1
|
Ramdhani K, Lam MGEH, Braat AJAT, Smits MLJ, El-Haddad G. Hepatic Radioembolization: A Multistep Theragnostic Procedure. PET Clin 2024; 19:431-446. [PMID: 38816137 DOI: 10.1016/j.cpet.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
This article provides a thorough overview of the practice and multistep approach of hepatic radioembolization. The current literature on hepatic radioembolization in primary or metastatic liver tumors as well as future perspectives are discussed.
Collapse
Affiliation(s)
- K Ramdhani
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands.
| | - Marnix G E H Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Arthur J A T Braat
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Maarten L J Smits
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Ghassan El-Haddad
- Diagnostic Imaging and Interventional Radiology, H. Lee Moffitt Cancer Center, FL, USA
| |
Collapse
|
2
|
Kim TP, Enger SA. Characterizing the voxel-based approaches in radioembolization dosimetry with reDoseMC. Med Phys 2024; 51:4007-4027. [PMID: 38703394 DOI: 10.1002/mp.17054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Yttrium-90 (90 Y $^{90}{\rm {Y}}$ ) represents the primary radioisotope used in radioembolization procedures, while holmium-166 (166 Ho $^{166}{\rm {Ho}}$ ) is hypothesized to serve as a viable substitute for90 Y $^{90}{\rm {Y}}$ due to its comparable therapeutic potential and improved quantitative imaging. Voxel-based dosimetry for these radioisotopes relies on activity images obtained through PET or SPECT and dosimetry methods, including the voxel S-value (VSV) and the local deposition method (LDM). However, the evaluation of the accuracy of absorbed dose calculations has been limited by the use of non-ideal reference standards and investigations restricted to the liver. The objective of this study was to expand upon these dosimetry characterizations by investigating the impact of image resolutions, voxel sizes, target volumes, and tissue materials on the accuracy of90 Y $^{90}{\rm {Y}}$ and166 Ho $^{166}{\rm {Ho}}$ dosimetry techniques. METHODS A specialized radiopharmaceutical dosimetry software called reDoseMC was developed using the Geant4 Monte Carlo toolkit and validated by benchmarking the generated90 Y $^{90}{\rm {Y}}$ kernels with published data. The decay spectra of both90 Y $^{90}{\rm {Y}}$ and166 Ho $^{166}{\rm {Ho}}$ were also compared. Multiple VSV kernels were generated for the liver, lungs, soft tissue, and bone for isotropic voxel sizes of 1 mm, 2 mm, and 4 mm. Three theoretical phantom setups were created with 20 or 40 mm activity and mass density inserts for the same three voxel sizes. To replicate the limited spatial resolutions present in PET and SPECT images, image resolutions were modeled using a 3D Gaussian kernel with a Full Width at Half Maximum (FWHM) ranging from 0 to 16 mm and with no added noise. The VSV and LDM dosimetry methods were evaluated by characterizing their respective kernels and analyzing their absorbed dose estimates calculated on theoretical phantoms. The ground truth for these estimations was calculated using reDoseMC. RESULTS The decay spectra obtained through reDoseMC showed less than a 1% difference when compared to previously published experimental data for energies below 1.9 MeV in the case of90 Y $^{90}{\rm {Y}}$ and less than 1% for energies below 1.5 MeV for166 Ho $^{166}{\rm {Ho}}$ . Additionally, the validation kernels for90 Y $^{90}{\rm {Y}}$ VSV exhibited results similar to those found in published Monte Carlo codes, with source dose depositions having less than a 3% error margin. Resolution thresholds (FWHM thresh s ${\rm {FWHM}}_\mathrm{thresh}{\rm {s}}$ ), defined as resolutions that resulted in similar dose estimates between the LDM and VSV methods, were observed for90 Y $^{90}{\rm {Y}}$ . They were 1.5 mm for bone, 2.5 mm for soft tissue and liver, and 8.5 mm for lungs. For166 Ho $^{166}{\rm {Ho}}$ , the accuracy of absorbed dose deposition was found to be dependent on the contributions of absorbed dose from photons. Volume errors due to variations in voxel size impacted the final dose estimates. Larger target volumes yielded more accurate mean doses than smaller volumes. For both radioisotopes, the radial dose profiles for the VSV and LDM approximated but never matched the reference standard. CONCLUSIONS reDoseMC was developed and validated for radiopharmaceutical dosimetry. The accuracy of voxel-based dosimetry was found to vary widely with changes in image resolutions, voxel sizes, chosen target volumes, and tissue material; hence, the standardization of dosimetry protocols was found to be of great importance for comparable dosimetry analysis.
