1
|
Zhang W, Wan P, Zhang M, Chang Y, Du S, Jin T, Wang Y. Association Between CYP2D7 and TCF20 Polymorphisms and Coronary Heart Disease. Cardiovasc Toxicol 2024; 24:1037-1046. [PMID: 39060884 DOI: 10.1007/s12012-024-09907-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
One of the causes of coronary heart disease (CHD) is genetic factors. In this study, we explored the relationship between CYP2D7 and TCF20 gene polymorphisms and the risk of CHD in the Han Chinese population. Three single nucleotide polymorphisms (CYP2D7 rs1800754, CYP2D7 rs2743461, and TCF20 rs760648) were selected and genotyped from 490 cases and 480 controls. The odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the association between CYP2D7 and TCF20 polymorphisms and the risk of CHD. The association between clinical indicators and polymorphisms was analyzed using one-way ANOVA and Tukey's HSD. The SNP-SNP interactions were obtained by performing multifactor dimensionality reduction (MDR). CYP2D7 rs1800754 and rs2743461 were closely associated with increased risk of CHD (alleles: p = 0.014, p = 0.031). Stratified analysis showed that CYP2D7 rs1800754 and rs2743461 were associated with an increased risk of CHD in men, age > 60 years, BMI ≥ 24, and smoking. Rs1800754 is also associated with an increased risk of CHD associated with alcohol consumption. In addition, TCF20 rs760648 was associated with a reduced risk of CHD in patients aged ≤ 60 years and with CALs. A significant association was found between CYP2D7 rs1800754 and rs2743461 genotypes and levels of UREA, Cr, and LDL-C; TCF20 rs760648 genotypes and levels of RBC. The MDR analysis showed that the three-locus interaction model was the best in the multi-locus model. In conclusion, CYP2D7 rs1800754 and rs2743461 polymorphisms were associated with CHD risk.
Collapse
Affiliation(s)
- Wenjie Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, #229 North Taibai Road, Xi'an, 710069, Shaanxi, China
- College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Panpan Wan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, #229 North Taibai Road, Xi'an, 710069, Shaanxi, China
- College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Man Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, #229 North Taibai Road, Xi'an, 710069, Shaanxi, China
- College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yanting Chang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, #229 North Taibai Road, Xi'an, 710069, Shaanxi, China
- College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Shuli Du
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, #229 North Taibai Road, Xi'an, 710069, Shaanxi, China
- College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, #229 North Taibai Road, Xi'an, 710069, Shaanxi, China.
- College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China.
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, 710069, Shaanxi, China.
- School of Medicine, Xizang Minzu University, Xianyang, China.
| | - Yuan Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, #229 North Taibai Road, Xi'an, 710069, Shaanxi, China.
- College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China.
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
2
|
Vijayan A, Chithra V, Sandhya C. Modifiable risk factors, oxidative stress markers, and SOD2 rs4880 SNP in coronary artery disease: an association study. Mol Biol Rep 2024; 51:805. [PMID: 39001948 DOI: 10.1007/s11033-024-09727-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/13/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Coronary artery disease (CAD) has been linked to single nucleotide polymorphism (SNP) in superoxide dismutase 2 (SOD 2) gene. Additionally, several modifiable risk factors are also known to influence the CAD risk. AIM To investigate the association between selected modifiable risk factors and oxidative stress markers with the SOD2 rs4880 SNP in CAD patients. METHODS A cohort of 150 angiographically confirmed CAD patients, and 100 control subjects in the same geographic area were enrolled. SOD levels and lipid peroxidation were assessed in the blood samples using standard protocols. The genotyping of the SOD2 gene was conducted through the PCR-sequencing method. RESULTS This study indicated that CAD patients with the rs4880 SNP having heterozygous AG and mutated homozygous GG genotypes have increased oxidative stress, decreased SOD activity, and a positive association with CAD risk (OR 2.85) in comparison with control individuals. The investigation among CAD patients was then carried out based on modifiable risk factors. The risk factors selected were clinical characteristics, physical habits, nutritional status, and body mass index. In all the cases, MDA levels showed a positive association, and SOD activity showed a negative association with the selected polymorphism. CONCLUSIONS The study suggests that the selected modifiable risk factors have an important role in the higher oxidative stress found in patients, which may lead to SOD2 polymorphism. It also suggests that the SOD2 locus can be identified as a marker gene for CAD susceptibility.
Collapse
Affiliation(s)
- Anoop Vijayan
- Department of Biosciences, Mar Thoma College, Thiruvalla, Pathanamthitta, Kerala, 689103, India
| | - V Chithra
- Department of Biochemistry, N.S.S College, Pandalam, Pathanamthitta, Kerala, 689501, India
| | - C Sandhya
- Department of Biochemistry, Kuriakose Elias College, Mannanam, Kottayam, Kerala, 686561, India.
- Research Guide, Research Department of Microbiology, Sree Sankara College, Kalady, Ernakulum, Kerala, 683574, India.
| |
Collapse
|
3
|
Borgstahl G, Azadmanesh J, Slobodnik K, Struble L, Cone E, Dasgupta M, Lutz W, Kumar S, Natarajan A, Coates L, Weiss K, Myles D, Kroll T. The role of Tyr34 in proton-coupled electron transfer of human manganese superoxide dismutase. RESEARCH SQUARE 2024:rs.3.rs-4494128. [PMID: 38946943 PMCID: PMC11213228 DOI: 10.21203/rs.3.rs-4494128/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Human manganese superoxide dismutase (MnSOD) plays a crucial role in controlling levels of reactive oxygen species (ROS) by converting superoxide (O2 ●-) to molecular oxygen (O2) and hydrogen peroxide (H2O2) with proton-coupled electron transfers (PCETs). The reactivity of human MnSOD is determined by the state of a key catalytic residue, Tyr34, that becomes post-translationally inactivated by nitration in various diseases associated with mitochondrial dysfunction. We previously reported that Tyr34 has an unusual pKa due to its proximity to the Mn metal and undergoes cyclic deprotonation and protonation events to promote the electron transfers of MnSOD. To shed light on the role of Tyr34 MnSOD catalysis, we performed neutron diffraction, X-ray spectroscopy, and quantum chemistry calculations of Tyr34Phe MnSOD in various enzymatic states. The data identifies the contributions of Tyr34 in MnSOD activity that support mitochondrial function and presents a thorough characterization of how a single tyrosine modulates PCET catalysis.
Collapse
|
4
|
Azadmanesh J, Slobodnik K, Struble LR, Cone EA, Dasgupta M, Lutz WE, Kumar S, Natarajan A, Coates L, Weiss KL, Myles DAA, Kroll T, Borgstahl GEO. The role of Tyr34 in proton-coupled electron transfer of human manganese superoxide dismutase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596464. [PMID: 38853997 PMCID: PMC11160768 DOI: 10.1101/2024.05.29.596464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Human manganese superoxide dismutase (MnSOD) plays a crucial role in controlling levels of reactive oxygen species (ROS) by converting superoxide (O 2 •- ) to molecular oxygen (O 2 ) and hydrogen peroxide (H 2 O 2 ) with proton-coupled electron transfers (PCETs). The reactivity of human MnSOD is determined by the state of a key catalytic residue, Tyr34, that becomes post-translationally inactivated by nitration in various diseases associated with mitochondrial dysfunction. We previously reported that Tyr34 has an unusual pK a due to its proximity to the Mn metal and undergoes cyclic deprotonation and protonation events to promote the electron transfers of MnSOD. To shed light on the role of Tyr34 MnSOD catalysis, we performed neutron diffraction, X-ray spectroscopy, and quantum chemistry calculations of Tyr34Phe MnSOD in various enzymatic states. The data identifies the contributions of Tyr34 in MnSOD activity that support mitochondrial function and presents a thorough characterization of how a single tyrosine modulates PCET catalysis.
Collapse
|
5
|
Angelone T, Rocca C, Lionetti V, Penna C, Pagliaro P. Expanding the Frontiers of Guardian Antioxidant Selenoproteins in Cardiovascular Pathophysiology. Antioxid Redox Signal 2024; 40:369-432. [PMID: 38299513 DOI: 10.1089/ars.2023.0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Significance: Physiological levels of reactive oxygen and nitrogen species (ROS/RNS) function as fundamental messengers for many cellular and developmental processes in the cardiovascular system. ROS/RNS involved in cardiac redox-signaling originate from diverse sources, and their levels are tightly controlled by key endogenous antioxidant systems that counteract their accumulation. However, dysregulated redox-stress resulting from inefficient removal of ROS/RNS leads to inflammation, mitochondrial dysfunction, and cell death, contributing to the development and progression of cardiovascular disease (CVD). Recent Advances: Basic and clinical studies demonstrate the critical role of selenium (Se) and selenoproteins (unique proteins that incorporate Se into their active site in the form of the 21st proteinogenic amino acid selenocysteine [Sec]), including glutathione peroxidase and thioredoxin reductase, in cardiovascular redox homeostasis, representing a first-line enzymatic antioxidant defense of the heart. Increasing attention has been paid to emerging selenoproteins in the endoplasmic reticulum (ER) (i.e., a multifunctional intracellular organelle whose disruption triggers cardiac inflammation and oxidative stress, leading to multiple CVD), which are crucially involved in redox balance, antioxidant activity, and calcium and ER homeostasis. Critical Issues: This review focuses on endogenous antioxidant strategies with therapeutic potential, particularly selenoproteins, which are very promising but deserve more detailed and clinical studies. Future Directions: The importance of selective selenoproteins in embryonic development and the consequences of their mutations and inborn errors highlight the need to improve knowledge of their biological function in myocardial redox signaling. This could facilitate the development of personalized approaches for the diagnosis, prevention, and treatment of CVD. Antioxid. Redox Signal. 40, 369-432.
