1
|
Liu Q, Deng L, Weng L, Li J, Li X, Kang W, Duan Y, Xiao G. Enhances the resistance of rice to lepidopteran pests by fusing the Cry1Ca and Cry2Aa genes with self-cleavage peptide sequence. PEST MANAGEMENT SCIENCE 2024. [PMID: 39470162 DOI: 10.1002/ps.8502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/01/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Accumulation of two or more Bacillus thuringiensis (Bt) proteins in plant not only improves the resistance to pests and broadens the resistance spectrum of crops, but also delays the development of pest resistance. RESULTS The self-cleavage peptide sequence was used to link two codon-optimized genes, so as to achieve simultaneous accumulation of two low homologous insecticidal proteins in one plant. The rice transformants accumulating Cry1Ca and Cry2Aa proteins were fed to local lepidopteran pests and the larva mortality in 5 days were 100%. The sum of Cry1Ca and Cry2Aa proteins in leaves of transformants E1C&2A-1 and E2A&1C-18 were 10.60 and 9.55 μg g-1 fresh weight (FW), respectively, and the larva mortality of fall armyworm fed on their leaves for 5 days reached 100%. For the control transformants that expressed one Bt protein, the content of Cry1Ca in leaves of transformant E1CM031 was 14.94 μg g-1 FW, and that of Cry2Aa in leaves of transformant B2A4008S was 11.90 μg g-1 FW, but the larva mortality of fall armyworm fed on leaves of E1CM031 and B2A4008S for 5 days were 77.78% and 52.78%, respectively. Although the total Bt contents in transformants expressing one Bt protein were higher than that of transformants expressing two Bt proteins, the lethality of transformants expressing one Bt protein were obviously lower than that of transformants expressing two Bt proteins. CONCLUSION The lethal effect of accumulating both Cry1Ca and Cry2Aa proteins in rice was stronger than that of amassing Cry1Ca or Cry2Aa protein only, which meant there was synergistic effect between Cry1Ca and Cry2Aa proteins. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qing Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lihua Deng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Lvshui Weng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jinjiang Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xinyan Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Weiwei Kang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yaping Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Guoying Xiao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
2
|
Li H, Deng L, Weng L, Li J, Hu W, Yu J, Xiao Y, Xiao G. Cell wall-localized Bt protein endows rice high resistance to Lepidoptera pests. PEST MANAGEMENT SCIENCE 2024; 80:1728-1739. [PMID: 38009289 DOI: 10.1002/ps.7901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND The commercialized Bt (Bacillus thuringiensis) crops accumulate Bt protein within cells, but the intracellular interactions of foreign protein with endogenous protein inevitably result in large or small unintended effects. In this study, the Bt gene Cry1Ca was linked with the sequences of extracellular secretion signal peptide and carbohydrate binding module 11 to constitute a fusion gene SP-Cry1Ca-CBM11, and the fusion gene driven by constitutive promoters was used for secreting and anchoring onto the cell wall to minimize unintended effects. RESULTS The transient expression in tobacco leaves demonstrated that the fusion protein was anchored on cell walls. The Cry1Ca contents of five homozygous rice transformants of single-copy insertion were different and descended in the order leaf > root > stem. The maximum content of Cry1Ca was 17.55 μg g-1 in leaves of transformant 21H037. The bioassay results revealed that the transformants exhibited high resistance to lepidopteran pests. The corrected mortality of pink stem borer (Sesamia inferens) and striped stem borer (Chilo suppressalis) ranged from 96.33% to 100%, and from 83.32% to 100%, respectively, and the corrected mortality of rice leaf roller (Cnaphalocrocis medinalis) was 92.53%. Besides, the agronomic traits of the five transformants were normal and similar to that of the recipient, and the transformants were highly resistant to glyphosate at the germination and seedling stages. CONCLUSION The fusion Bt protein was accumulated on cell walls and endowed the rice with high resistance to lepidopteran pests without unintended effects in agronomic traits. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hua Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lihua Deng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Lvshui Weng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jinjiang Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Wenbin Hu
- Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jianghui Yu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Youlun Xiao
- Hunan Academy of Agricultural Sciences, Changsha, China
| | - Guoying Xiao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
3
|
Tariq M, Tabassum B, Bakhsh A, Farooq AM, Qamar Z, Akram F, Naz F, Rao AQ, Malik K, Nasir IA. Heterologous expression of cry1Ia12 insecticidal gene in cotton encodes resistance against pink bollworm, Pectinophora gossypiella (Lepidoptera: Gelechiidae); an alternate insecticidal gene for insect pest management. Mol Biol Rep 2022; 49:10557-10564. [PMID: 36169899 DOI: 10.1007/s11033-022-07824-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/26/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Cotton is continuously exposed to sucking and chewing insect pest pressure since emergence to harvesting. Pink bollworm (Pectinophora gossypiella) has become major chewing insect pest to reduce the cotton yield and results in bad lint quality even in transgenic crops. The efficiency of insecticidal genes has been compromised due to extensive utilization of transgenic crops. METHODS AND RESULTS The present study was conducted to evaluate the efficacy of an alternate cry1Ia12 insecticidal gene against pink bollworm (PBW) in cotton. Agrobacterium tumefaciens strain LBA4404 harboring pCAMBIA2300 expression vector containing cry1Ia12 gene under the control of 35S CaMV was used to transform a local cotton cultivar GS-01. The various molecular analyses revealed the transgene integration and expression in primary transformants. Among five selected transgenic plants, tcL-08 showed maximum (16.06-fold) mRNA expression of cry1Ia12 gene whereas tcL-03 showed minimum (2.33-fold) expression. Feeding bioassays of 2nd and 3rd instar pink bollworm (PBW) larvae on immature cotton bolls, flowers and cotton squares revealed up to 33.33% mortality on tcL-08 while lowest mortality (13.33%) was observed in tcL-03 and tcL-15. Furthermore, the average weight and size of survived larvae fed on transgenic plants was significantly lesser than the average weight of larvae survived on non-transgenic plants. CONCLUSIONS The present study suggests the cry1Ia12 gene as an alternate insecticidal gene for the resistance management of cotton bollworms, especially PBW.
Collapse
Affiliation(s)
- Muhammad Tariq
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 53700, Lahore, Pakistan.
| | - Bushra Tabassum
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 53700, Lahore, Pakistan
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Allah Bakhsh
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 53700, Lahore, Pakistan
| | - Abdul Munim Farooq
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 53700, Lahore, Pakistan
| | - Zahida Qamar
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 53700, Lahore, Pakistan
| | - Faheem Akram
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 53700, Lahore, Pakistan
| | - Farah Naz
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 53700, Lahore, Pakistan
| | - Abdul Qayyum Rao
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 53700, Lahore, Pakistan
| | - Kausar Malik
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 53700, Lahore, Pakistan
| | - Idrees Ahmad Nasir
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 53700, Lahore, Pakistan.
