1
|
Chen G, Sun W, Li Y, Li M, Jia X, Wang J, Lai S. miR-196a Promotes Proliferation of Mammary Epithelial Cells by Targeting CDKN1B. Animals (Basel) 2023; 13:3682. [PMID: 38067033 PMCID: PMC10705059 DOI: 10.3390/ani13233682] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 09/11/2024] Open
Abstract
Heat stress (HS) has become one of the key challenges faced by the dairy industry due to global warming. Studies have reported that miR-196a may exert a role in the organism's response to HS, enhancing cell proliferation and mitigating cellular stress. However, its specific role in bovine mammary epithelial cells (BMECs) remains to be elucidated. In this study, we aimed to investigate whether miR-196a could protect BMECs against proliferation arrest induced by HS and explore its potential underlying mechanism. In this research, we developed an HS model for BMECs and observed a significant suppression of cell proliferation as well as a significant decrease in miR-196a expression when BMECs were exposed to HS. Importantly, when miR-196a was overexpressed, it alleviated the inhibitory effect of HS on cell proliferation. We conducted RNA-seq and identified 105 differentially expressed genes (DEGs). Some of these DEGs were associated with pathways related to thermogenesis and proliferation. Through RT-qPCR, Western blotting, and dual-luciferase reporter assays, we identified CDKN1B as a target gene of miR-196a. In summary, our findings highlight that miR-196a may promote BMEC proliferation by inhibiting CDKN1B and suggest that the miR-196a/CDKN1B axis may be a potential pathway by which miR-196a alleviates heat-stress-induced proliferation arrest in BMECs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Songjia Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.C.); (W.S.); (Y.L.); (M.L.); (X.J.); (J.W.)
| |
Collapse
|
2
|
Hu Q, Huang T. Regulation of the Cell Cycle by ncRNAs Affects the Efficiency of CDK4/6 Inhibition. Int J Mol Sci 2023; 24:ijms24108939. [PMID: 37240281 DOI: 10.3390/ijms24108939] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) regulate cell division at multiple levels. Aberrant proliferation induced by abnormal cell cycle is a hallmark of cancer. Over the past few decades, several drugs that inhibit CDK activity have been created to stop the development of cancer cells. The third generation of selective CDK4/6 inhibition has proceeded into clinical trials for a range of cancers and is quickly becoming the backbone of contemporary cancer therapy. Non-coding RNAs, or ncRNAs, do not encode proteins. Many studies have demonstrated the involvement of ncRNAs in the regulation of the cell cycle and their abnormal expression in cancer. By interacting with important cell cycle regulators, preclinical studies have demonstrated that ncRNAs may decrease or increase the treatment outcome of CDK4/6 inhibition. As a result, cell cycle-associated ncRNAs may act as predictors of CDK4/6 inhibition efficacy and perhaps present novel candidates for tumor therapy and diagnosis.
Collapse
Affiliation(s)
- Qingyi Hu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
3
|
Shen P, Yu J, Yan C, Yang D, Tong C, Wang X. Analysis of differentially expressed microRNAs in bovine mammary epithelial cells treated with lipoteichoic acid. J Anim Physiol Anim Nutr (Berl) 2023; 107:463-474. [PMID: 35997417 DOI: 10.1111/jpn.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
Mastitis is one of the most common diseases of dairy cattle and can be caused by physical stress, chemicals and microbial infection. Staphylococcus aureus is the most common pathogens that induce mastitis in dairy cattle. In this study, bovine mammary epithelial cells (BMECs) were treated either with lipoteichoic acid (LTA, 30 µg/ml) or 1 × phosphate-buffer saline (PBS, control) and RNA-Seq was applied to explore the effect of LTA on the expression microRNAs (miRNAs) in BMECs. Compared to the control group, 43 miRNAs were significantly up-regulated and eight miRNAs were significantly down-regulated. Additionally, 724 genes were significantly up-regulated and 13 genes were significantly down-regulated in LTA group relative to the control group. Bta-miR-196a, bta-miR-2285aj-5p, bta-miR-143, bta-miR-2433, bta-miR-2284f and bta-miR-2368-3p were selected from 51 differentially expressed miRNAs and are discussed in this manuscript. Target gene prediction revealed that the target genes of these six miRNAs were all differentially expressed, including MT1E, SPDYA, FGL1, TLR2, PAPOLG, ZDHHC17 and SMC4. Subsequently, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the target genes with differentially expressed miRNAs were enriched in mitogen-activated protein kinase (MAPK) signalling pathway, rheumatoid arthritis and cancer. Therefore, the results of this study provided new evidences for the molecular mechanism of LTA-induced mastitis, which may provide new targets for the diagnosis and treatment of mastitis in dairy cattle.