Collapse
Affiliation(s)
- Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Rende, Italy
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
| | - Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Rende, Italy
| | - Vincenzo Lionetti
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center "Health Science," Scuola Superiore Sant'Anna, Pisa, Italy
- UOSVD Anesthesiology and Intensive Care Medicine, Fondazione Toscana "Gabriele Monasterio," Pisa, Italy
| | - Claudia Penna
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Pasquale Pagliaro
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| |
Collapse
|
6
|
Ferreira RR, Carvalho RV, Coelho LL, Gonzaga BMDS, Bonecini-Almeida MDG, Garzoni LR, Araujo-Jorge TC. Current Understanding of Human Polymorphism in Selenoprotein Genes: A Review of Its Significance as a Risk Biomarker. Int J Mol Sci 2024; 25:1402. [PMID: 38338681 PMCID: PMC10855570 DOI: 10.3390/ijms25031402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 02/12/2024] Open
Abstract
Selenium has been proven to influence several biological functions, showing to be an essential micronutrient. The functional studies demonstrated the benefits of a balanced selenium diet and how its deficiency is associated with diverse diseases, especially cancer and viral diseases. Selenium is an antioxidant, protecting the cells from damage, enhancing the immune system response, preventing cardiovascular diseases, and decreasing inflammation. Selenium can be found in its inorganic and organic forms, and its main form in the cells is the selenocysteine incorporated into selenoproteins. Twenty-five selenoproteins are currently known in the human genome: glutathione peroxidases, iodothyronine deiodinases, thioredoxin reductases, selenophosphate synthetase, and other selenoproteins. These proteins lead to the transport of selenium in the tissues, protect against oxidative damage, contribute to the stress of the endoplasmic reticulum, and control inflammation. Due to these functions, there has been growing interest in the influence of polymorphisms in selenoproteins in the last two decades. Selenoproteins' gene polymorphisms may influence protein structure and selenium concentration in plasma and its absorption and even impact the development and progression of certain diseases. This review aims to elucidate the role of selenoproteins and understand how their gene polymorphisms can influence the balance of physiological conditions. In this polymorphism review, we focused on the PubMed database, with only articles published in English between 2003 and 2023. The keywords used were "selenoprotein" and "polymorphism". Articles that did not approach the theme subject were excluded. Selenium and selenoproteins still have a long way to go in molecular studies, and several works demonstrated the importance of their polymorphisms as a risk biomarker for some diseases, especially cardiovascular and thyroid diseases, diabetes, and cancer.
Collapse
Affiliation(s)
- Roberto Rodrigues Ferreira
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Avenida Brasil 4365, Manguinhos, Pav. Cardoso Fontes, Sala 64, Rio de Janeiro 21040-360, Brazil; (R.V.C.); (L.L.C.); (B.M.d.S.G.); (L.R.G.)
| | - Regina Vieira Carvalho
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Avenida Brasil 4365, Manguinhos, Pav. Cardoso Fontes, Sala 64, Rio de Janeiro 21040-360, Brazil; (R.V.C.); (L.L.C.); (B.M.d.S.G.); (L.R.G.)
| | - Laura Lacerda Coelho
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Avenida Brasil 4365, Manguinhos, Pav. Cardoso Fontes, Sala 64, Rio de Janeiro 21040-360, Brazil; (R.V.C.); (L.L.C.); (B.M.d.S.G.); (L.R.G.)
| | - Beatriz Matheus de Souza Gonzaga
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Avenida Brasil 4365, Manguinhos, Pav. Cardoso Fontes, Sala 64, Rio de Janeiro 21040-360, Brazil; (R.V.C.); (L.L.C.); (B.M.d.S.G.); (L.R.G.)
| | - Maria da Gloria Bonecini-Almeida
- Laboratory of Immunology and Immunogenetics, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro 21040-360, Brazil;
| | - Luciana Ribeiro Garzoni
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Avenida Brasil 4365, Manguinhos, Pav. Cardoso Fontes, Sala 64, Rio de Janeiro 21040-360, Brazil; (R.V.C.); (L.L.C.); (B.M.d.S.G.); (L.R.G.)
| | - Tania C. Araujo-Jorge
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Avenida Brasil 4365, Manguinhos, Pav. Cardoso Fontes, Sala 64, Rio de Janeiro 21040-360, Brazil; (R.V.C.); (L.L.C.); (B.M.d.S.G.); (L.R.G.)
| |
Collapse
|
7
|
Jain K, Gu SX, Hwa J. Cross talk on "endogenous SOD2 (superoxide dismutase) regulates platelet-dependent thrombin generation and thrombosis during aging" SOD2 in platelets: with age comes responsibility. JOURNAL OF THROMBOSIS AND HAEMOSTASIS : JTH 2023; 21:1077-1081. [PMID: 36716965 DOI: 10.1016/j.jtha.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/29/2023]
Affiliation(s)
- Kanika Jain
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sean X Gu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, Connecticut, USA; Department of Laboratory Medicine, Yale University School of Medicine, Yale New Haven Hospital, New Haven, Connecticut, USA
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
8
|
Gauba K, Gupta S, Shekhawat J, Dutt N, Yadav D, Nag VL, Rao M, Sharma P, Banerjee M. Gene expression, levels and polymorphism (Ala16Val) of Mitochondrial Superoxide Dismutase in Tuberculosis patients of Rajasthan. Microbes Infect 2022; 25:105075. [PMID: 36356830 DOI: 10.1016/j.micinf.2022.105075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Infectious diseases cause redox imbalance and oxidative stress (OS) in host. Superoxide Dismutases(SOD) decrease this OS. SOD2 gene polymorphism can influence the expression and levels of enzyme. AIM To investigate the association of genetic polymorphism of MnSOD with enzyme levels and mRNA expression in TB patients. METHODS A total of 87 TB patients and 85 healthy individuals participated in the study. The serum SOD2 levels were measured by ELISA. Gene polymorphism was analysed using PCR-RFLP with BsaW1 as the restriction enzyme. Expression was studied by Real-TimePCR. Statistical significance was determined using the Mann-Whitney, Chi-square and Kruskal-Wallis tests and p value < 0.05 was considered statistically significant. RESULTS The median(IQR) serum SOD2 levels of TB patients were lower than those of healthy subjects (4.64(6.48) vs 11.35(20.36)ng/mL respectively,p < 0.001). SOD2 expression was significantly down-regulated in TB patients with a fold change value of 0.312. The Val/Val genotype was higher in the patient group than healthy subjects (36.8% vs 23.5%). However, the difference observed between serum SOD2 levels and mRNA expression in the different genotypes were statistically non-significant. CONCLUSION Significant difference was found between levels and expression of SOD2 in TB patients and healthy controls, but not for SOD2 gene polymorphism.
Collapse
Affiliation(s)
- Kavya Gauba
- Department of Biochemistry, All India Institute of Medical Sciences Jodhpur, 342005, India
| | - Shruti Gupta
- Department of Biochemistry, All India Institute of Medical Sciences Jodhpur, 342005, India
| | - Jyoti Shekhawat
- Department of Biochemistry, All India Institute of Medical Sciences Jodhpur, 342005, India
| | - Naveen Dutt
- Department of Pulmonary Medicine, All India Institute of Medical Sciences Jodhpur, 342005, India
| | - Dharmveer Yadav
- Department of Biochemistry, All India Institute of Medical Sciences Jodhpur, 342005, India
| | - Vijaya Lakshmi Nag
- Department of Microbiology, All India Institute of Medical Sciences Jodhpur, 342005, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences Manipal, 576104, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences Jodhpur, 342005, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences Jodhpur, 342005, India.
| |
Collapse
|
9
|
Bouhamida E, Morciano G, Perrone M, Kahsay AE, Della Sala M, Wieckowski MR, Fiorica F, Pinton P, Giorgi C, Patergnani S. The Interplay of Hypoxia Signaling on Mitochondrial Dysfunction and Inflammation in Cardiovascular Diseases and Cancer: From Molecular Mechanisms to Therapeutic Approaches. BIOLOGY 2022; 11:biology11020300. [PMID: 35205167 PMCID: PMC8869508 DOI: 10.3390/biology11020300] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary The regulation of hypoxia has recently emerged as having a central impact in mitochondrial function and dysfunction in various diseases, including the major disorders threatening worldwide: cardiovascular diseases and cancer. Despite the studies in this matter, its effective role in protection and disease progression even though its direct molecular mechanism in both disorders is still to be elucidated. This review aims to cover the current knowledge about the effect of hypoxia on mitochondrial function and dysfunction, and inflammation, in cardiovascular diseases and cancer, and reports further therapeutic strategies based on the modulation of hypoxic pathways. Abstract Cardiovascular diseases (CVDs) and cancer continue to be the primary cause of mortality worldwide and their pathomechanisms are a complex and multifactorial process. Insufficient oxygen availability (hypoxia) plays critical roles in the pathogenesis of both CVDs and cancer diseases, and hypoxia-inducible factor 1 (HIF-1), the main sensor of hypoxia, acts as a central regulator of multiple target genes in the human body. Accumulating evidence demonstrates that mitochondria are the major target of hypoxic injury, the most common source of reactive oxygen species during hypoxia and key elements for inflammation regulation during the development of both CVDs and cancer. Taken together, observations propose that hypoxia, mitochondrial abnormality, oxidative stress, inflammation in CVDs, and cancer are closely linked. Based upon these facts, this review aims to deeply discuss these intimate relationships and to summarize current significant findings corroborating the molecular mechanisms and potential therapies involved in hypoxia and mitochondrial dysfunction in CVDs and cancer.