Collapse
Affiliation(s)
- Taehyung Peter Kim
- Medical Physics Unit, Department of Oncology, McGill University, Montreal, Québec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| | - Shirin A Enger
- Medical Physics Unit, Department of Oncology, McGill University, Montreal, Québec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| |
Collapse
|
3
|
Marquis H, Ocampo Ramos JC, Carter LM, Zanzonico P, Bolch WE, Laforest R, Kesner AL. MIRD Pamphlet No. 29: MIRDy90-A 90Y Research Microsphere Dosimetry Tool. J Nucl Med 2024; 65:jnumed.123.266743. [PMID: 38388514 PMCID: PMC11064830 DOI: 10.2967/jnumed.123.266743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
90Y-microsphere radioembolization has become a well-established treatment option for liver malignancies and is one of the first U.S. Food and Drug Administration-approved unsealed radionuclide brachytherapy devices to incorporate dosimetry-based treatment planning. Several different mathematical models are used to calculate the patient-specific prescribed activity of 90Y, namely, body surface area (SIR-Spheres only), MIRD single compartment, and MIRD dual compartment (partition). Under the auspices of the MIRDsoft initiative to develop community dosimetry software and tools, the body surface area, MIRD single-compartment, MIRD dual-compartment, and MIRD multicompartment models have been integrated into a MIRDy90 software worksheet. The worksheet was built in MS Excel to estimate and compare prescribed activities calculated via these respective models. The MIRDy90 software was validated against available tools for calculating 90Y prescribed activity. The results of MIRDy90 calculations were compared with those obtained from vendor and community-developed tools, and the calculations agreed well. The MIRDy90 worksheet was developed to provide a vetted tool to better evaluate patient-specific prescribed activities calculated via different models, as well as model influences with respect to varying input parameters. MIRDy90 allows users to interact and visualize the results of various parameter combinations. Variables, equations, and calculations are described in the MIRDy90 documentation and articulated in the MIRDy90 worksheet. The worksheet is distributed as a free tool to build expertise within the medical physics community and create a vetted standard for model and variable management.
Collapse
Affiliation(s)
- Harry Marquis
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Juan C Ocampo Ramos
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lukas M Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pat Zanzonico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Wesley E Bolch
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida; and
| | - Richard Laforest
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Adam L Kesner
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York;
| |
Collapse
|
4
|
Pham TP, Presles B, Popoff R, Alberini JL, Vrigneaud JM. Pre-treatment dosimetry in 90Y-SIRT: Is it possible to optimise SPECT reconstruction parameters and calculation methods for accurate dosimetry? Phys Med 2023; 115:103145. [PMID: 37852020 DOI: 10.1016/j.ejmp.2023.103145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 06/03/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023] Open
Abstract
PURPOSE The aim of this study was (a) to optimise the99mTc-SPECT reconstruction parameters for the pre-treatment dosimetry of90Y-selective internal radiation therapy (SIRT) and (b) to compare the accuracy of clinical dosimetry methods with full Monte-Carlo dosimetry (fMCD) performed with Gate. METHODS To optimise the reconstruction parameters, two hundred reconstructions with different parameters were performed on a NEMA phantom, varying the number of iterations, subsets, and post-filtering. The accuracy of the dosimetric methods was then investigated using an anthropomorphic phantom. Absorbed dose maps were generated using (1) the Partition Model (PM), (2) the Dose Voxel Kernel (DVK) convolution, and (3) the Local Deposition Method (LDM) with known activity restricted to the whole phantom (WP) or to the liver and lungs (LL). The dose to the lungs was calculated using the "multiple DVK" and "multiple LDM" methods. RESULTS Optimal OSEM reconstruction parameters were found to depend on object size and dosimetric criterion chosen (Dmean or DVH-derived metric). The Dmean of all three dosimetric methods was close (≤ 10%) to the Dmean of fMCD simulations when considering large segmented volumes (whole liver, normal liver). In contrast, the Dmean to the small volume (∅=31) was systemically underestimated (12%-25%). For lungs, the "multiple DVK" and "multiple LDM" methods yielded a Dmean within 20% for the WP method and within 10% for the LL method. CONCLUSIONS All three methods showed a substantial degradation of the dose-volume histograms (DVHs) compared to fMCD simulations. The DVK and LDM methods performed almost equally well, with the "multiple DVK" method being more accurate in the lungs.