Collapse
Affiliation(s)
- Puxiu Shen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jingcheng Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chenbo Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dexin Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chao Tong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xinzhuang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
4
|
miR-196a Upregulation Contributes to Gefitinib Resistance through Inhibiting GLTP Expression. Int J Mol Sci 2022; 23:ijms23031785. [PMID: 35163707 PMCID: PMC8836598 DOI: 10.3390/ijms23031785] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 02/05/2023] Open
Abstract
Tyrosine kinase inhibitor (TKI) therapy has greatly improved lung cancer survival in patients with epidermal growth factor receptor (EGFR) mutations. However, the development of TKI-acquired resistance is the major problem to be overcome. In this study, we found that miR-196a expression was greatly induced in gefitinib-resistant lung cancer cells. To understand the role and mechanism of miR-196a in TKI resistance, we found that miR-196a-forced expression alone increased cell resistance to gefitinib treatment in vitro and in vivo by inducing cell proliferation and inhibiting cell apoptosis. We identified the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) bound to the promoter region of miR-196a and induced miR-196a expression at the transcriptional level. NRF2-forced expression also significantly increased expression levels of miR-196a, and was an upstream inducer of miR-196a to mediate gefitinib resistance. We also found that glycolipid transfer protein (GLTP) was a functional direct target of miR-196a, and downregulation of GLTP by miR-196a was responsible for gefitinib resistance. GLTP overexpression alone was sufficient to increase the sensitivity of lung cancer cells to gefitinib treatment. Our studies identified a new role and mechanism of NRF2/miR-196a/GLTP pathway in TKI resistance and lung tumor development, which may be used as a new biomarker (s) for TKI resistance or as a new therapeutic target in the future.
Collapse
|
5
|
Footprints of microRNAs in Cancer Biology. Biomedicines 2021; 9:biomedicines9101494. [PMID: 34680611 PMCID: PMC8533183 DOI: 10.3390/biomedicines9101494] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs involved in post-transcriptional gene regulation. Over the past years, various studies have demonstrated the role of aberrant miRNA expression in the onset of cancer. The mechanisms by which miRNA exerts its cancer-promoting or inhibitory effects are apparent through the various cancer hallmarks, which include selective proliferative advantage, altered stress response, vascularization, invasion and metastasis, metabolic rewiring, the tumor microenvironment and immune modulation; therefore, this review aims to highlight the association between miRNAs and the various cancer hallmarks by dissecting the mechanisms of miRNA regulation in each hallmark separately. It is hoped that the information presented herein will provide further insights regarding the role of cancer and serve as a guideline to evaluate the potential of microRNAs to be utilized as biomarkers and therapeutic targets on a larger scale in cancer research.