Collapse
Affiliation(s)
- Esmaa Bouhamida
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48022 Cotignola, Italy
| | - Giampaolo Morciano
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48022 Cotignola, Italy
| | - Mariasole Perrone
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
| | - Asrat E. Kahsay
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
| | - Mario Della Sala
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Francesco Fiorica
- Department of Radiation Oncology and Nuclear Medicine, AULSS 9 Scaligera, Ospedale Mater Salutis di Legnago, 37045 Verona, Italy;
| | - Paolo Pinton
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48022 Cotignola, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
- Correspondence: (C.G.); (S.P.)
| | - Simone Patergnani
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48022 Cotignola, Italy
- Correspondence: (C.G.); (S.P.)
| |
Collapse
|
10
|
Carducci F, Ardiccioni C, Fiorini R, Vignini A, Di Paolo A, Alia S, Barucca M, Biscotti MA. The ALA5/ALA6/ALA7 repeat polymorphisms of the glutathione peroxidase-1 (GPx1) gene and autism spectrum disorder. Autism Res 2022; 15:215-221. [PMID: 34997988 PMCID: PMC9304179 DOI: 10.1002/aur.2655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022]
Abstract
Autism is a severe neurodevelopmental disorder leading to deficits in social interaction, communication, and several activities. An increasing number of evidence suggests a role of oxidative stress in the etiology of autism spectrum disorder (ASD). Indeed, impaired antioxidant mechanisms may lead to the inadequate removal of H2O2 with a consequent increase in highly active hydroxyl radicals and other reactive oxygen species causing cellular damages. The GPx1 is one of the most important enzymes counteracting oxidative stress. In this work, we investigated a possible correlation between the GCG repeat polymorphism present in the first exon of GPx1 gene encoding a tract of five to seven alanine residues (ALA5, ALA6, and ALA7) and ASD. Our findings highlighted a high frequency of ALA5 allele in ASD subjects. Moreover, proteins corresponding to the three GPx1 variants were produced in vitro, and the evaluation of their activity showed a lower values for GPx1 having ALA5 polymorphism. The comparison of the secondary and tertiary structure predictions revealed an alpha‐helix in correspondence of alanine stretch only in the case of GPx1‐ALA7 variant. Finally, to better investigate protein structure, steady‐state fluorescence measurements of GPx1 intrinsic tryptophan were carried out and the three tested proteins exhibited a different stability under denaturing conditions. This work demonstrates the importance in adopting a multidisciplinary strategy to comprehend the role of GPx1 in ASD. Results here obtained suggest a possible role of ALA5 GPx1 variant in ASD. However, given the multifactorial nature of autism, this evidence might be a piece of a more complex puzzle being the GPx1 enzyme part of a complex pathway in which several proteins are involved.
Collapse
Affiliation(s)
- Federica Carducci
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Ancona, Italy
| | - Chiara Ardiccioni
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Ancona, Italy.,New York-Marche Structural Biology Center (NY-MaSBiC), Università Politecnica Delle Marche, Ancona, Italy
| | - Rosamaria Fiorini
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Ancona, Italy
| | - Arianna Vignini
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Università Politecnica Delle Marche, Ancona, Italy
| | - Alice Di Paolo
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Università Politecnica Delle Marche, Ancona, Italy
| | - Sonila Alia
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Università Politecnica Delle Marche, Ancona, Italy
| | - Marco Barucca
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Ancona, Italy
| | - Maria Assunta Biscotti
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Ancona, Italy
| |
Collapse
|
11
|
Associations of Antioxidant Enzymes with the Concentration of Fatty Acids in the Blood of Men with Coronary Artery Atherosclerosis. J Pers Med 2021; 11:jpm11121281. [PMID: 34945751 PMCID: PMC8704768 DOI: 10.3390/jpm11121281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Objective: To identify associations of fatty acids (FAs) with the antioxidant enzymes in the blood of men with coronary atherosclerosis and ischemic heart disease (IHD). Methods: The study included 80 patients: control group—20 men without IHD, the core group—60 men with IHD. The core group was divided into subgroups: subgroup A—with the presence of vulnerable atherosclerotic plaques, subgroup B—with the absence of vulnerable atherosclerotic plaques. We analyzed the levels of FAs, free radicals, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in the blood. Results. Patients with IHD, compared with the control group: (1) had higher levels of SOD, CAT, myristic, palmitic, palmitoleic, and octadecenoic FAs; (2) had lower levels of GPx, α-linolenic, docosapentaenoic, docosahexaenoic, and arachidonic FAs. In subgroup A there were found: (1) negative associations of SOD—with linoleic, eicosatrienoic, arachidonic, eicosapentaenoic, docosapentaenoic and docosahexaenoic FAs, positive associations—with palmitic acid; (2) positive correlations of CAT level with palmitoleic and stearic acids; (3) negative associations between of GPx and palmitic, palmitoleic, stearic and octadecenoic FAs. Conclusions: Changes in the levels of antioxidant enzymes, and a disbalance of the FAs profile, probably indicate active oxidative processes in the body and may indicate the presence of atherosclerotic changes in the vessels.
Collapse
|
12
|
Yari A, Saleh-Gohari N, Mirzaee M, Hashemi F, Saeidi K. A Study of Associations Between rs9349379 (PHACTR1), rs2891168 (CDKN2B-AS), rs11838776 (COL4A2) and rs4880 (SOD2) Polymorphic Variants and Coronary Artery Disease in Iranian Population. Biochem Genet 2021; 60:106-126. [PMID: 34109516 DOI: 10.1007/s10528-021-10089-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/28/2021] [Indexed: 11/24/2022]
Abstract
Recent genome-wide association studies reported the association of polymorphic alleles of PHACTR1 (rs9349379 (G)), CDDKN2B-AS1 (rs2891168 (G)), COL4A2 (rs11838776 (A)) and SOD2 (rs4880 (T)) with increased risk of coronary artery disease (CAD). The aim of our study was to assess the association of genetic variants with risk of CAD and its severity and in Southeast Iranian population. This study was examined in 250 CAD-suspected patients (mean age 53.49 ± 6.9 years) and 250 healthy individuals (mean age 52.96 ± 5.9 years). The Taqman SNP genotyping assay was used for genotyping of rs9349379 and rs2891168 variants. Tetra-primer Amplified refractory mutation system-PCR (Tetra-primer ARMS-PCR) was employed for rs11838776 and rs4880. Multivariate logistic regression analyses indicated that the G allele of rs9349379 and rs2891168 were associated with increased risk of CAD. The GG homozygous genotype of rs9349379 and rs2891168 had also been associated with risk of CAD. Additionally, the AG genotype of rs2891168 was associated with CAD. The significance of association of rs2891168 (G, GG, AG) increases with severity of CAD; but the rs9349379 (G, GG) have shown reverse association with severity of CAD. The genetic variants of COL4A2 (rs11838776) and SOD2 (rs4880) reflected no association with CAD in Southeast Iranian population. The findings of this study revealed that the PHACTR1 (rs9349379) and CDKN2B-AS1 (rs2891168) genetic variants might serve as genetic risk factor in CAD.
Collapse
Affiliation(s)
- Abolfazl Yari
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.,Department of Medical Genetics, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nasrollah Saleh-Gohari
- Department of Medical Genetics, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Moghaddameh Mirzaee
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Hashemi
- Department of Medical Genetics, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Student Research Committee, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Kolsoum Saeidi
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran. .,Department of Medical Genetics, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
13
|
Tripathi P, Agarwal S, Tewari S, Mandal K. Status of Catalase, Glutathione Peroxidase, Glutathione S-Transferase, and Myeloperoxidase Gene Polymorphisms in Beta-Thalassemia Major Patients to Assess Oxidative Injury and Its Association with Enzyme Activities. J Pediatr Genet 2021; 11:198-212. [DOI: 10.1055/s-0041-1723961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/16/2020] [Indexed: 10/21/2022]
Abstract
AbstractBeta-thalassemic patients require regular blood transfusion to sustain their life which leads to iron overload and causes oxidative stress. The aim of this study was to investigate the status of variants in genes including GSTM1, GSTT1 (null/present), CT-262 (C > T) and CT-89 (A > T), glutathione peroxidase (GPx), and myeloperoxidase (MPO). The genotype studies were conducted with 200 thalassemia major (TM) patients and 200 healthy controls. Genotyping of GST gene was performed by multiplex polymerase chain reaction (PCR), whereas for CT, GPx and MPO genesvariants PCR- restriction fragment length polymorphism technique used. However, the enzyme activities were measured only in the patients group to assess the association with the genotypes. All enzyme estimations were performed by ELISA. We observed higher frequency of GSTT1 null, CT-89 (A > T), GPx1 198 (C > T) and MPO-463 (G > A) polymorphisms in TM patient than healthy controls. However, CT-262 (C > T) polymorphism was not found to be statistically significantly different between patients and controls. Our results suggest that frequency of null allele of glutathione-S-transferase is significantly high among TM patients. The other alleles CT-89 (A > T), GPx1 198 (C > T), and MPO-463 (G > A) are linked to decreased CT, GPX, and MPO enzyme activities.