Collapse
Affiliation(s)
- Tien-Phong Pham
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) - UMR CNRS 6302, University of Burgundy, Dijon, France; Department of Nuclear Medicine, Georges-François Leclerc Cancer Centre, Dijon, France.
| | - Benoit Presles
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) - UMR CNRS 6302, University of Burgundy, Dijon, France
| | - Romain Popoff
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) - UMR CNRS 6302, University of Burgundy, Dijon, France; Department of Nuclear Medicine, Georges-François Leclerc Cancer Centre, Dijon, France
| | - Jean-Louis Alberini
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) - UMR CNRS 6302, University of Burgundy, Dijon, France; Department of Nuclear Medicine, Georges-François Leclerc Cancer Centre, Dijon, France
| | - Jean-Marc Vrigneaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) - UMR CNRS 6302, University of Burgundy, Dijon, France; Department of Nuclear Medicine, Georges-François Leclerc Cancer Centre, Dijon, France.
| |
Collapse
|
5
|
Pistone D, Amato E, Auditore L, Baldari S, Italiano A. Updating 90Y Voxel S-Values including internal Bremsstrahlung: Monte Carlo study and development of an analytical model. Phys Med 2023; 112:102624. [PMID: 37354805 DOI: 10.1016/j.ejmp.2023.102624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/26/2023] Open
Abstract
PURPOSE Internal Bremsstrahlung (IB) is a process accompanying β-decay but neglected in Voxel S-Values (VSVs) calculation. Aims of this work were to calculate, through Monte Carlo (MC) simulation, updated 90Y-VSVs including IB, and to develop an analytical model to evaluate 90Y-VSVs for any voxel size of practical interest. METHODS GATE (Geant4 Application for Tomographic Emission) was employed for simulating voxelized geometries of soft tissue, with voxels sides l ranging from 2 to 6 mm, in steps of 0.5 mm. The central voxel was set as a homogeneous source of 90Y when IB photons are not modelled. For each l, the VSVs were computed for 90Y decays alone and for 90Y + IB. The analytical model was then built through fitting procedures of the VSVs including IB contribution. RESULTS Comparing GATE-VSVs with and without IB, differences between + 25% and + 30% were found for distances from the central voxel larger than the maximum β-range. The analytical model showed an agreement with MC simulations within ± 5% in the central voxel and in the Bremsstrahlung tails, for any l value examined, and relative differences lower than ± 40%, for other distances from the source. CONCLUSIONS The presented 90Y-VSVs include for the first time the contribution due to IB, thus providing a more accurate set of dosimetric factors for three-dimensional internal dosimetry of 90Y-labelled radiopharmaceuticals and medical devices. Furthermore, the analytical model constitutes an easy and fast alternative approach for 90Y-VSVs estimation for non-standard voxel dimensions.
Collapse
Affiliation(s)
- Daniele Pistone
- Department of Biomedical and Dental Sciences and of Morphologic and Functional Imaging (BIOMORF), University of Messina, Messina, Italy; INFN, National Institute for Nuclear Physics, Section of Catania, Catania, Italy
| | - Ernesto Amato
- Department of Biomedical and Dental Sciences and of Morphologic and Functional Imaging (BIOMORF), University of Messina, Messina, Italy; INFN, National Institute for Nuclear Physics, Section of Catania, Catania, Italy; Health Physics Unit, University Hospital "Gaetano Martino", Messina, Italy.
| | - Lucrezia Auditore
- Department of Biomedical and Dental Sciences and of Morphologic and Functional Imaging (BIOMORF), University of Messina, Messina, Italy; INFN, National Institute for Nuclear Physics, Section of Catania, Catania, Italy
| | - Sergio Baldari
- Department of Biomedical and Dental Sciences and of Morphologic and Functional Imaging (BIOMORF), University of Messina, Messina, Italy; Nuclear Medicine Unit, University Hospital "Gaetano Martino", Messina, Italy
| | - Antonio Italiano
- INFN, National Institute for Nuclear Physics, Section of Catania, Catania, Italy; Department of Mathematical and Computational Sciences, Physics Sciences and Earth Sciences (MIFT), University of Messina, Messina, Italy
| |
Collapse
|
6
|
Riveira-Martin M, Akhavanallaf A, Mansouri Z, Bianchetto Wolf N, Salimi Y, Ricoeur A, Mainta I, Garibotto V, López Medina A, Zaidi H. Predictive value of 99mTc-MAA-based dosimetry in personalized 90Y-SIRT planning for liver malignancies. EJNMMI Res 2023; 13:63. [PMID: 37395912 DOI: 10.1186/s13550-023-01011-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023] Open
Abstract
