1
|
ElSheikh A, Driggers CM, Truong HH, Yang Z, Allen J, Henriksen N, Walczewska-Szewc K, Shyng SL. AI-Based Discovery and CryoEM Structural Elucidation of a K ATP Channel Pharmacochaperone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.05.611490. [PMID: 39282384 PMCID: PMC11398524 DOI: 10.1101/2024.09.05.611490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Pancreatic KATP channel trafficking defects underlie congenital hyperinsulinism (CHI) cases unresponsive to the KATP channel opener diazoxide, the mainstay medical therapy for CHI. Current clinically used KATP channel inhibitors have been shown to act as pharmacochaperones and restore surface expression of trafficking mutants; however, their therapeutic utility for KATP trafficking impaired CHI is hindered by high-affinity binding, which limits functional recovery of rescued channels. Recent structural studies of KATP channels employing cryo-electron microscopy (cryoEM) have revealed a promiscuous pocket where several known KATP pharmacochaperones bind. The structural knowledge provides a framework for discovering KATP channel pharmacochaperones with desired reversible inhibitory effects to permit functional recovery of rescued channels. Using an AI-based virtual screening technology AtomNet® followed by functional validation, we identified a novel compound, termed Aekatperone, which exhibits chaperoning effects on KATP channel trafficking mutations. Aekatperone reversibly inhibits KATP channel activity with a half-maximal inhibitory concentration (IC50) ~ 9 μM. Mutant channels rescued to the cell surface by Aekatperone showed functional recovery upon washout of the compound. CryoEM structure of KATP bound to Aekatperone revealed distinct binding features compared to known high affinity inhibitor pharmacochaperones. Our findings unveil a KATP pharmacochaperone enabling functional recovery of rescued channels as a promising therapeutic for CHI caused by KATP trafficking defects.
Collapse
Affiliation(s)
- Assmaa ElSheikh
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Medical Biochemistry, College of Medicine, Tanta University, Tanta, Egypt
| | - Camden M. Driggers
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ha H. Truong
- Atomwise Inc., 250 Sutter St., Suite 650, San Francisco, CA, USA
| | - Zhongying Yang
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - John Allen
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Niel Henriksen
- Atomwise Inc., 250 Sutter St., Suite 650, San Francisco, CA, USA
| | - Katarzyna Walczewska-Szewc
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, 87-100 Toruń, Poland
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
2
|
Abstract
PURPOSE There is a recognition that nerve dysfunction can contribute to chronic ocular pain in some individuals. However, limited data are available on how to treat individuals with a presumed neuropathic component to their ocular pain. As such, the purpose of this study was to examine the efficacy of our treatment approaches to this entity. METHODS A retrospective review of treatments and outcomes in individuals with chronic ocular pain that failed traditional therapies. RESULTS We started eight patients on an oral gabapentinoid (gabapentin and/or pregabalin) as part of their pain regimen (mean age 46 years, 50% women). Two individuals reported complete ocular pain relief with a gabapentinoid, in conjunction with their topical and oral medication regimen. Three individuals noted significant improvements, one slight improvement, and two others no improvement in ocular pain with gabapentin or pregabalin. We performed periocular nerve blocks (4 mL of 0.5% bupivacaine mixed with 1 mL of 80 mg/mL methylprednisolone acetate) targeting the periocular nerves (supraorbital, supratrochlear, infratrochlear, and infraorbital) in 11 individuals (mean age 54 years, 36% women), 10 of whom had previously used a gabapentinoid without ocular pain improvement. Seven individuals experienced pain relief after nerve blocks that lasted from hours to months and four failed to benefit. Five of the individuals who experienced pain relief underwent repeat nerve blocks, weeks to months later. CONCLUSIONS Approaches used to treat chronic pain outside the eye can be applied to ocular pain that is not responsive to traditional therapies.