Collapse
|
6
|
Wang X, Zhang L, Zhang X, Xing C, Liu R, Zhang F. MiR-196a promoted cell migration, invasion and the epithelial-mesenchymal transition by targeting HOXA5 in osteosarcoma. Cancer Biomark 2021; 29:291-298. [PMID: 32675397 DOI: 10.3233/cbm-201674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Osteosarcoma (OS), aggressive neoplasms of the bone, is the most common primary bone cancer in children. MiR-196a usually low expressed in several tumors and its functions in osteosarcoma still unclear. MATERIALS AND METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to assess the expression of miR-196a and the HOXA5. Cell metastasis and epithelial-mesenchymal transition (EMT) abilities were assessed using Transwell and western blot. The dual luciferase reporter assay was carried out to verify whether miR-196a directly targeted the 3'-untranslated region (UTR) of HOXA5 mRNA. RESULTS MiR-196a was overexpressed and HOXA5 was low expressed in osteosarcoma versus the non-tumor tissues and normal cell lines. Upregulation of miR-196a or downregulation of HOXA5 was associated with worse outcome of osteosarcoma patients. MiR-196a enhanced cell migration, invasion and EMT by regulating the expression of HOXA5 through directly targeting the 3'-UTR of its mRNA in osteosarcoma. HOXA5 partially reversed roles of miR-196a on metastasis and EMT in osteosarcoma. CONCLUSIONS MiR-196a promoted cell metastasis and EMT by targeting the 3'-UTR of HOXA5 mRNA in osteosarcoma. The newly identified miR-196a/HOXA5 axis provides novel insight into the pathogenesis of osteosarcoma.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Clinical Laboratory, Jinan City People's Hospital, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan, Shangdong, China.,Department of Clinical Laboratory, Jinan City People's Hospital, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan, Shangdong, China
| | - Lili Zhang
- Department of Clinical Laboratory, Yantaishan Hospital, Yantai, Shangdong, China.,Department of Clinical Laboratory, Jinan City People's Hospital, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan, Shangdong, China
| | - Xingfeng Zhang
- Department of Infectious Diseases, The People's Hospital of Zhangqiu Area, Jinan, Shangdong, China
| | - Cuihong Xing
- Department of Nursing, The People's Hospital of Zhangqiu Area, Jinan, Shangdong, China
| | - Ruidong Liu
- Department of Clinical Laboratory, Jinan City People's Hospital, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan, Shangdong, China
| | - Fang Zhang
- Department of Clinical Laboratory, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
7
|
Wu Z, Liu B, Ma Y, Chen H, Wu J, Wang J. Discovery and validation of hsa_circ_0001953 as a potential biomarker for proliferative diabetic retinopathy in human blood. Acta Ophthalmol 2021; 99:306-313. [PMID: 32914551 DOI: 10.1111/aos.14585] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/22/2020] [Accepted: 07/09/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE This study aimed to determine whether circular RNAs (circRNAs) in whole blood could be served as novel non-invasive biomarkers for proliferative diabetic retinopathy (PDR). METHODS This retrospective cross-sectional study comprised 34 healthy participants, 34 PDR patients and 34 non-proliferative DR (NPDR) patients. High-throughput whole transcriptome sequencing was performed to explore the expression profile of circRNAs in the whole blood, and the candidate circRNAs were validated by quantitative real-time polymerase chain reaction (qRT-PCR). Receiver operating characteristic (ROC) analysis evaluated the ability of these candidate circRNAs in discriminating PDR patients from NPDR patients and healthy subjects. Finally, the networks of circRNA-miRNA-mRNA based on the candidate circRNAs were constructed. RESULTS Using sequencing and qRT-PCR, hsa_circ_0001953 was found to be elevated in PDR patients in contrast with the other two groups. Statistical analysis showed that the expression levels of hsa_circ_0001953 in PDR patients were positively related to the duration of diabetes and HbAc1. Receiver operating characteristic (ROC) curve analysis revealed that hsa_circ_0001953 was associated with a high diagnostic accuracy in discriminating PDR patients from NPDR patients and healthy controls, resulting in an area under the curve (AUC) of 0.87 and 0.92, respectively. The circRNA-miRNA-target gene networks for hsa_circ_0001953 showed that hsa_circ_0001953 could interact with dozens of miRNAs and some targeted mRNAs have been potentially involved in the pathogenesis of diabetes. CONCLUSION The present findings indicate that hsa_circ_0001953 in the whole blood may serve as a novel diagnostic biomarker and potential therapeutic target for PDR.