| |
Collapse
|
4
|
Ganguly S, Purohit A, Ghosh S, Chaudhuri RK, Das S, Chakraborti D. Clean gene technology to develop selectable marker-free pod borer-resistant transgenic pigeon pea events involving the constitutive expression of Cry1Ac. Appl Microbiol Biotechnol 2022; 106:3051-3067. [PMID: 35441877 DOI: 10.1007/s00253-022-11922-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 11/29/2022]
Abstract
The most crucial yield constraint of pigeon pea is susceptibility to the pod borer Helicoverpa armigera, which causes extensive damage and severe economic losses every year. The Agrobacterium-mediated plumular meristem transformation technique was applied for the development of cry1Ac transgenic pigeon pea. Bioactivity of the cry1Ac gene was compared based on integration and expression driven by two promoters, the constitutive CaMV35S promoter and the green-tissue-specific ats1A promoter, in those transgenic events. The transgenic events also contained the selectable marker gene nptII flanked by loxP sites. Independent transgenic events expressing the Cre recombinase gene along with a linked bar selection marker were also developed. Integration and expression patterns of both cry1Ac and cre were confirmed through Southern and western blot analysis of T1 events. The constitutive expression of the Cry1Ac protein was found to be more effective for conferring resistant activity against H. armigera larvae in comparison to green-tissue-specific expression. Constitutively expressing Cry1Ac T1 events were crossed with Cre recombinase expressing T1 events. The crossing-based Cre/lox-mediated marker gene elimination strategy was demonstrated to generate nptII-free Cry1Ac-expressing T2 events. These events were subsequently analyzed in the T3 generation for the segregation of cre and bar genes. Five Cry1Ac-expressing T3 transgenic pigeon pea events were devoid of the nptII marker as well as cre-bar genes. H. armigera larval mortality in those marker-free T3 events was found to be 80-100%. The development of such nptII selectable marker-free Cry1Ac-expressing pigeon pea transgenics for the first time would greatly support the sustainable biotechnological breeding program for pod borer resistance in pigeon pea. KEY POINTS: • Constitutive expression of Cry1Ac conferred complete resistance against Helicoverpa armigera • Green-tissue-specific expression of Cry1Ac conferred partial pest resistance • Cre/lox-mediated nptII elimination was successful in constitutively expressing Cry1Ac transgenic pigeon pea events.
Collapse
Affiliation(s)
- Shreeparna Ganguly
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata - 700016, West Bengal, India.,Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata - 700019, West Bengal, India
| | - Arnab Purohit
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata - 700019, West Bengal, India
| | - Sanatan Ghosh
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata - 700019, West Bengal, India
| | - Rituparna Kundu Chaudhuri
- Department of Botany, Barasat Govt. College, 10, K.N.C. Road, Barasat, Kolkata - 700124, West Bengal, India
| | - Sampa Das
- Division of Plant Biology, Bose Institute, C.I.T. Scheme VII M, P1/12, Kankurgachi, Kolkata- 700054, West Bengal, India
| | - Dipankar Chakraborti
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata - 700019, West Bengal, India.
| |
Collapse
|
5
|
Singh VK, Phanindra MLV, Nain V, Gothandapani S, Dhandapani G, Rao KRSS, Kumar A, Kumar PA. Targeting delta-endotoxin (Cry1Ac) of Bacillus thuringiensis to subcellular compartments increases the protein expression, stability, and biological activity. Int J Biol Macromol 2022; 205:185-192. [PMID: 35182560 DOI: 10.1016/j.ijbiomac.2022.02.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/26/2022]
Abstract
Evolving insect resistance to delta-endotoxins can be delayed by using a few strategies like high dosage, refugia, and gene stacking which require the expression of delta-endotoxins at sufficiently high levels to kill the resistant insects. In this study, we comparatively analyzed the efficacy of targeting truncated cry1Ac protein to the cytoplasm, endoplasmic reticulum (ER), and chloroplast to obtain high protein expression. mRNA and protein profiling of cry1Ac showed that both ER and chloroplast are efficient targets for expressing high levels of truncated cry1Ac. A maximum of 0.8, 1.6, and 2.0% cry1Ac of total soluble protein were obtained when the truncated cry1Ac was expressed in the cytoplasm, routed through ER, and targeted to the chloroplast. We further showed that not only the protein content but also the biological activity of truncated cry1Ac increases by sub-cellular targeting and the biological activity is slightly greater in the ER routed transgenic lines by conducting different bioassays on Helicoverpa armigera. Using native Western analysis, we demonstrated that the truncated cry1Ac protein could exist as oligomers in plant cells and this oligomerization capability is low in the cytoplasm. In conclusion, routing of delta endotoxins through ER is the first choice to obtain high protein expression and bioactivity.
