUC in the PPMI sample (0.9955 versus 0.9969, p = 0.025) and in clinical sample A (0.9448 versus 0.9519, p = 0.057). There was a small, non-significant AUC increase in clinical sample B (0.9828 versus 0.9743, p = 0.232). Conclusion These findings do not support age and sex correction of the putaminal FP-CIT SBR in the diagnostic workup of parkinsonian syndromes. This most likely is explained by the fact that the proportion of between-subjects variance caused by age and sex is considerably below the symptom threshold of about 50% reduction in neurodegenerative PS. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-020-05085-2.
Collapse
Affiliation(s)
- Helen Schmitz-Steinkrüger
- Department for Diagnostic and Interventional Radiology and Nuclear Medicine, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Catharina Lange
- Department of Nuclear Medicine, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ivayla Apostolova
- Department for Diagnostic and Interventional Radiology and Nuclear Medicine, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Franziska L Mathies
- Department for Diagnostic and Interventional Radiology and Nuclear Medicine, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Lars Frings
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susanne Klutmann
- Department for Diagnostic and Interventional Radiology and Nuclear Medicine, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Sabine Hellwig
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ralph Buchert
- Department for Diagnostic and Interventional Radiology and Nuclear Medicine, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|