BACKGROUND Selective internal radiation therapy with 90Y radioembolization aims to selectively irradiate liver tumours by administering radioactive microspheres under the theragnostic assumption that the pre-therapy injection of 99mTc labelled macroaggregated albumin (99mTc-MAA) provides an estimation of the 90Y microspheres biodistribution, which is not always the case. Due to the growing interest in theragnostic dosimetry for personalized radionuclide therapy, a robust relationship between the delivered and pre-treatment radiation absorbed doses is required. In this work, we aim to investigate the predictive value of absorbed dose metrics calculated from 99mTc-MAA (simulation) compared to those obtained from 90Y post-therapy SPECT/CT. RESULTS A total of 79 patients were analysed. Pre- and post-therapy 3D-voxel dosimetry was calculated on 99mTc-MAA and 90Y SPECT/CT, respectively, based on Local Deposition Method. Mean absorbed dose, tumour-to-normal ratio, and absorbed dose distribution in terms of dose-volume histogram (DVH) metrics were obtained and compared for each volume of interest (VOI). Mann-Whitney U-test and Pearson's correlation coefficient were used to assess the correlation between both methods. The effect of the tumoral liver volume on the absorbed dose metrics was also investigated. Strong correlation was found between simulation and therapy mean absorbed doses for all VOIs, although simulation tended to overestimate tumour absorbed doses by 26%. DVH metrics showed good correlation too, but significant differences were found for several metrics, mostly on non-tumoral liver. It was observed that the tumoral liver volume does not significantly affect the differences between simulation and therapy absorbed dose metrics. CONCLUSION This study supports the strong correlation between absorbed dose metrics from simulation and therapy dosimetry based on 90Y SPECT/CT, highlighting the predictive ability of 99mTc-MAA, not only in terms of mean absorbed dose but also of the dose distribution.
Collapse
Affiliation(s)
- Mercedes Riveira-Martin
- Genetic Oncology, Radiobiology and Radiointeraction Research Group, Galicia Sur Health Research Institute, Vigo, Spain
- Department of Radiology, Rehabilitation and Physiotherapy, Medicine School, Complutense University of Madrid, Madrid, Spain
| | - Azadeh Akhavanallaf
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospital, 1211, Geneva, Switzerland
| | - Zahra Mansouri
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospital, 1211, Geneva, Switzerland
| | - Nicola Bianchetto Wolf
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospital, 1211, Geneva, Switzerland
| | - Yazdan Salimi
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospital, 1211, Geneva, Switzerland
| | - Alexis Ricoeur
- Service of Radiology, Geneva University Hospital, 1211, Geneva, Switzerland
| | - Ismini Mainta
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospital, 1211, Geneva, Switzerland
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospital, 1211, Geneva, Switzerland
- Centre for Biomedical Imaging (CIBM), Geneva, Switzerland
- Geneva Neuroscience Centre, Geneva University, Geneva, Switzerland
| | - Antonio López Medina
- Department of Medical Physics and RP, Hospital do Meixoeiro (GALARIA), Vigo, Spain.
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospital, 1211, Geneva, Switzerland.
- Geneva Neuroscience Centre, Geneva University, Geneva, Switzerland.
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands.
- Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
7
|
Chen G, Lu Z, Jiang H, Lin KH, Mok GSP. Voxel-S-Value based 3D treatment planning methods for Y-90 microspheres radioembolization based on Tc-99m-macroaggregated albumin SPECT/CT. Sci Rep 2023; 13:4020. [PMID: 36899031 PMCID: PMC10006243 DOI: 10.1038/s41598-023-30824-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Partition model (PM) for Y-90 microsphere radioembolization is limited in providing 3D dosimetrics. Voxel-S-Values (VSV) method has good agreement with Monte Carlo (MC) simulations for 3D absorbed dose conversion. We propose a new VSV method and compare its performance along with PM, MC and other VSV methods for Y-90 RE treatment planning based on Tc-99m MAA SPECT/CT. Twenty Tc-99m-MAA SPECT/CT patient data are retrospectively analyzed. Seven VSV methods are implemented: (1) local energy deposition; (2) liver kernel; (3) liver kernel and lung kernel; (4) liver kernel with density correction (LiKD); (5) liver kernel with center voxel scaling (LiCK); (6) liver kernel and lung kernel with density correction (LiLuKD); (7) proposed liver kernel with center voxel scaling and lung kernel with density correction (LiCKLuKD). Mean absorbed dose and maximum injected activity (MIA) obtained by PM and VSV are evaluated against MC results, and 3D dosimetrics generated by VSV are compared with MC. LiKD, LiCK, LiLuKD and LiCKLuKD have the smallest deviation in normal liver and tumors. LiLuKD and LiCKLuKD have the best performance in lungs. MIAs are similar by all methods. LiCKLuKD could provide MIA consistent with PM, and precise 3D dosimetrics for Y-90 RE treatment planning.