Collapse
Affiliation(s)
- Vivek Kumar Singh
- ICAR-National Institute for Plant Biotechnology (Formerly, National Research Centre on Plant Biotechnology), New Delhi, India; Department of Biotechnology, National Institute of Technology, Raipur, India
| | | | - Vikrant Nain
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Sellamuthu Gothandapani
- ICAR-National Institute for Plant Biotechnology (Formerly, National Research Centre on Plant Biotechnology), New Delhi, India
| | - Gurusamy Dhandapani
- ICAR-National Institute for Plant Biotechnology (Formerly, National Research Centre on Plant Biotechnology), New Delhi, India
| | | | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, India.
| | - Polumetla Ananda Kumar
- ICAR-National Institute for Plant Biotechnology (Formerly, National Research Centre on Plant Biotechnology), New Delhi, India.
| |
Collapse
|
6
|
Iqbal A, Ali MA, Ahmed S, Hassan S, Shahid N, Azam S, Rao AQ, Ali Q, Shahid AA. Engineered resistance and risk assessment associated with insecticidal and weeds resistant transgenic cotton using wister rat model. Sci Rep 2022; 12:2518. [PMID: 35169256 PMCID: PMC8847412 DOI: 10.1038/s41598-022-06568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/24/2022] [Indexed: 11/22/2022] Open
Abstract
Stacking multiple genes into cotton crop to cop up multiple biotic stresses such as insects and weeds is a promising tool to save crop from losses. Transgenic cotton variety, VH-289, with double Bt and cp4EPSPS genes under the control of 35S promoter was used for the expression analyses and biosafety studies. The transgenic cotton plants were screened through PCR amplification of fragments, 1.7 kb for Cry1Ac, 582 bp for Cry2A and 250 bp for cp4EPSPS; which confirmed the presence of all genes transformed in transgenic cotton. The Cry1Ac + Cry2A and cp4EPSPS proteins were quantified through ELISA in transgenic cotton plants. The Glyphosate assay performed by spraying 1900 mL per acre of glyphosate Roundup further confirmed complete survival of transgenic cotton plants as compared to the non-transgenic cotton plants and all weeds. Similarly, insect infestation data determined that almost 99% insect mortality was observed in controlled field grown transgenic cotton plants as compared to the non-transgenic control plants. Evaluation of effect of temperature and soil nutrients availability on transgene expression in cotton plants was done at two different cotton growing regions, Multan and Lahore, Pakistan and results suggested that despite of higher temperature in Multan field, an increased level of Cry and cp4EPSPS proteins was recorded due to higher soil organic matter availability compared to Lahore field. Before commercialization of any transgenic variety its biosafety study is mandatory so, a 90 days biosafety study of the transgenic cotton plants with 40% transgenic cottonseeds in standard diet showed no harmful effect on wister rat model when studied for liver function, renal function and serum electrolyte.
Collapse
Affiliation(s)
- Adnan Iqbal
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan.
- Institute of Molecular Biology and Biotechnology (IMBB), Centre for Research in Molecular Medicine (CRIMM), University of Lahore, Lahore, Pakistan.
| | - Muhammad Azam Ali
- Department of Molecular Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Shafique Ahmed
- Allied Health Sciences, The Superior College, Lahore, Pakistan
| | - Samina Hassan
- Kinnaird College for Women University, Lahore, Pakistan
| | - Naila Shahid
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Saira Azam
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Abdul Qayyum Rao
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Qurban Ali
- Institute of Molecular Biology and Biotechnology (IMBB), Centre for Research in Molecular Medicine (CRIMM), University of Lahore, Lahore, Pakistan.