Collapse
Affiliation(s)
- Zheming Wu
- Guangzhou Aier Eye Hospital Guangzhou China
| | - Bing Liu
- Department of Ophthalmology The Second Hospital of Shandong University Cheeloo College of Medicine Shandong University Jinan China
| | - Yan Ma
- Department of Ophthalmology The Second Hospital of Shandong University Cheeloo College of Medicine Shandong University Jinan China
| | | | - Jing Wu
- Department of Pharmacy The Second Hospital of Shandong University Cheeloo College of Medicine Shandong University Jinan China
| | - Jiawei Wang
- Department of Ophthalmology The Second Hospital of Shandong University Cheeloo College of Medicine Shandong University Jinan China
| |
Collapse
|
8
|
MiR-196: emerging of a new potential therapeutic target and biomarker in colorectal cancer. Mol Biol Rep 2020; 47:9913-9920. [PMID: 33130965 DOI: 10.1007/s11033-020-05949-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
Deregulation of microRNAs, as key elements in colorectal cancer (CRC) pathogenesis, is correlated with various stages of this cancer. miR-196 is involved in the initiation and progression of a verity of malignances, especially CRC. miR-196 in CRC cells could target different types of genes with oncogenic and/or tumor suppressor function such as HOX genes, GATA6, SOCS1, SOCS3, ANXA1, DFFA, PDCD4, ZG16 and ING5. Therefore, these genes could be up or down-regulated in cells and subsequently change the capacity of CRC cells in terms of tumor development, progression and, response to therapy. Comprehension of miR-196-associated aberrations underlying the CRC pathogenesis might introduce promising targets for therapy. Additionally, it seems that miR-196 expression profiling, especially circulatory exosomal miR-196, might be useful for diagnosis and prognosis determination of the CRC patients. In this review, at first, we summarize the roles of miR-196 in different types of cancers. After that, a detailed discussion about this miRNA and also their targets in CRC pathogenesis, progression, and response to treatment are represented. Moreover, we highlight the potential utilization of miR-196 and its targets as therapeutic targets and novel biomarkers in early detection and prediction of prognosis in CRC patients.
Collapse
|
9
|
Zhan B, Huang L, Chen Y, Ye W, Li J, Chen J, Yang S, Jiang W. miR-196a-mediated downregulation of p27 kip1 protein promotes prostate cancer proliferation and relates to biochemical recurrence after radical prostatectomy. Prostate 2020; 80:1024-1037. [PMID: 32628792 DOI: 10.1002/pros.24036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Dysregulation of microRNAs has performed vital gene regulatory functions in the genesis, progression, and prognosis of multiple malignant tumors. This study aimed to elucidate the regulatory mechanism of miR-196a in prostate cancer (PCa) and explore its clinical significance. METHODS Quantitative real-time polymerase chain reaction was implemented to examine miR-196a and p27kip1 messenger RNA expression in PCa. Cell proliferation was evaluated via Cell Counting Kit-8, colony formation, and nude mouse tumorigenicity assays. Luciferase reporter assay was applied to identify target genes. p27kip1 protein expression in PCa was investigated using Western blot analysis and immunohistochemistry. RESULTS There was a dramatic upregulation of miR-196a in PCa. Upregulated miR-196a was related to worse Gleason score (GS), later pathological stage, and poor biochemical recurrence (BCR)-free survival. In vivo and in vitro experiments exhibited that miR-196a promoted PCa proliferation and expedited G1/S-phase progression through the downregulation of p27kip1 protein. Additionally, p27kip1 protein was distinctly downregulated in PCa. Low p27kip1 protein expression had a strong correlation with increased GS and was an independent predictor of BCR after radical prostatectomy (RP). CONCLUSIONS Excessive expression of miR-196a and subsequent downregulation of p27kip1 protein play essential roles in promoting PCa proliferation and leading to BCR after RP. miR-196a and its target p27kip1 may become novel molecular biomarkers and therapeutic targets for PCa.