Collapse
Affiliation(s)
- Gefei Chen
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Zhonglin Lu
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Han Jiang
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Ko-Han Lin
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Greta S P Mok
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China. .,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, SAR, China.
| |
Collapse
|
8
|
Chen G, Lu Z, Chen Y, Mok GSP. Voxel-S-value methods adapted to heterogeneous media for quantitative Y-90 microsphere radioembolization dosimetry. Z Med Phys 2023; 33:35-45. [PMID: 36535831 PMCID: PMC10068576 DOI: 10.1016/j.zemedi.2022.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE The absorbed dose estimation from Voxel-S-Value (VSV) method in heterogeneous media is suboptimal as VSVs are calculated in homogeneous media. The aim of this study is to develop and evaluate new VSV methods in order to enhance the accuracy of Y-90 microspheres absorbed dose estimation in liver, lungs, tumors and lung-liver interface regions. METHODS Ten patients with Y-90 microspheres SPECT/CT and PET/CT data, six of whom had additional Tc-99m-macroaggregated albumin SPECT/CT data, were analyzed from the Deep Blue Data Repository. Seven existing VSV methods along with three newly proposed VSV methods were evaluated: liver and lung kernel with center voxel scaling (LiLuCK), liver kernel with density correction and lung kernel with center voxel scaling (LiKDLuCK), liver kernel with center voxel scaling and lung kernel with density correction (LiCKLuKD). Monte Carlo (MC) results were regarded as the gold standard. Absolute absorbed dose errors (%AADE) of these methods for the liver, lungs, tumors, upper liver, and lower lungs were assessed. RESULTS Liver and tumor's median %AADE of all methods were <3% for three types of imaging data. In the lungs, however, three recently proposed VSV methods provided median %AADEs of less than 7%, whereas the differences exceeded 20% for existing methods that did not use a lung kernel. LiCKLuKD could achieve median %AADE <2% in the liver, upper liver and tumors, and median %AADE <7% in the lungs and lower lungs in three types of data. CONCLUSION All methods are consistent with MC in the liver and tumors. Methods with tissue-specific kernel and effective correction achieve smaller errors in lungs. LiCKLuKD has comparable results with MC in absorbed dose estimation of Y-90 radioembolization for all target regions.
Collapse
Affiliation(s)
- Gefei Chen
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China
| | - Zhonglin Lu
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China; Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Taipa, Macau SAR, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province. No. 25, Taiping St., Luzhou, Sichuan, China.
| | - Greta S P Mok
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China; Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Taipa, Macau SAR, China; Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China.
| |
Collapse
|
9
|
Taswell CS, Studenski M, Pennix T, Stover B, Georgiou M, Venkat S, Jones P, Zikria J, Thornton L, Yechieli R, Mohan P, Portelance L, Spieler B. For Hepatocellular Carcinoma Treated with Yttrium-90 Microspheres, Dose Volumetrics on Post-Treatment Bremsstrahlung SPECT/CT Predict Clinical Outcomes. Cancers (Basel) 2023; 15:cancers15030645. [PMID: 36765603 PMCID: PMC9913422 DOI: 10.3390/cancers15030645] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
In transarterial radioembolization (TARE) of hepatocellular carcinoma (HCC) with Yttrium-90 (Y-90) microspheres, recent studies correlate dosimetry from bremsstrahlung single photon emission tomography (SPECT/CT) with treatment outcomes; however, these studies focus on measures of central tendency rather than volumetric coverage metrics commonly used in radiation oncology. We hypothesized that three-dimensional (3D) isodose coverage of gross tumor volume (GTV) is the driving factor in HCC treatment response to TARE and is best assessed using advanced dosimetry techniques applied to nuclear imaging of actual Y-90 biodistribution. We reviewed 51 lobar TARE Y-90 treatments of 43 HCC patients. Dose prescriptions were 120 Gy for TheraSpheres and 85 Gy for SIR-Spheres. All patients underwent post-TARE Y-90 bremsstrahlung SPECT/CT imaging. Commercial software was used to contour gross tumor volume (GTV) and liver on post-TARE SPECT/CT. Y-90 dose distributions were calculated using the Local Deposition Model based on post-TARE SPECT/CT activity maps. Median gross tumor volume (GTV) dose; GTV receiving less than 100 Gy, 70 Gy and 50 Gy; minimum dose covering the hottest 70%, 95%, and 98% of the GTV (D70, D95, D98); mean dose to nontumorous liver, and disease burden (GTV/liver volume) were obtained. Clinical outcomes were collected for all patients by chart and imaging review. HCC treatment response was assessed according to the modified response criteria in solid tumors (mRECIST) guidelines. Kaplan-Meier (KM) survival estimates and multivariate regression analyses (MVA) were performed using STATA. Median survival was 22.5 months for patients achieving objective response (OR) in targeted lesions (complete response (CR) or partial response (PR) per mRECIST) vs. 7.6 months for non-responders (NR, stable disease or disease progression per mRECIST). On MVA, the volume of underdosed tumor (GTV receiving less than 100 Gy) was the only significant dosimetric predictor for CR (p = 0.0004) and overall survival (OS, p = 0.003). All targets with less than CR (n = 39) had more than 20 cc of underdosed tumor. D70 (p = 0.038) correlated with OR, with mean D70 of 95 Gy for responders and 60 Gy for non-responders (p = 0.042). On MVA, mean dose to nontumorous liver trended toward significant association with grade 3+ toxicity (p = 0.09) and correlated with delivered activity (p < 0.001) and burden of disease (p = 0.05). Dosimetric models supplied area under the curve estimates of > 0.80 predicting CR, OR, and ≥grade 3 acute toxicity. Dosimetric parameters derived from the retrospective analysis of post-TARE Y-90 bremsstrahlung SPECT/CT after lobar treatment of HCC suggest that volumetric coverage of GTV, not a high mean or median dose, is the driving factor in treatment response and that this is best assessed through the analysis of actual Y-90 biodistribution.