Collapse
Affiliation(s)
- Poonam Tripathi
- Department of Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Sarita Agarwal
- Department of Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Satyendra Tewari
- Department of Cardiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Kausik Mandal
- Department of Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
14
|
The association of manganese superoxide dismutase gene polymorphism (Rs4880) with diabetic macular edema in a cohort of type 2 diabetic Egyptian patients. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Diabetic retinopathy (DR) and diabetic macular edema (DME) are the leading causes of blindness in patients with diabetes. Increasing numbers of people with diabetes worldwide suggest that DR and DME will continue to be major contributors to vision loss and associated functional impairment for years to come. Oxidative stress is a key participant in the development and progression of diabetes mellitus (DM) and its complications. Antioxidant status can affect vulnerability to oxidative damage, onset and progression of diabetes, and complications of diabetes. Manganese superoxide dismutase (Mn-SOD) is a key mitochondrial enzyme in cell defense against reactive oxygen species (ROS). DR and progression to DME have been associated with polymorphism in the second exon of the Mn-SOD gene at the 16th amino acid (Ala16Val) in the mitochondrial targeting sequence (MTS) of the protein. The study aimed to investigate the association between Ala16Val Mn-SOD gene polymorphism and the susceptibility to DR and DME in type 2 DM (T2DM).
Results
In this study, 150 patients with type 2 DM were enrolled: 100 patients with DR with and without diabetic macular edema (DME) and 50 patients with type 2 diabetes with a duration of 10 years without DR. Ala16Val SNP of the Mn-SOD gene (rs4880) was detected by TaqMan real-time PCR. The results showed that the homozygous polymorphic variant VV between the DME group is significantly higher than the non-DME group (P 0.018) among the DR group.
Conclusion
Mn SOD A16V polymorphism itself may not be associated with DR; meanwhile, it may be implicated in the pathogenesis of DME.
Collapse
|
15
|
Abstract
BACKGROUND Kawasaki disease is a type of acute febrile rash disease that is common in children and is characterised by primary lesions of systemic middle and small vasculitis, which can lead to coronary artery lesions. Manganese superoxide dismutase (MnSOD), one of the most important antioxidases in the human body, plays a key role in maintaining the balance of free radicals in the human body. Two single-nucleotide polymorphisms (SNPS) (rs4880 and rs5746136) in the MnSOD gene were related to oxidative stress disease. The purpose of this study is to explore the possible relationship between MnSOD gene polymorphisms and Kawasaki disease susceptibility. METHODS This study included 100 Kawasaki disease children and 102 healthy children. Two single-nucleotide polymorphisms (rs4880 and rs5746136) were detected by polymerase chain reaction sequence-based typing. RESULTS There was a significant difference in both the genotype frequency (χ2 = 10.805, p = 0.005) and the allele frequency (χ2 = 7.948, p = 0.005) of rs5746136 between the Kawasaki disease group and the control group. Children with the A allele had a 0.558 times lower risk of Kawasaki disease than those without the A allele (χ2 = 7.948, p = 0.005, odds ratio = 0.558, 95% confidence interval = 0.371-0.838). There was no significant difference in the genotype and gene frequencies of rs5746136 between the Kawasaki disease-coronary artery lesion and Kawasaki disease-without coronary artery lesion groups (p > 0.05), and there was no significant difference in the rs4880 genotype and allele frequencies between the Kawasaki disease and healthy control groups or between the Kawasaki disease-coronary artery lesion and Kawasaki disease-without coronary artery lesions groups (p > 0.05). CONCLUSION This study provides evidence supporting an association between MnSOD gene polymorphisms and susceptibility to Kawasaki disease. The genotype AA and the allele A of the MnSOD gene locus rs5746136 were risk factors for Kawasaki disease.
Collapse
|
16
|
Polyphenolics in ramontchi protect cardiac tissues via suppressing isoprenaline-induced oxidative stress and inflammatory responses in Long-Evans rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
17
|
Brand MD. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 2020; 55:592-661. [PMID: 33148057 DOI: 10.1080/10409238.2020.1828258] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elevated mitochondrial matrix superoxide and/or hydrogen peroxide concentrations drive a wide range of physiological responses and pathologies. Concentrations of superoxide and hydrogen peroxide in the mitochondrial matrix are set mainly by rates of production, the activities of superoxide dismutase-2 (SOD2) and peroxiredoxin-3 (PRDX3), and by diffusion of hydrogen peroxide to the cytosol. These considerations can be used to generate criteria for assessing whether changes in matrix superoxide or hydrogen peroxide are both necessary and sufficient to drive redox signaling and pathology: is a phenotype affected by suppressing superoxide and hydrogen peroxide production; by manipulating the levels of SOD2, PRDX3 or mitochondria-targeted catalase; and by adding mitochondria-targeted SOD/catalase mimetics or mitochondria-targeted antioxidants? Is the pathology associated with variants in SOD2 and PRDX3 genes? Filtering the large literature on mitochondrial redox signaling using these criteria highlights considerable evidence that mitochondrial superoxide and hydrogen peroxide drive physiological responses involved in cellular stress management, including apoptosis, autophagy, propagation of endoplasmic reticulum stress, cellular senescence, HIF1α signaling, and immune responses. They also affect cell proliferation, migration, differentiation, and the cell cycle. Filtering the huge literature on pathologies highlights strong experimental evidence that 30-40 pathologies may be driven by mitochondrial matrix superoxide or hydrogen peroxide. These can be grouped into overlapping and interacting categories: metabolic, cardiovascular, inflammatory, and neurological diseases; cancer; ischemia/reperfusion injury; aging and its diseases; external insults, and genetic diseases. Understanding the involvement of mitochondrial matrix superoxide and hydrogen peroxide concentrations in these diseases can facilitate the rational development of appropriate therapies.
Collapse
|
18
|
Loci associated with genomic damage levels in chronic kidney disease patients and controls. Mutat Res 2020; 852:503167. [PMID: 32265040 DOI: 10.1016/j.mrgentox.2020.503167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/28/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) is a multifactorial disorder with an important genetic component, and several studies have demonstrated potential associations with allelic variants. In addition, CKD patients are also characterized by high levels of genomic damage. Nevertheless, no studies have established relationships between DNA damage, or genomic instability present in CKD patients, and gene polymorphisms. To fill in this gap, the potential role of polymorphisms in genes involved in base excision repair (OGG1, rs1052133; MUTYH, rs3219489; XRCC1, rs25487), nucleotide excision repair (ERCC2/XPD, rs1799793, rs171140, rs13181; ERCC4, rs3136166); phase II metabolism (GSTP1, rs749174; GSTO1, rs2164624; GSTO2, rs156697), and antioxidant enzymes (SOD1, rs17880135, rs1041740, rs202446; SOD2, rs4880; CAT, rs1001179; GPX1, rs17080528; GPX3, rs870406: GPX4, rs713041) were inquired. In addition, some genes involved in CKD (AGT, rs5050; GLO1, rs386572987; SHROOM3, rs17319721) were also evaluated. The genomic damage, the genomic instability, and oxidative damage were evaluated by using the micronucleus and the comet assay in 589 donors (415 CKD patients and 174 controls). Our results showed significant associations between genomic damage and genes directly involved in DNA repair pathways (XRCC1, and ERCC2), and with genes encoding for antioxidant enzymes (SOD1 and GPX1). GSTO2, as a gene involved in phase II metabolism, and MUTYH showed also an association with genomic instability. Interestingly, the three genes associated with CKD (AGT, GLO1, and SHROOM3) showed associations with both the high levels of oxidatively damaged DNA and genomic instability. These results support our view that genomic instability can be considered a biomarker of the CKD status.