Collapse
|
3
|
Gajda JM, Asiedu M, Morrison G, Dunning JA, Ghoreishi-Haack N, Barth AL. NYX-2925, A NOVEL, NON-OPIOID, SMALL-MOLECULE MODULATOR OF THE N-METHYL-d-ASPARTATE RECEPTOR (NMDAR), DEMONSTRATES POTENTIAL TO TREAT CHRONIC, SUPRASPINAL CENTRALIZED PAIN CONDITIONS. MEDICINE IN DRUG DISCOVERY 2021. [DOI: 10.1016/j.medidd.2020.100067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
4
|
Belinskaia DA, Belinskaia MA, Barygin OI, Vanchakova NP, Shestakova NN. Psychotropic Drugs for the Management of Chronic Pain and Itch. Pharmaceuticals (Basel) 2019; 12:ph12020099. [PMID: 31238561 PMCID: PMC6631469 DOI: 10.3390/ph12020099] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/11/2022] Open
Abstract
Clinical observations have shown that patients with chronic neuropathic pain or itch exhibit symptoms of increased anxiety, depression and cognitive impairment. Such patients need corrective therapy with antidepressants, antipsychotics or anticonvulsants. It is known that some psychotropic drugs are also effective for the treatment of neuropathic pain and pruritus syndromes due to interaction with the secondary molecular targets. Our own clinical studies have identified antipruritic and/or analgesic efficacy of the following compounds: tianeptine (atypical tricyclic antidepressant), citalopram (selective serotonin reuptake inhibitor), mianserin (tetracyclic antidepressant), carbamazepine (anticonvulsant), trazodone (serotonin antagonist and reuptake inhibitor), and chlorprothixene (antipsychotic). Venlafaxine (serotonin-norepinephrine reuptake inhibitor) is known to have an analgesic effect too. The mechanism of such effect of these drugs is not fully understood. Herein we review and correlate the literature data on analgesic/antipruritic activity with pharmacological profile of these compounds.
Collapse
Affiliation(s)
- Daria A Belinskaia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia.
| | - Mariia A Belinskaia
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Oleg I Barygin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia.
| | - Nina P Vanchakova
- Department of Pedagogy and Psychology, Faculty of Postgraduate Education, First Pavlov State Medical University, L'va Tolstogo str. 6-8, St. Petersburg 197022, Russia.
| | - Natalia N Shestakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia.
| |
Collapse
|
5
|
Kazi JA, Zatilfarihiah R. Gabapentin completely neutralized the acute morphine activation in the rat hypothalamus: a c-Fos study. FUTURE NEUROLOGY 2019. [DOI: 10.2217/fnl-2018-0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: The molecular mechanism of gabapentin (GBP)–morphine combinational function and its neuro-anatomical sites of action to prevent, to neutralize morphine side effects and also the enhancement its analgesic effect of morphine is unknown. Methods: Morphine (10 mg/kg), saline, co-injection: GBP (150 mg/kg) with morphine (10 mg/kg) were injected by intraperitoneal injection in rats under deep anaesthesia. C-Fos immunohistochemistry technique was used to locate c-Fos expression in rat hypothalamus. Results: Gabapentin in combination with morphine significantly (p < 0.01) attenuated the acute morphine induced c-Fos immunoreactive neuron in hypothalamus. Conclusion: GBP neutralized the morphine sensitization in rat hypothalamus. GBP might neuromodulate and or antagonize the receptor regulatory machinery of morphine sensitization circuit which might work for drug discovery of morphine abuse.