Collapse
Affiliation(s)
- Crystal Seldon Taswell
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami, 1475 NW 12th Ave, Miami, FL 33136, USA
| | - Matthew Studenski
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami, 1475 NW 12th Ave, Miami, FL 33136, USA
| | - Thomas Pennix
- Miller School of Medicine, University of Miami, 1600 NW 10th Ave, Miami, FL 33136, USA
| | - Bryan Stover
- Department of Radiology, Sylvester Comprehensive Cancer Center, University of Miami, 1475 NW 12th Ave, Miami, FL 33136, USA
| | - Mike Georgiou
- Department of Radiology, Sylvester Comprehensive Cancer Center, University of Miami, 1475 NW 12th Ave, Miami, FL 33136, USA
| | - Shree Venkat
- Department of Radiology, Sylvester Comprehensive Cancer Center, University of Miami, 1475 NW 12th Ave, Miami, FL 33136, USA
| | - Patricia Jones
- Department of Medicine, Division of Digestive Health and Liver Diseases, Sylvester Comprehensive Cancer Center, University of Miami, 1475 NW 12th Ave, Miami, FL 33136, USA
| | - Joseph Zikria
- Department of Radiology, Sylvester Comprehensive Cancer Center, University of Miami, 1475 NW 12th Ave, Miami, FL 33136, USA
| | - Lindsay Thornton
- Department of Radiology, Sylvester Comprehensive Cancer Center, University of Miami, 1475 NW 12th Ave, Miami, FL 33136, USA
| | - Raphael Yechieli
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami, 1475 NW 12th Ave, Miami, FL 33136, USA
| | - Prasoon Mohan
- Department of Radiology, Sylvester Comprehensive Cancer Center, University of Miami, 1475 NW 12th Ave, Miami, FL 33136, USA
| | - Lorraine Portelance
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami, 1475 NW 12th Ave, Miami, FL 33136, USA
| | - Benjamin Spieler
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami, 1475 NW 12th Ave, Miami, FL 33136, USA
- Correspondence:
| |
Collapse
|
10
|
Pistone D, Italiano A, Auditore L, Mandaglio G, Campenní A, Baldari S, Amato E. Relevance of artefacts in 99mTc-MAA SPECT scans on pre-therapy patient-specific 90Y TARE internal dosimetry: a GATE Monte Carlo study. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac6b0f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/27/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. The direct Monte Carlo (MC) simulation of radiation transport exploiting morphological and functional tomographic imaging as input data is considered the gold standard for internal dosimetry in nuclear medicine, and it is increasingly used in studies regarding trans-arterial radio-embolization (TARE). However, artefacts affecting the functional scans, such as reconstruction artefacts and motion blurring, decrease the accuracy in defining the radionuclide distribution in the simulations and consequently lead to errors in absorbed dose estimations. In this study, the relevance of such artefacts in patient-specific three-dimensional MC dosimetry was investigated in three cases of 90Y TARE. Approach. The pre-therapy 99mTc MacroAggregate Albumin (Tc-MAA) SPECTs and CTs of patients were used as input for simulations performed with the GEANT4-based toolkit GATE. Several pre-simulation SPECT-masking techniques were implemented, with the aim of zeroing the decay probability in air, in lungs, or in the whole volume outside the liver. Main results. Increments in absorbed dose up to about +40% with respect to the native-SPECT simulations were found in liver-related volumes of interest (VOIs), depending on the masking procedure adopted. Regarding lungs-related VOIs, decrements in absorbed doses in right lung as high as −90% were retrieved. Significance. These results highlight the relevant influence of SPECT artefacts, if not properly treated, on dosimetric outcomes for 90Y TARE cases. Well-designed SPECT-masking techniques appear to be a promising way to correct for such misestimations.