Collapse
|
19
|
Association of combined genetic variations in SOD3, GPX3, PON1, and GSTT1 with hypertension and severity of coronary artery disease. Heart Vessels 2020; 35:918-929. [PMID: 32034489 DOI: 10.1007/s00380-020-01564-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 01/24/2020] [Indexed: 12/27/2022]
Abstract
Oxidative stress plays a critical role in the pathophysiology of hypertension (HT) and the progression of atherosclerotic coronary artery disease (CAD). Genetic variations in superoxide dismutase (SOD), glutathione peroxidase 3 (GPX3), paraoxonase 1 (PON1) and glutathione S-transferase theta 1 (GSTT1) may modulate their gene functions, affecting protein functions. These changes could have an impact on the pathogenesis of HT and progression of CAD. The present study investigated the associations of individual and combined antioxidant-related gene polymorphisms with the incidence of HT and severity of CAD. Two study populations were enrolled. The HT-associated study comprised 735 control and 735 hypertensive subjects (mean age 59.3 ± 9.0 years), matched for age and sex. The CAD study, hospital-based subjects (mean age 62.1 ± 9.5 years), included 279 CAD patients and 165 non-CAD subjects. Gene polymorphisms were identified in genomic DNA using polymerase chain reaction (PCR)-based technique. Genetic variations were assessed for their associations with HT and severity of CAD. Antioxidant gene variants, SOD3 rs2536512-GG, GPX3 rs3828599-GG, PON1 rs705379-TT, and GSTT1-/- and +/-, were independently associated with the incidence of HT. A combination of four HT-associated genotypes, as a genetic risk score (GRS), revealed an association of GRS 5 and GRS ≥ 6 with increased susceptibility to HT and CAD, and further with multivessel coronary atherosclerosis (multivessel CAD) compared with GRS 0-2 [respective ORs(95% CI) for GRS ≥ 6 = 2.37 (1.46-3.85), 3.26 (1.29-8.25), and 4.36 (1.36-14.0)]. Combined polymorphisms in these four antioxidant-related genes were associated with the incidences of HT and CAD, and with the severity of coronary atherosclerosis.
Collapse
|
20
|
da Cruz Jung IE, da Cruz IBM, Barbisan F, Trott A, Houenou LJ, Osmarin Turra B, Duarte T, de Souza Praia R, Maia-Ribeiro EA, da Costa Escobar Piccoli J, Bica CG, Duarte MMMF. Superoxide imbalance triggered by Val16Ala-SOD2 polymorphism increases the risk of depression and self-reported psychological stress in free-living elderly people. Mol Genet Genomic Med 2019; 8:e1080. [PMID: 31891227 PMCID: PMC7005615 DOI: 10.1002/mgg3.1080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/03/2019] [Accepted: 11/14/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Oxidative stress and chronic inflammatory states triggered by a single-nucleotide polymorphism (SNP) in superoxide dismutase manganese-dependent gene (Val16Ala-SOD2) have been associated with the risk of developing several chronic, nontransmissible diseases. However, it is still not clear whether the VV-SOD2 genotype that causes higher basal superoxide anion levels has any impact on the risk for depression and self-reported psychological stress in elderly people. METHODS In the present study, we tested this hypothesis using a case-control study where depression was detected using the Geriatric Depression Scale-15 (GDS-15). A total of 612 Brazilian free-living elderly subjects with a mean age of 67.1 ± 7.1 years old (number of controls, C = 497, and depressive individuals, D = 115) were included in this study. All participants had similar social, health, and lifestyle variables, with the exception of polypharmacy (≥5 medicines daily intake), which was higher in the D group, compared to C subjects. RESULTS Our results showed that the VV-SOD2 genotype significantly increased the risk for depression and psychological stress in the elderly subjects, independently of sex/gender, age, and other prior diseases and health indicators (depression risk = 1.842, 1.109-3.061 95% CI, p = .018). VV-subjects also had a higher daily intake of antidepressants, anxiolytics, and anti-inflammatory drugs than A-allele subjects. CONCLUSION Our findings support the hypothesis that genetically induced oxidative superoxide-hydrogen peroxide imbalance may be involved in an increased risk for developing depression and psychological stress in free-living elderly people without other chronic nontransmissible diseases.
Collapse
Affiliation(s)
- Ivo Emilio da Cruz Jung
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Ivana Beatrice Mânica da Cruz
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.,Programa de Pós-Graduação em Gerontologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Fernanda Barbisan
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.,Programa de Pós-Graduação em Gerontologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alexis Trott
- Departamento de Ciências da Vida, Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Ijuí, RS, Brazil
| | - Lucien J Houenou
- Biotechnology Department, Forsyth Technical Community College, Winston-Salem, NC, USA
| | - Bárbara Osmarin Turra
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Thiago Duarte
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | | | | | - Claudia Giugliano Bica
- Programa de Pós-Graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | | |
Collapse
|
21
|
Decharatchakul N, Settasatian C, Settasatian N, Komanasin N, Kukongviriyapan U, Intharaphet P, Senthong V. Association of genetic polymorphisms in SOD2, SOD3, GPX3, and GSTT1 with hypertriglyceridemia and low HDL-C level in subjects with high risk of coronary artery disease. PeerJ 2019; 7:e7407. [PMID: 31396447 PMCID: PMC6679910 DOI: 10.7717/peerj.7407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022] Open
Abstract
Background Oxidative stress modulates insulin resistant-related atherogenic dyslipidemia: hypertriglyceridemia (HTG) and low high-density lipoprotein cholesterol (HDL-C) level. Gene polymorphisms in superoxide dismutase (SOD2 and SOD3), glutathione peroxidase-3 (GPX3), and glutathione S-transferase theta-1 (GSTT1) may enable oxidative stress-related lipid abnormalities and severity of coronary atherosclerosis. The present study investigated the associations of antioxidant-related gene polymorphisms with atherogenic dyslipidemia and atherosclerotic severity in subjects with high risk of coronary artery disease (CAD). Methods Study population comprises of 396 subjects with high risk of CAD. Gene polymorphisms: SOD2 rs4880, SOD3 rs2536512 and rs2855262, GPX rs3828599, and GSTT1 (deletion) were evaluated the associations with HTG, low HDL-C, high TG/HDL-C ratio, and severity of coronary atherosclerosis. Results SOD2 rs4880-CC, SOD3 rs2536512-AA, rs2855262-CC, and GPX3 rs3828599-AA, but not GSTT1-/- individually increased risk of HTG combined with low HDL-C level. With a combination of five risk-genotypes as a genetic risk score (GRS), GRS ≥ 6 increased risks of low HDL-C, high TG/HDL-C ratio, and HTG combined with low HDL-C, comparing with GRS 0–2 [respective adjusted ORs (95% CI) = 2.70 (1.24–5.85), 3.11 (1.55–6.23), and 5.73 (2.22–14.77)]. Gene polymorphisms, though, were not directly associated with severity of coronary atherosclerosis; high TG/HDL-C ratio was associated with coronary atherosclerotic severity [OR = 2.26 (95% CI [1.17–4.34])]. Conclusion Combined polymorphisms in antioxidant-related genes increased the risk of dyslipidemia related to atherosclerotic severity, suggesting the combined antioxidant-related gene polymorphisms as predictor of atherogenic dyslipidemia.
Collapse
Affiliation(s)
- Nisa Decharatchakul
- Biomedical Sciences Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand.,Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Chatri Settasatian
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand.,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nongnuch Settasatian
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand.,School of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Nantarat Komanasin
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand.,School of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Upa Kukongviriyapan
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand.,Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Phongsak Intharaphet
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand.,Queen Sirikit Heart Center of the Northeast, Khon Kaen University, Khon Kaen, Thailand
| | - Vichai Senthong
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand.,Queen Sirikit Heart Center of the Northeast, Khon Kaen University, Khon Kaen, Thailand.,Department of Internal Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
22
|
Miao L, Yin RX, Zhang QH, Hu XJ, Huang F, Chen WX, Cao XL, Wu JZ. A novel lncRNA-miRNA-mRNA triple network identifies lncRNA TWF1 as an important regulator of miRNA and gene expression in coronary artery disease. Nutr Metab (Lond) 2019; 16:39. [PMID: 31182968 PMCID: PMC6555741 DOI: 10.1186/s12986-019-0366-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are involved in numerous physiological functions. Yet, their mechanisms in coronary artery disease (CAD) are not well understood. Methods The expression profile of genes associated to CAD was reannotated into the lncRNA-mRNA biphasic profile. The target microRNA data were used to design a global CAD triple network. Thereafter, we conducted a functional enrichment analysis and clustering using the triple network from the level of topology analyses. The expression of four non-coding RNAs (ncRNAs) was measured by qRT-PCR and the risk of CAD was calculated by nomogram. The prognostic value of three ncRNAs was evaluated using receiver operating characteristic (ROC) curve. Results A CAD lncRNA-miRNA-mRNA network was constructed which included 15 mRNAs, 3 miRNAs, 19 edges and one lncRNA. Nomogram showed that four ncRNAs were the risk of CAD. After RT-PCR validation in four ncRNAs between CAD and non-CAD samples, only three ncRNAs had significant meaning for further analysis. ROC curve showed that TWF1 presented an area under curve (AUC) of 0.862, the AUC of hsa -miR-142-3p was 0.856 and hsa -miR126-5p was 0.822. After the pairwise comparison, we found that TWF1 had significant statistical significance (P TWF1-142 < 0.05 and P TWF1-126 < 0.01). The results of functional enrichment analysis of interacting gene and microRNA showed that the shared lncRNA TWF1 may be a new factor for CAD. Conclusions This investigation on the regulatory networks of lncRNA-miRNA-mRNA in CAD suggests that a novel lncRNA, lncRNA TWF1 is a risk factor for CAD, and expands our understanding into the mechanisms involved in the pathogenesis of CAD.