| | - Ahmad Ali Shahid
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| |
Collapse
|
7
|
Enhancing the resilience of transgenic cotton for insect resistance. Mol Biol Rep 2021; 49:5315-5323. [PMID: 34839448 DOI: 10.1007/s11033-021-06972-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The efficacy of Bt crystal proteins has been compromised due to their extensive utilization in the field. The second-generation Bt vegetative insecticidal proteins could be the best-suited alternative to combat resistance build-up due to their broad range affinity with midgut receptors of insects. MATERIAL AND RESULTS The codon-optimized synthetic vegetative insecticidal proteins (Vip3Aa) gene under the control of CaMV35S promoter was transformed into a locally developed transgenic cotton variety (CKC-01) expressing cry1Ac and cry2A genes. Transformation efficiency of 1.63% was recorded. The highest Vip3Aa expression (51.98-fold) was found in MS3 transgenic cotton plant. Maximum Vip3Aa protein concentration (4.23 µg/mL) was calculated in transgenic cotton plant MS3 through ELISA. The transgenic cotton plant (MS3) showed one copy number on both chromatids in the homozygous form at chromosome 8 at the telophase stage. Almost 99% mortality of H. armigera was recorded in transgenic cotton plants expressing double crystal proteins pyramided with Vip3Aa gene as contrasted to transgenic cotton plant expressing only double crystal protein with 70% mortality. CONCLUSIONS The results obtained during this study suggest that the combination of Bt cry1Ac, cry2A, and Vip3Aa toxins is the best possible alternative approach to combat chewing insects.
Collapse
|
8
|
Rascón-Cruz Q, González-Barriga CD, Iglesias-Figueroa BF, Trejo-Muñoz JC, Siqueiros-Cendón T, Sinagawa-García SR, Arévalo-Gallegos S, Espinoza-Sánchez EA. Plastid transformation: Advances and challenges for its implementation in agricultural crops. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
9
|
Wang C, Li W, Kessenich CR, Petrick JS, Rydel TJ, Sturman EJ, Lee TC, Glenn KC, Edrington TC. Safety of the Bacillus thuringiensis-derived Cry1A.105 protein: Evidence that domain exchange preserves mode of action and safety. Regul Toxicol Pharmacol 2018; 99:50-60. [DOI: 10.1016/j.yrtph.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 12/31/2022]
|
10
|
|
11
|
Qamar Z, Riaz S, Nasir IA, Ali Q, Husnain T. Transformation and evaluation of different transgenic lines for Glyphosate tolerance and cane borer resistance genes in sugarcane (Saccharum officinarum L.). CYTOL GENET+ 2017. [DOI: 10.3103/s0095452717050085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Ahmad A, Zia-Ur-Rehman M, Hameed U, Qayyum Rao A, Ahad A, Yasmeen A, Akram F, Bajwa KS, Scheffler J, Nasir IA, Shahid AA, Iqbal MJ, Husnain T, Haider MS, Brown JK. Engineered Disease Resistance in Cotton Using RNA-Interference to Knock down Cotton leaf curl Kokhran virus-Burewala and Cotton leaf curl Multan betasatellite Expression. Viruses 2017; 9:E257. [PMID: 28906473 PMCID: PMC5618023 DOI: 10.3390/v9090257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/08/2017] [Accepted: 08/30/2017] [Indexed: 01/09/2023] Open
Abstract
Cotton leaf curl virus disease (CLCuD) is caused by a suite of whitefly-transmitted begomovirus species and strains, resulting in extensive losses annually in India and Pakistan. RNA-interference (RNAi) is a proven technology used for knockdown of gene expression in higher organisms and viruses. In this study, a small interfering RNA (siRNA) construct was designed to target the AC1 gene of Cotton leaf curl Kokhran virus-Burewala (CLCuKoV-Bu) and the βC1 gene and satellite conserved region of the Cotton leaf curl Multan betasatellite (CLCuMB). The AC1 gene and CLCuMB coding and non-coding regions function in replication initiation and suppression of the plant host defense pathway, respectively. The construct, Vβ, was transformed into cotton plants using the Agrobacterium-mediated embryo shoot apex cut method. Results from fluorescence in situ hybridization and karyotyping assays indicated that six of the 11 T₁ plants harbored a single copy of the Vβ transgene. Transgenic cotton plants and non-transgenic (susceptible) test plants included as the positive control were challenge-inoculated using the viruliferous whitefly vector to transmit the CLCuKoV-Bu/CLCuMB complex. Among the test plants, plant Vβ-6 was asymptomatic, had the lowest amount of detectable virus, and harbored a single copy of the transgene on chromosome six. Absence of characteristic leaf curl symptom development in transgenic Vβ-6 cotton plants, and significantly reduced begomoviral-betasatellite accumulation based on real-time polymerase chain reaction, indicated the successful knockdown of CLCuKoV-Bu and CLCuMB expression, resulting in leaf curl resistant plants.