Collapse
Affiliation(s)
- Jamil Ahsan Kazi
- Universiti Teknologi MARA (UiTM), Faculty of Dentistry, Centre of Studies for Preclinical Science, Jalan Hospital, 47000 SUNGAI BULOH, Selangor, Malaysia
| | - Rasdi Zatilfarihiah
- Universiti Teknologi MARA (UiTM), Faculty of Dentistry, Centre of Studies for Preclinical Science, Jalan Hospital, 47000 SUNGAI BULOH, Selangor, Malaysia
| |
Collapse
|
6
|
Dai H, Tilley DM, Mercedes G, Doherty C, Gulati A, Mehta N, Khalil A, Holzhaus K, Reynolds FM. Opiate-Free Pain Therapy Using Carbamazepine-Loaded Microparticles Provides Up to 2 Weeks of Pain Relief in a Neuropathic Pain Model. Pain Pract 2018; 18:1024-1035. [PMID: 29723917 DOI: 10.1111/papr.12705] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/19/2018] [Accepted: 04/22/2018] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Opioids remain a mainstay in the treatment of acute and chronic pain, despite numerous and potentially dangerous side effects. There is a great unmet medical need for alternative treatments for patients suffering from pain that do not result in addiction or adverse side effects. Anticonvulsants have been shown to be effective in managing pain, though high systemic levels and subsequent side effects limit their widespread usage. Our goal was to determine if the incorporation of an anticonvulsant, carbamazepine, into a biodegradable microparticle for local sustained perineural release would be an efficacious analgesic following a peripheral injury. METHODS Following induction of the chronic constriction injury model in Sprague-Dawley rats, mechanical allodynia testing was performed using von Frey filaments and thermal allodynia was evaluated using the Hargreaves method. Histology and blood work were performed to evaluate toxicity as well as to monitor drug and metabolite presence over time. RESULTS A 2-fold increase in hindpaw withdrawal thresholds in animals receiving carbamazepine-loaded microparticles relative to controls was observed for up to 14 days after treatment. Drug and metabolite had a peak blood concentration of 54.7 ng/mL and dropped off exponentially to < 5 ng/mL over a few days. CONCLUSION This formulation reduced systemic exposure to carbamazepine over 1,000-fold relative to traditional analgesic dosing regimens. This 2-component drug delivery system has been specifically engineered to release a controlled amount of carbamazepine over a 14-day period, providing significant pain relief with no toxicological or observable adverse events via behavioral or histochemical analysis.
Collapse
Affiliation(s)
- Haining Dai
- PixarBio Corporation, Salem, New Hampshire, U.S.A
| | | | | | | | - Amitabh Gulati
- Department of Anesthesiology and Critical Care, Memorial Sloan Kettering Cancer Center, New York City, New York, U.S.A
| | - Neel Mehta
- Department of Anesthesiology, Weill Cornell Medical College, New York City, New York, U.S.A
| | - Amer Khalil
- PixarBio Corporation, Salem, New Hampshire, U.S.A.,Department of Neurosurgery, University of California Irvine, Irvine, California, U.S.A
| | | | - Francis M Reynolds
- PixarBio Corporation, Salem, New Hampshire, U.S.A.,Frank Reynolds Corporation, Salem, New Hampshire, U.S.A
| |
Collapse
|
7
|
Abstract
BACKGROUND Complex regional pain syndrome is characterized by spontaneous or induced pain disproportionate in relation to the initial event and is accompanied by a variety of regional and motor disturbances, leading to a variety of clinical presentations. It is often associated with surgery and minor trauma. PATHOPHYSIOLOGY Three mechanisms are postulated: changes secondary to post traumatic inflammation, peripheral vasomotor dysfunction and structural and functional changes of the central nervous system as a result of maladaptation. DIAGNOSIS made based on the criteria of Budapest. The patient must have one symptom and sign of each criterion at diagnosis: Continuing pain, disproportionate to any inciting event. A sensory, vasomotor, oedema and motor/trophic change sign and symptoms that are not explained by another diagnosis or cause. TREATMENT Multimodal treatment is suggested. There is no gold standard. In early stage NSAIDs or steroids can be used. Drugs used for neuropathic pain treatment have been suggested, but there is not enough evidence for any of these. There is low evidence that bisphosphonates, calcitonin, ketamine and mirror therapy are effective compared to placebo. Interventional treatment should be stepped from epidural block, neurostimulation, intrathecal pump to experimental therapies in case of intractable pain. DISCUSSION Although complex regional pain syndrome has been a recognized entity for over 100 years, no clear evidence exists for first-line treatments; however, new technologies that are applicable in complex regional pain syndrome treatment have been developed.
Collapse
|