Collapse
Affiliation(s)
- Liu Miao
- 1Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi People's Republic of China
| | - Rui-Xing Yin
- 1Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi People's Republic of China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Disease Control and Prevention, 6 Shuangyong Road, Nanning, 530021 Guangxi People's Republic of China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, 6 Shuangyong Road, Nanning, 530021 Guangxi People's Republic of China
| | - Qing-Hui Zhang
- 1Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi People's Republic of China
| | - Xi-Jiang Hu
- 1Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi People's Republic of China
| | - Feng Huang
- 1Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi People's Republic of China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Disease Control and Prevention, 6 Shuangyong Road, Nanning, 530021 Guangxi People's Republic of China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, 6 Shuangyong Road, Nanning, 530021 Guangxi People's Republic of China
| | - Wu-Xian Chen
- 1Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi People's Republic of China
| | - Xiao-Li Cao
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Disease Control and Prevention, 6 Shuangyong Road, Nanning, 530021 Guangxi People's Republic of China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, 6 Shuangyong Road, Nanning, 530021 Guangxi People's Republic of China.,4Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi People's Republic of China
| | - Jin-Zhen Wu
- 1Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi People's Republic of China
| |
Collapse
|
23
|
Miao L, Yin RX, Huang F, Yang S, Chen WX, Wu JZ. Integrated analysis of gene expression changes associated with coronary artery disease. Lipids Health Dis 2019; 18:92. [PMID: 30961613 PMCID: PMC6454774 DOI: 10.1186/s12944-019-1032-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/26/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND This study investigated the pathways and genes involved in coronary artery disease (CAD) and the associated mechanisms. METHODS Two array data sets of GSE19339 and GSE56885 were downloaded. The limma package was used to analyze the differentially expressed genes (DEGs) in normal and CAD specimens. Examination of DEGs through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and Gene Ontology annotation was achieved by Database for Annotation, Visualization and Integrated Discovery (DAVID). The Cytoscape software facilitated the establishment of the protein-protein interaction (PPI) network and Molecular Complex Detection (MCODE) was performed for the significant modules. RESULTS We identified 413 DEGs (291 up-regulated and 122 down-regulated). Approximately 256 biological processes, only 1 cellular component, and 21 molecular functions were identified by GO analysis and 10 pathways were enriched by KEGG. Moreover, 264 protein pairs and 64 nodes were visualized by the PPI network. After the MCODE analysis, the top 4 high degree genes, including interleukin 1 beta (IL1B, degree = 29), intercellular adhesion molecule 1 (ICAM1, degree = 25), Jun proto-oncogene (JUN, degree = 23) and C-C motif chemokine ligand 2 (CCL2, degree = 20) had been identified to validate in RT-PCR and Cox proportional hazards regression between CAD and normals. CONCLUSIONS The relative expression of IL1B, ICAM1 and CCL2 was higher in CAD than in normal controls (P < 0.05-0.001), but only IL1B and CCL2 genes were confirmed after testing the gene expression in blood and/or analyzing in Cox proportional hazards regression (P < 0.05-0.001), and the proper mechanism may involve in the AGE-RAGE signaling pathway, fluid shear stress, the tumor necrosis factor (TNF) and cytokine-cytokine receptor interaction.
Collapse
Affiliation(s)
- Liu Miao
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Rui-Xing Yin
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China. .,Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Disease Control and Prevention, 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China. .,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| | - Feng Huang
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Disease Control and Prevention, 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Shuo Yang
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Wu-Xian Chen
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Jin-Zhen Wu
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| |
Collapse
|
24
|
Salahshoor MR, Sohrabi M, Jalili F, Jalili P, Rezavand N, Haghnazari L, Jalili C. No evidence for a major effect of three common polymorphisms of the GPx1, MnSOD, and CAT genes on PCOS susceptibility. J Cell Biochem 2019; 120:2362-2369. [PMID: 30206965 DOI: 10.1002/jcb.27564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/02/2018] [Indexed: 01/24/2023]
Abstract
AIM Polycystic ovary syndrome (PCOS) is one of the prevalent endocrine-metabolic disorders. It is proposed that oxidative stress contributes to PCOS susceptibility and its metabolic associations. The current study aimed to investigate the influence of GPx1 (rs1050450), MnSOD (rs4880), and Catalase (rs1001179) variants with PCOS susceptibility, for the first time. METHODS In a case-control study, 350 Kurdish female volunteers (175 PCOS patients and 175 healthy controls) from Western Iran were studied. Genotyping for GPx1 and MnSOD were done using PCR-RFLP and for CAT the allele-specific PCR method was used. RESULTS The percentage of patients suffering from hirsutism, acne, and acanthosis among patients with PCOS were 44.6%, 30.3%, and 14.9%, respectively. Distribution of alleles among patients suffering from PCOS versus healthy women was 'Pro' (69.1% vs 68.8%) and 'Leu' (31.4% vs 31.2%) for Gpx1, 'Ala' (61.43% vs 56.57%) and 'Val' (38.57% vs 43.43%) for MnSOD, and 'C' (83.43% vs 84.57%) and 'T' (16.57% vs 15.43%) for CAT. CONCLUSION GPx1 (rs1050450), MnSOD (rs4880), and CAT (rs1001179) variants might not be a risk factor for PCOS.
Collapse
Affiliation(s)
- Mohammad Reza Salahshoor
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Kermanshah Province, Iran
| | - Maryam Sohrabi
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Kermanshah Province, Iran
| | - Faramarz Jalili
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Kermanshah Province, Iran
| | - Parnian Jalili
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Kermanshah Province, Iran
| | - Negin Rezavand
- Department of Obstetrics and Gynaecology, Kermanshah University of Medical Sciences, Kermanshah, Kermanshah Province, Iran
| | - Lida Haghnazari
- Department of Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, Kermanshah Province, Iran
| | - Cyrus Jalili
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Kermanshah Province, Iran
| |
Collapse
|
25
|
Khounphinith E, Yin RX, Cao XL, Huang F, Wu JZ, Li H. TIMD4 rs6882076 SNP Is Associated with Decreased Levels of Triglycerides and the Risk of Coronary Heart Disease and Ischemic Stroke. Int J Med Sci 2019; 16:864-871. [PMID: 31337960 PMCID: PMC6643107 DOI: 10.7150/ijms.31729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/03/2019] [Indexed: 12/24/2022] Open
Abstract
Background: The T-cell immunoglobulin and mucin domain 4 gene (TIMD4) rs6882076 single nucleotide polymorphism (SNP) has been associated with serum total cholesterol, low-density lipoprotein cholesterol and triglycerides (TG) levels, but the results are inconsistent. Moreover, little is known about such association in Chinese populations. The aim of this study was to detect the association of the TIMD4 rs6882076 SNP and serum lipid levels and the risk of coronary heart disease (CHD) and ischemic stroke (IS) in a Southern Chinese Han population. Methods: Genotypes of the TIMD4 rs6882076 SNP in 1765 unrelated subjects (CHD, 581; IS, 559 and healthy controls, 625) were determined by the Snapshot Technology. Results: The genotypic and allelic frequencies of the TIMD4 rs6882076 SNP were different between the CHD/IS patients and controls (P < 0.05 for all). The subjects with CT/TT genotypes were associated with decreased risk of CHD (P = 0.014 for CT/TT vs. CC genotypes, P = 0.010 for T vs. C alleles) and IS (P = 0.003 for CT/TT vs. CC genotypes; P = 0.016 for T vs. C alleles). The T allele carriers in healthy controls were also associated with decreased levels of serum TG. Conclusions: The results of the present study suggest that the TIMD4 rs6882076 SNP is associated with decreased risk of CHD and IS in our study population. It is likely to decrease the CHD and IS risk by reducing serum TG levels.
Collapse
Affiliation(s)
- Eksavang Khounphinith
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Rui-Xing Yin
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi, China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Disease Control and Prevention, 6 Shuangyong Road, Nanning 530021, Guangxi, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, 6 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Xiao-Li Cao
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Disease Control and Prevention, 6 Shuangyong Road, Nanning 530021, Guangxi, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, 6 Shuangyong Road, Nanning 530021, Guangxi, China.,Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Feng Huang
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi, China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Disease Control and Prevention, 6 Shuangyong Road, Nanning 530021, Guangxi, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, 6 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Jin-Zhen Wu
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Hui Li
- Clinical Laboratory of the Affiliated Cancer Hospital, Guangxi Medical University, 71 Hedi Road, Nanning 530021, Guangxi, China
| |
Collapse
|
26
|
Association between Polymorphisms of Antioxidant Gene (MnSOD, CAT, and GPx1) and Risk of Coronary Artery Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5086869. [PMID: 30225256 PMCID: PMC6129348 DOI: 10.1155/2018/5086869] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/25/2018] [Accepted: 08/02/2018] [Indexed: 12/27/2022]
Abstract
Objective Reactive oxygen species (ROS) been cited as one of the major causes of atherosclerosis and coronary artery disease which are possible agents inducing DNA damage. Manganese superoxide dismutase (MnSOD), catalase (CAT), and glutathione peroxidase-1 (GPx1) have evolved to address primary defense against free radical mediated damage in mitochondria. The aim of this study was to delineate the association of MnSOD, CAT, and GPx1 polymorphisms and risk of CAD in Taiwan. Methods We conducted a case-control study with 657 participants recruited at a medical center. All subjects were evaluated by noninvasive stress test and then quantitative coronary angiography to confirm the diagnosis of CAD. 447 CAD cases were defined as >50% stenosis of coronary artery and 210 controls were stenosed below 50%. Polymorphisms of MnSOD (Val16Ala), CAT (C-262T), and GPx1 (Pro198Leu) genes were determined by polymerase chain reaction methods. Multivariate logistic regression model was used to calculate the odds ratios (ORs) and 95% confidence intervals (CIs). Results The MnSOD Val/Ala+Ala/Ala genotype was significantly associated with an increased risk of CAD compared to the Val/Val genotype (OR = 1.86, 95% CI = 1.15-3.01). This polymorphism was also associated with the severity of CAD of single and two vessel diseases. The corresponding ORs were 2.31 (95% CI = 1.32-4.03) and 1.92 (95% CI = 1.02-3.61), respectively. Among cigarette smokers, the harmful genetic effect of MnSOD Ala allele on CAD risk was much higher (OR = 2.23, 95% CI = 1.02-4.88). However, the interaction between MnSOD genotype and cigarette smoking on CAD risk was not significant. No significant association between CAT and GPx1 polymorphisms and CAD risk was observed. Conclusion Our results suggest that MnSOD polymorphism is an independent risk factor for susceptibility to CAD in the Chinese population.