Collapse
Affiliation(s)
- Aftab Ahmad
- Center of Excellence in Molecular Biology, University of the Punjab, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore 53700, Pakistan.
| | - Muhammad Zia-Ur-Rehman
- Institute of Agricultural Sciences (IAGS), University of the Punjab, Lahore 54590, Pakistan.
| | - Usman Hameed
- Institute of Agricultural Sciences (IAGS), University of the Punjab, Lahore 54590, Pakistan.
| | - Abdul Qayyum Rao
- Center of Excellence in Molecular Biology, University of the Punjab, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore 53700, Pakistan.
| | - Ammara Ahad
- Center of Excellence in Molecular Biology, University of the Punjab, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore 53700, Pakistan.
| | - Aneela Yasmeen
- Center of Excellence in Molecular Biology, University of the Punjab, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore 53700, Pakistan.
| | - Faheem Akram
- Center of Excellence in Molecular Biology, University of the Punjab, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore 53700, Pakistan.
| | - Kamran Shahzad Bajwa
- Center of Excellence in Molecular Biology, University of the Punjab, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore 53700, Pakistan.
| | - Jodi Scheffler
- Jamie Whitten Delta States Research Center, United States Department of Agriculture (USDA), Stoneville, MS 38776, USA.
| | - Idrees Ahmad Nasir
- Center of Excellence in Molecular Biology, University of the Punjab, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore 53700, Pakistan.
| | - Ahmad Ali Shahid
- Center of Excellence in Molecular Biology, University of the Punjab, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore 53700, Pakistan.
| | - Muhammad Javed Iqbal
- Institute of Agricultural Sciences (IAGS), University of the Punjab, Lahore 54590, Pakistan.
| | - Tayyab Husnain
- Center of Excellence in Molecular Biology, University of the Punjab, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore 53700, Pakistan.
| | - Muhammad Saleem Haider
- Institute of Agricultural Sciences (IAGS), University of the Punjab, Lahore 54590, Pakistan.
| | - Judith K Brown
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
13
|
Naqvi RZ, Asif M, Saeed M, Asad S, Khatoon A, Amin I, Mukhtar Z, Bashir A, Mansoor S. Development of a Triple Gene Cry1Ac- Cry2Ab- EPSPS Construct and Its Expression in Nicotiana benthamiana for Insect Resistance and Herbicide Tolerance in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:55. [PMID: 28174591 PMCID: PMC5259679 DOI: 10.3389/fpls.2017.00055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/10/2017] [Indexed: 06/06/2023]
Abstract
Insect pest complex, cotton leaf curl disease and weeds pose major threat to crop production worldwide, including Pakistan. To address these problems, in the present study a triple gene construct harboring Cry1Ac, Cry2Ab, and EPSPS cassettes has been developed for plant specifically in cotton transformation against lepidopteron insect-pests and weeds. Nicotiana benthamiana (tobacco) was used as a model system for characterization of this triple gene construct. The construct has been assembled in plant expression vector and transformed in N. benthamiana. In six transgenic tobacco lines the integration of Cry1Ac-Cry2Ab-EPSPS in tobacco genome was checked by PCR, while successful protein expression of all the three genes was confirmed through immunostrip assay. Efficacy of Cry1Ac and Cry2Ab was evaluated through insect bioassay using armyworm (Spodoptera littoralis). These transgenic tobacco plants showed significant insect mortality as compared to control plants during insect bioassay. Three out of six tested transgenic lines L3, L5, and L9 exhibited 100% mortality of armyworm, while three other lines L1, L10, and L7 showed 86, 80, and 40% mortality, respectively. This construct can readily be used with confidence to transform cotton and other crops for the development of insect resistant and herbicide tolerant transgenic plants. The transgenic crop plants developed using this triple gene construct will provide an excellent germplasm resource for the breeders to improve their efficiency in developing stable homozygous lines as all the three genes being in a single T-DNA border will inherit together.