Collapse
|
11
|
Waddell JJ, Townsend PH, Collins ZS, Walter C. Liver-Directed Therapy for Metastatic Colon Cancer: Update. CURRENT COLORECTAL CANCER REPORTS 2022. [DOI: 10.1007/s11888-022-00474-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Plachouris D, Tzolas I, Gatos I, Papadimitroulas P, Spyridonidis T, Apostolopoulos D, Papathanasiou N, Visvikis D, Plachouri KM, Hazle JD, Kagadis GC. A deep-learning-based prediction model for the biodistribution of 90 Y microspheres in liver radioembolization. Med Phys 2021; 48:7427-7438. [PMID: 34628667 DOI: 10.1002/mp.15270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Radioembolization with 90 Y microspheres is a treatment approach for liver cancer. Currently, employed dosimetric calculations exhibit low accuracy, lacking consideration of individual patient, and tissue characteristics. PURPOSE The purpose of the present study was to employ deep learning (DL) algorithms to differentiate patterns of pretreatment distribution of 99m Tc-macroaggregated albumin on SPECT/CT and post-treatment distribution of 90 Y microspheres on PET/CT and to accurately predict how the 90 Y-microspheres will be distributed in the liver tissue by radioembolization therapy. METHODS Data for 19 patients with liver cancer (10 with hepatocellular carcinoma, 5 with intrahepatic cholangiocarcinoma, 4 with liver metastases) who underwent radioembolization with 90 Y microspheres were used for the DL training. We developed a 3D voxel-based variation of the Pix2Pix model, which is a special type of conditional GANs designed to perform image-to-image translation. SPECT and CT scans along with the clinical target volume for each patient were used as inputs, as were their corresponding post-treatment PET scans. The real and predicted absorbed PET doses for the tumor and the whole liver area were compared. Our model was evaluated using the leave-one-out method, and the dose calculations were measured using a tissue-specific dose voxel kernel. RESULTS The comparison of the real and predicted PET/CT scans showed an average absorbed dose difference of 5.42% ± 19.31% and 0.44% ± 1.64% for the tumor and the liver area, respectively. The average absorbed dose differences were 7.98 ± 31.39 Gy and 0.03 ± 0.25 Gy for the tumor and the non-tumor liver parenchyma, respectively. Our model had a general tendency to underpredict the dosimetric results; the largest differences were noticed in one case, where the model underestimated the dose to the tumor area by 56.75% or 72.82 Gy. CONCLUSIONS The proposed deep-learning-based pretreatment planning method for liver radioembolization accurately predicted 90 Y microsphere biodistribution. Its combination with a rapid and accurate 3D dosimetry method will render it clinically suitable and could improve patient-specific pretreatment planning.
Collapse
Affiliation(s)
- Dimitris Plachouris
- Department of Medical Physics, School of Medicine, University of Patras, Rion, Greece
| | - Ioannis Tzolas
- School of Electrical and Computer Engineering, University of Patras, Rion, Greece
| | - Ilias Gatos
- Department of Medical Physics, School of Medicine, University of Patras, Rion, Greece
| | - Panagiotis Papadimitroulas
- Department of Medical Physics, School of Medicine, University of Patras, Rion, Greece.,R&D Department, Bioemission Technology Solutions, Athens, Greece
| | - Trifon Spyridonidis
- Department of Nuclear Medicine, School of Medicine, University of Patras, Rion, Greece
| | | | | | | | | | - John D Hazle
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - George C Kagadis
- Department of Medical Physics, School of Medicine, University of Patras, Rion, Greece.,Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
13
|
Labour J, Boissard P, Baudier T, Khayi F, Kryza D, Durebex PV, Martino SPD, Mognetti T, Sarrut D, Badel JN. Yttrium-90 quantitative phantom study using digital photon counting PET. EJNMMI Phys 2021; 8:56. [PMID: 34318383 PMCID: PMC8316557 DOI: 10.1186/s40658-021-00402-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND PET imaging of 90Y-microsphere distribution following radioembolisation is challenging due to the count-starved statistics from the low branching ratio of e+/e- pair production during 90Y decay. PET systems using silicon photo-multipliers have shown better 90Y image quality compared to conventional photo-multiplier tubes. The main goal of the present study was to evaluate reconstruction parameters for different phantom configurations and varying listmode acquisition lengths to improve quantitative accuracy in 90Y dosimetry, using digital photon counting PET/CT. METHODS Quantitative PET and dosimetry accuracy were evaluated using two uniform cylindrical phantoms specific for PET calibration validation. A third body phantom with a 9:1 hot sphere-to-background ratio was scanned at different activity concentrations of 90Y. Reconstructions were performed using OSEM algorithm with varying parameters. Time-of-flight and