Collapse
|
27
|
Genetic Polymorphisms of Manganese-Dependent Superoxide Dismutase in Chagas Disease. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2018. [DOI: 10.1097/ipc.0000000000000567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Association between serum levels of vascular endothelial growth factor, macrophage inhibitory cytokine and markers of oxidative stress, with the metabolic syndrome and its components in obese individuals. NUTR CLIN METAB 2018. [DOI: 10.1016/j.nupar.2018.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
Liu H, Xu H, Huang K. Selenium in the prevention of atherosclerosis and its underlying mechanisms. Metallomics 2017; 9:21-37. [PMID: 28009916 DOI: 10.1039/c6mt00195e] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Atherosclerosis and related cardiovascular diseases (CVDs) represent the greatest threats to human health worldwide. Selenium, an essential trace element, is incorporated into selenoproteins that play a crucial role in human health and disease. Although findings from a limited number of randomized trials have been inconsistent and cannot support a protective role of Se supplementation in CVDs, prospective observational studies have generally shown a significant inverse association between selenium or selenoprotein status and CVD risk. Furthermore, a benefit of selenium supplementation in the prevention of CVDs has been seen in population with low baseline selenium status. Evidence from animal studies shows consistent results that selenium and selenoproteins might prevent experimental atherosclerosis, which can be explained by the molecular and cellular effects of selenium observed both in animal models and cell cultures. Selenoproteins of particular relevance to atherosclerosis are glutathione peroxidases, thioredoxin reductase 1, selenoprotein P, selenoprotein S. The present review is focusing on the existing evidence that supports the concept that optimal selenium intake can prevent atherosclerosis. Its underlying mechanisms include inhibiting oxidative stress, modulating inflammation, suppressing endothelial dysfunction, and protecting vascular cells against apoptosis and calcification. However, the benefit of selenium supplementation in the prevention of atherosclerosis remains insufficiently documented so far. Future studies with regard to the effects of selenium supplementation on atherosclerosis should consider many factors, especially the baseline selenium status, the dose and forms of selenium supplementation, and the selenoprotein genotype. Additionally, much more studies are needed to confirm the roles of selenoproteins in atherosclerosis prevention and clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Hongmei Liu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China. and Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan 430074, People's Republic of China
| | - Huibi Xu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China. and Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan 430074, People's Republic of China
| | - Kaixun Huang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China. and Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan 430074, People's Republic of China
| |
Collapse
|
30
|
Huang JH, Yin RX, Li WJ, Huang F, Chen WX, Cao XL, Chen YM. Association of the TTC39B rs581080 SNP and serum lipid levels and the risk of coronary artery disease and ischemic stroke. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:11195-11205. [PMID: 31966470 PMCID: PMC6965879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 10/21/2017] [Indexed: 06/10/2023]
Abstract
The tetratricopeptide repeat domain protein 39B gene (TTC39B) single nucleotide polymorphism (SNP) of rs581080 has been associated with serum high-density lipoprotein cholesterol (HDL-C) levels. However, little is known about such association in the Chinese populations. The present study was performed to assess the association between the TTC39B rs581080 SNP and serum lipid levels and the risk of coronary artery disease (CAD) and ischemic stroke (IS) in the Guangxi Han population. Genotypes of the TTC39B rs581080 SNP in 1741 unrelated subjects (CAD, 578; IS, 537; and healthy controls; 624) were determined by the Snapshot Technology. The genotypic and allelic frequencies of the TTC39B rs581080 SNP were different between the CAD/IS patients and controls (P < 0.01 for all). The CG/GG genotypes and G allele were associated with an increased risk of CAD (P = 0.001 for CG/GG vs. CC, P = 0.003 for G vs. C) and IS (P = 0.002 for CG/GG vs. CC; P = 0.004 for G vs. C). The CG/GG genotypes in the healthy controls, but not in CAD or IS patients, were also associated with a decreased serum HDL-C concentration. These results suggest that the TTC39B rs581080 SNP is associated with the risk of CAD and IS in our study population. It is likely to increase the risk of CAD and IS by reducing serum HDL-C levels.
Collapse
Affiliation(s)
- Jian-Hua Huang
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical UniversityNanning, Guangxi, China
| | - Rui-Xing Yin
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical UniversityNanning, Guangxi, China
| | - Wei-Jun Li
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical UniversityNanning, Guangxi, China
| | - Feng Huang
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical UniversityNanning, Guangxi, China
| | - Wu-Xian Chen
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical UniversityNanning, Guangxi, China
| | - Xiao-Li Cao
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical UniversityNanning, Guangxi, China
| | - Yu-Ming Chen
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical UniversityNanning, Guangxi, China
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Atherosclerosis is now considered a chronic inflammatory disease. Oxidative stress induced by generation of excess reactive oxygen species has emerged as a critical, final common mechanism in atherosclerosis. Reactive oxygen species (ROS) are a group of small reactive molecules that play critical roles in the regulation of various cell functions and biological processes. Although essential for vascular homeostasis, uncontrolled production of ROS is implicated in vascular injury. Endogenous anti-oxidants function as checkpoints to avoid these untoward consequences of ROS, and an imbalance in the oxidant/anti-oxidant mechanisms leads to a state of oxidative stress. In this review, we discuss the role of ROS and anti-oxidant mechanisms in the development and progression of atherosclerosis, the role of oxidized low-density lipoprotein cholesterol, and highlight potential anti-oxidant therapeutic strategies relevant to atherosclerosis. RECENT FINDINGS There is growing evidence on how traditional risk factors translate into oxidative stress and contribute to atherosclerosis. Clinical trials evaluating anti-oxidant supplements had failed to improve atherosclerosis. Current studies focus on newer ROS scavengers that specifically target mitochondrial ROS, newer nanotechnology-based drug delivery systems, gene therapies, and anti-miRNAs. Synthetic LOX-1 modulators that inhibit the effects of Ox-LDL are currently in development. Research over the past few decades has led to identification of multiple ROS generating systems that could potentially be modulated in atherosclerosis. Therapeutic approaches currently being used for atheroslcerotic vascular disease such as aspirin, statins, and renin-angiotensin system inhibitors exert a pleiotropic antioxidative effects. There is ongoing research to identify novel therapeutic modalities to selectively target oxidative stress in atherosclerosis.
Collapse
|
32
|
Miao L, Yin RX, Huang F, Chen WX, Cao XL, Wu JZ. The effect of MVK-MMAB variants, their haplotypes and G×E interactions on serum lipid levels and the risk of coronary heart disease and ischemic stroke. Oncotarget 2017; 8:72801-72817. [PMID: 29069827 PMCID: PMC5641170 DOI: 10.18632/oncotarget.20349] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/04/2017] [Indexed: 12/27/2022] Open
Abstract
Aim This study aimed to detect the association of the mevalonate kinase (MVK) and methylmalonic aciduria (cobalamin deficiency) cblB type (MMAB) gene variants, their haplotypes, and gene-environment (G×E) interactions on serum lipid levels and the risk of coronary heart disease (CHD) and ischemic stroke (IS) in a Chinese Han population. Methods Genotyping of the rs3759387, rs7134594, rs877710 and rs9593 SNPs in 846 CHD and 869 IS patients and 847 healthy controls was performed by PCR-RFLP and Sanger sequencing. Logistic regression and factor regression were used to investigate the association of 4 MVK-MMAB SNPs and serum lipid levels and the risk of CHD and IS. Results The genotypic and allelic frequencies of the rs3759387 and rs7134594 SNPs differed between controls and patients (P < 0.0125-0.001). The rs3759387 SNP was associated with the risk of CHD and IS in different genetic models. The A-T-G-A and C-T-C-T haplotypes were associated with increased risk of CHD. The haplotype of A-T-G-A was associated with an increased risk of IS, whereas the C-T-G-A haplotype was associated with a decreased risk of IS. Interactions of C-T-C-T-smoking or C-T-C-T-age on the risk of CHD, and A-T-G-A-hypertension or A-T-G-A-age on the risk of IS were also observed. The subjects with the rs3759387AA genotype in controls had lower high-density lipoprotein cholesterol (HDL-C) levels than did the subjects with AC/CC genotypes. Several SNPs interacted with alcohol consumption and cigarette smoking to increase serum HDL-C and apolipoprotein A1 levels, but they interacted with body mass index ≥ 24 kg/m2 to decrease serum HDL-C and apolipoprotein A1 levels. Conclusion Several MVK-MMAB variants, especially the rs3759387 SNP, 4 main haplotypes, and G×E interactions were associated with serum lipid levels and the risk of CHD and IS in a Chinese Han population.