Collapse
Affiliation(s)
- Rubab Z. Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic EngineeringFaisalabad, Pakistan
- Pakistan Institute of Engineering and Applied SciencesNilore, Pakistan
| | - Muhammad Asif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic EngineeringFaisalabad, Pakistan
| | - Muhammad Saeed
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic EngineeringFaisalabad, Pakistan
| | - Shaheen Asad
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic EngineeringFaisalabad, Pakistan
| | - Asia Khatoon
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic EngineeringFaisalabad, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic EngineeringFaisalabad, Pakistan
| | - Zahid Mukhtar
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic EngineeringFaisalabad, Pakistan
| | - Aftab Bashir
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic EngineeringFaisalabad, Pakistan
- Department of Biological Sciences, Forman Christian CollegeLahore, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic EngineeringFaisalabad, Pakistan
| |
Collapse
|
14
|
Evaluation of two cotton varieties CRSP1 and CRSP2 for genetic transformation efficiency, expression of transgenes Cry1Ac + Cry2A, GT gene and insect mortality. ACTA ACUST UNITED AC 2016; 9:66-73. [PMID: 28352594 PMCID: PMC5360982 DOI: 10.1016/j.btre.2016.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 01/04/2016] [Accepted: 01/11/2016] [Indexed: 11/20/2022]
Abstract
Expression of the transgene with a desirable character in crop plant is the ultimate goal of transgenic research. Transformation of two Bt genes namely Cry1Ac and Cry2A cloned as separate cassette under 35S promoter in pKHG4 plant expression vector was done by using shoot apex cut method of Agrobacterium. Molecular confirmation of putative transgenic cotton plants for Cry1Ac, Cry2A and GT gene was done through PCR and ELISA. Transformation efficiency of CRSP-1 and CRSP-2 was calculated to be 1.2 and 0.8% for Cry1Ac while 0.9 and 0.6% for Cry2A and 1.5 and 0.7% for GTG respectively. CRSP-1 was found to adopt natural environment (acclimatized) earlier than CRSP-2 when exposed to sunlight for one month. Expression of Cry1Ac, Cry2A and GTG was found to be 1.2, 1 and 1.3 ng/μl respectively for CRSP-1 as compared to CRSP-2 where expression was recorded to be 0.9, 0.5 and 0.9 ng/μl respectively. FISH analysis of the transgenic CRSP-1 and CRSP-2 demonstrated the presence of one and two copy numbers respectively. Similarly, the response of CRSP-1 against Glyphosate @1900 ml/acre was far better with almost negligible necrotic spot and efficient growth after spray as compared to CRSP-2 where some plants were found to have necrosis and negative control where the complete decay of plant was observed after seven days of spray assay. Similarly, almost 100% mortality of 2nd instar larvae of Heliothis armigera was recorded after three days in CRSP-1 as compared CRSP-2 where insect mortality was found to be less than 90%. Quantitatively speaking non transgenic plants were found with 23-90% leaf damage by insect, while CRSP-1 was with less than 5% and CRSP-2 with 17%. Taken together CRSP1 was found to have better insect control and weedicide resistance along with its natural ability of genetic modification and can be employed by the valuable farmers for better insect control and simultaneously for better production.
Collapse
|