point-spread function modellings were included in all reconstructions. Absorbed dose calculations were carried out using voxel S-values convolution and were compared to reference Monte Carlo simulations. Dose-volume histograms and root-mean-square deviations were used to evaluate reconstruction parameter sets. Using listmode data, phantom and patient datasets were rebinned into various lengths of time to assess the influence of count statistics on the calculation of absorbed dose. Comparisons between the local energy deposition method and the absorbed dose calculations were performed. RESULTS Using a 2-mm full width at half maximum post-reconstruction Gaussian filter, the dosimetric accuracy was found to be similar to that found with no filter applied but also reduced noise. Larger filter sizes should not be used. An acquisition length of more than 10 min/bed reduces image noise but has no significant impact in the quantification of phantom or patient data for the digital photon counting PET. 3 iterations with 10 subsets were found suitable for large spheres whereas 1 iteration with 30 subsets could improve dosimetry for smaller spheres. CONCLUSION The best choice of the combination of iterations and subsets depends on the size of the spheres. However, one should be careful on this choice, depending on the imaging conditions and setup. This study can be useful in this choice for future studies for more accurate 90Y post-dosimetry using a digital photon counting PET/CT.
Collapse
Affiliation(s)
- Joey Labour
- CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon; Université Lyon 1, Lyon, France
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
| | | | - Thomas Baudier
- CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon; Université Lyon 1, Lyon, France
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
| | - Fouzi Khayi
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
| | - David Kryza
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
- Hospices Civils de Lyon; Université de Lyon; Université Claude Bernard Lyon 1; LAGEPP UMR 5007 CNRS, Lyon, France
| | | | | | | | - David Sarrut
- CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon; Université Lyon 1, Lyon, France
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
| | - Jean-Noël Badel
- CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon; Université Lyon 1, Lyon, France
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
| |
Collapse
|
14
|
Rodríguez-Fraile M, Ezponda A, Grisanti F, Morán V, Calvo M, Berián P, de la Cuesta AM, Sancho L, Iñarrairaegui M, Sangro B, Bilbao JI. The joint use of 99mTc-MAA-SPECT/CT and cone-beam CT optimizes radioembolization planning. EJNMMI Res 2021; 11:23. [PMID: 33661428 PMCID: PMC7933314 DOI: 10.1186/s13550-021-00764-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose To determine which imaging method used during radioembolization (RE) work-up: contrast-enhanced computed tomography (CECT), 99mTc-MAA-SPECT/CT or cone beam-CT (CBCT), more accurately predicts the final target volume (TgV) as well as the influence that each modality has in the dosimetric calculation. Methods TgVs from 99mTc-MAA-SPECT/CT, CECT and CBCT were consecutively obtained in 24 patients treated with RE and compared with 90Y PET/CT TgV. Using the TgVs estimated by each imaging modality and a fictitious activity of 1 GBq, the corresponding absorbed doses by tumor and non-tumoral parenchyma were calculated for each patient. The absorbed doses for each modality were compared with the ones obtained using 90Y PET/CT TgV. Results 99mTc-MAA-SPECT/CT predicted 90Y PET/CT TgV better than CBCT or CECT, even for selective or superselective administrations. Likewise, 99mTc-MAA-SPECT/CT showed dosimetric values more similar to those obtained with 90Y PET/CT. Nevertheless, CBCT provided essential information for RE planning, such as ensuring the total coverage of the tumor and, in cases with more than one feeding artery, splitting the activity according to the volume of tumor perfused by each artery. Conclusion The joint use of 99mTc-MAA-SPECT/CT and CBCT optimizes dosimetric planning for RE procedures, enabling a more accurate personalized approach.
Collapse
Affiliation(s)
| | - Ana Ezponda
- Radiology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Fabiana Grisanti
- Nuclear Medicine Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Verónica Morán
- Medical Physics Department, Clínica Universidad de Navarra, Madrid, Spain
| | - Marta Calvo
- Radiology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Pablo Berián
- Radiology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Lidia Sancho
- Nuclear Medicine Department, Clínica Universidad de Navarra, Madrid, Spain
| | - Mercedes Iñarrairaegui
- Department of Internal Medicine-Hepatology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Bruno Sangro
- Department of Internal Medicine-Hepatology, Clínica Universidad de Navarra, Pamplona, Spain
| | | |
Collapse
|