Collapse
Affiliation(s)
- Liu Miao
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Rui-Xing Yin
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Feng Huang
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Wu-Xian Chen
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Xiao-Li Cao
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Jin-Zhen Wu
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
33
|
Barbisan F, Azzolin VF, Ribeiro EE, Duarte MMMF, da Cruz IBM. The In Vitro Influence of a Genetic Superoxide-Hydrogen Peroxide Imbalance on Immunosenescence. Rejuvenation Res 2017; 20:334-345. [DOI: 10.1089/rej.2016.1892] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Fernanda Barbisan
- Postgraduate Program of Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
- Open University of the Third Age, State University of Amazonas, Manaus, Brazil
| | - Verônica Farina Azzolin
- Postgraduate Program of Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | | | | | - Ivana Beatrice Mânica da Cruz
- Postgraduate Program of Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
- Laboratory of Biogenomics, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
34
|
Karahalil B, Elkama A, Orhan G. Oxidative stress gene polymorphisms may have an impact in the development of ischemic stroke. J Gene Med 2017; 19. [PMID: 28198160 DOI: 10.1002/jgm.2947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Antioxidants are responsible for detoxification of harmful effects of reactive oxygen species. Genetic factors may influence antioxidant activity as a result of polymorphisms on antioxidant enzymes. These polymorphisms can be risk in ischemic stroke (IS) risk. IS is a disorder with genetic and environmental factors contributing to overall risk. Although a few studies have been conducted, there have been no reports on catalase (CAT C262T), manganese superoxide dismutase (MnSOD Ala16Val) and glutathione peroxidase 1 (GPX1 Pro198Leu) gene polymorphisms and IS risk. METHODS We aimed to perform a case-control study to increase the awareness of the impact of oxidative stress (OS) gene polymorphism in the development of IS. A restriction fragment length polymorphism-polymerase chain reaction was used to determine genotypes. The interactions between genes and smoking and possible risk factors were evaluated. RESULTS An approximately four-fold higher IS risk was found in patients with the Val allele compared to the Ala allele. Smoking was a risk factor in the development of IS for CAT TT and MnSOD Ala/Val genotypes; we found a 3.5- to 5.5-fold higher IS risk in CAT TT and MnSOD Ala/Val genotypes. Different logistic regression models were performed for possible risk factors (smoking, body mass index, low-density lipoprotein and diabetes mellitus). The IS risk increases statistically significant only with age by multiple logistic regression analysis. CAT gene polymorphisms in IS patients were not different from controls. CONCLUSIONS It is unlikely that CAT and GPX1 single nucleotide polymorphisms are risk factors for IS. The results of the present study show that smoking may be a risk factor for IS risk in patients with MnSOD mutant genotypes.
Collapse
Affiliation(s)
- Bensu Karahalil
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Ankara, Turkey
| | - Aylin Elkama
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Ankara, Turkey
| | - Gürdal Orhan
- Clinics of Neurology, Ankara Numune Hospital, Ankara, Turkey
| |
Collapse
|
35
|
Förstermann U, Xia N, Li H. Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis. Circ Res 2017; 120:713-735. [DOI: 10.1161/circresaha.116.309326] [Citation(s) in RCA: 692] [Impact Index Per Article: 98.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/19/2016] [Accepted: 12/26/2016] [Indexed: 12/13/2022]
Abstract
Major reactive oxygen species (ROS)–producing systems in vascular wall include NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase, xanthine oxidase, the mitochondrial electron transport chain, and uncoupled endothelial nitric oxide (NO) synthase. ROS at moderate concentrations have important signaling roles under physiological conditions. Excessive or sustained ROS production, however, when exceeding the available antioxidant defense systems, leads to oxidative stress. Animal studies have provided compelling evidence demonstrating the roles of vascular oxidative stress and NO in atherosclerosis. All established cardiovascular risk factors such as hypercholesterolemia, hypertension, diabetes mellitus, and smoking enhance ROS generation and decrease endothelial NO production. Key molecular events in atherogenesis such as oxidative modification of lipoproteins and phospholipids, endothelial cell activation, and macrophage infiltration/activation are facilitated by vascular oxidative stress and inhibited by endothelial NO. Atherosclerosis develops preferentially in vascular regions with disturbed blood flow (arches, branches, and bifurcations). The fact that these sites are associated with enhanced oxidative stress and reduced endothelial NO production is a further indication for the roles of ROS and NO in atherosclerosis. Therefore, prevention of vascular oxidative stress and improvement of endothelial NO production represent reasonable therapeutic strategies in addition to the treatment of established risk factors (hypercholesterolemia, hypertension, and diabetes mellitus).
Collapse
Affiliation(s)
- Ulrich Förstermann
- From the Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany (U.F., N.X., H.L.); Center for Translational Vascular Biology (CTVB), Johannes Gutenberg University Medical Center, Mainz, Germany (H.L.); and German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany (H.L.)
| | - Ning Xia
- From the Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany (U.F., N.X., H.L.); Center for Translational Vascular Biology (CTVB), Johannes Gutenberg University Medical Center, Mainz, Germany (H.L.); and German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany (H.L.)
| | - Huige Li
- From the Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany (U.F., N.X., H.L.); Center for Translational Vascular Biology (CTVB), Johannes Gutenberg University Medical Center, Mainz, Germany (H.L.); and German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany (H.L.)
| |
Collapse
|
36
|
Sun J, Qian Y, Jiang Y, Chen J, Dai J, Jin G, Wang J, Hu Z, Liu S, Shen C, Shen H. Association of KCTD10, MVK, and MMAB polymorphisms with dyslipidemia and coronary heart disease in Han Chinese population. Lipids Health Dis 2016; 15:171. [PMID: 27716295 PMCID: PMC5050677 DOI: 10.1186/s12944-016-0348-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/30/2016] [Indexed: 12/31/2022] Open
Abstract
Background Several genome-wide association studies have discovered novel loci at chromosome 12q24, which includes mevalonate kinase (MVK), methylmalonic aciduria (cobalamin deficiency) cbIB type (MMAB), and potassium channel tetramerization domain-containing 10 (KCTD10), all of which influence HDL-cholesterol concentrations. However, there are few reports on the associations between these polymorphisms and HDL-C concentrations in Chinese population. This study aimed to evaluate the associations between functional polymorphisms in three genes (MVK, MMAB and KCTD10) and HDL-C concentrations, as well as coronary heart disease (CHD) susceptibility in Chinese individuals. Methods We systematically selected and genotyped 18 potentially functional polymorphisms in MVK, MMAB and KCTD10 by using the TaqMan OpenArray Genotyping System in a Chinese population including 399 dyslipidemia cases, 697 CHD cases and 465 controls. Multivariate logistic regression analyses were performed to estimate the relationship between the genotypes and dyslipidemia, CHD risk with adjustment of relevant confounders. Results Among six polymorphisms showing significant associations with dyslipidemia, the minor alleles of rs11066782 in KCTD10, rs11613718 in KCTD10 and rs11067233 in MMAB were significantly associated with a decreased risk of CHD (additive model: OR = 0.71, 95 % CI = 0.53–0.97, P = 0.029 for rs11066782; OR = 0.73, 95 % CI = 0.54–0.99, P = 0.044 for rs11613718 and OR = 0.57, 95 % CI = 0.40–0.80, P = 0.001 for rs11067233). Further combined analysis showed that individuals carrying “3-4” favorable alleles presented a 62 % (OR = 0.38, 95 % CI = 0.21–0.66) decreased risk of CHD compared with those carrying “0–2” favorable alleles. Conclusions These findings suggest that rs11066782 in KCTD10, rs11613718 in KCTD10 and rs11067233 in MMAB may contribute to the susceptibility of CHD by altering plasma HDL-C levels in Han Chinese. Electronic supplementary material The online version of this article (doi:10.1186/s12944-016-0348-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Sun
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian AV., Nanjing, Jiangsu, 211166, China
| | - Yun Qian
- Department of Chronic Non-communicable Disease Control, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Yue Jiang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian AV., Nanjing, Jiangsu, 211166, China
| | - Jiaping Chen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian AV., Nanjing, Jiangsu, 211166, China
| | - Juncheng Dai
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian AV., Nanjing, Jiangsu, 211166, China
| | - Guangfu Jin
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian AV., Nanjing, Jiangsu, 211166, China
| | - Jianming Wang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian AV., Nanjing, Jiangsu, 211166, China.,Department of Social Medicine and Health Education, School of Public Health, Nanjing Medical University, 101 Longmian AV., Nanjing, Jiangsu, 211166, China
| | - Zhibin Hu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian AV., Nanjing, Jiangsu, 211166, China
| | - Sijun Liu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian AV., Nanjing, Jiangsu, 211166, China. .,Department of Social Medicine and Health Education, School of Public Health, Nanjing Medical University, 101 Longmian AV., Nanjing, Jiangsu, 211166, China.
| | - Chong Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian AV., Nanjing, Jiangsu, 211166, China.
| | - Hongbing Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian AV., Nanjing, Jiangsu, 211166, China
| |
Collapse
|