Collapse
Affiliation(s)
- Bin Zhan
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Linjin Huang
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yachun Chen
- Department of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wen Ye
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jingkun Li
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianhui Chen
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Sheng Yang
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wei Jiang
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
10
|
Cao Z, Guo Y, Ao Y, Zhou S. Dysregulated microRNAs in laryngeal cancer: a comprehensive meta-analysis using a robust rank aggregation approach. Future Oncol 2020; 16:2723-2734. [PMID: 32812475 DOI: 10.2217/fon-2020-0394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We need a reasonable method of compiling data from different studies regarding the expression of microRNA (miRNA) in laryngeal squamous cell carcinoma (LSCC). The robust rank aggregation method was used to integrate the rank lists of miRNAs from 11 studies. The enrichment analysis was performed on target genes of meta-signature miRNAs. The Cancer Genome Atlas database was used to confirm the results of meta-analysis. Three meta-signature miRNAs (miR-21-5p, miR-196a-5p and miR-145-5p) were obtained. All three miRNAs could be prognostic for LSCC. The enrichment analysis showed that these miRNAs were associated significantly with multiple cancer-related signaling pathways. The robust rank aggregation approach is an effective way to identify important miRNAs from different studies. All identified miRNAs could be candidates for LSCC diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Zaizai Cao
- Zhejiang University, Zhejiang Province, 310003, PR China.,Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Province, 310003, PR China
| | - Yu Guo
- Zhejiang University, Zhejiang Province, 310003, PR China.,Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Province, 310003, PR China
| | - Yinjie Ao
- Zhejiang University, Zhejiang Province, 310003, PR China.,Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Province, 310003, PR China
| | - Shuihong Zhou
- Zhejiang University, Zhejiang Province, 310003, PR China.,Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Province, 310003, PR China
| |
Collapse
|
11
|
Shahabi A, Naghili B, Ansarin K, Montazeri V, Zarghami N. miR-140 and miR-196a as Potential Biomarkers in Breast Cancer Patients. Asian Pac J Cancer Prev 2020; 21:1913-1918. [PMID: 32711415 PMCID: PMC7573432 DOI: 10.31557/apjcp.2020.21.7.1913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 07/03/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE MiR-140 and miR-196a were known to be correlated with cancer diagnosis and prognosis. The current study aimed at the analysis of miR-140 and miR-196a expression patterns and their clinical significance for breast cancer (BC) patients. METHODS Differentially expressed miR-140 and miR-196a were examined via quantitative PCR in 110 cases of BC and their adjacent non-tumor (ANT) tissues. RESULTS The results indicated that miR-140 and miR-196a, respectively, notably decreased and increased expression in BC samples in comparison with ANT (p<0.001). Reduced miR-140 expression was also related to Lymph node metastasis (LNM, P= 0.023) and stage (P = 0.009). Additionally, Receiver Operating Characteristics (ROC) analysis illustrated that miR-140 had a significant diagnostic accuracy for stage and LNM of BC patients. We also discovered a strong negative correlation between miR-196a expression with histological grade (P = 0.038), LNM (P = 0.012) and stage (P = 0.001). CONCLUSION Overall, exploring the miR-140 and miR-196a profiles not only can statistically different among BC and ANT samples, but it is also expected to become potential BC biomarkers. .
Collapse
Affiliation(s)
- Arman Shahabi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Khalil Ansarin
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Vahid Montazeri
- Department of Thoracic Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nosratollah Zarghami
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Abdeyrim A, Cheng X, Lian M, Tan Y. miR‑490‑5p regulates the proliferation, migration, invasion and epithelial‑mesenchymal transition of pharyngolaryngeal cancer cells by targeting mitogen‑activated protein kinase kinasekinase 9. Int J Mol Med 2019; 44:240-252. [PMID: 31115491 PMCID: PMC6559303 DOI: 10.3892/ijmm.2019.4196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/08/2019] [Indexed: 11/05/2022] Open
Abstract
MicroRNA (miRNA/miR) has been identified to be a promising tool in treating pharyngolaryngeal cancer. The present study aimed to investigate the role of miR‑490‑5p in the regulation of proliferation, migration, invasion and epithelial‑mesenchymal transition (EMT) of pharyngolaryngeal cancer cells. The data of miR‑490‑5p expression levels of 45 cases were obtained from the People's Hospital of Xinjiang Uygur Autonomous Region, and the prediction of the target of miR‑490‑5p was conducted by bioinformatics and verified using a luciferase assay. Cell viability was determined by cell counting kit‑8. Migration and invasion rates were measured by wound healing test and Transwell apparatus, respectively. Colony formation rate was measured by plate colony formation assay. mRNA and protein levels were determined by quantitative polymerase chain reaction and western blotting, respectively. miR‑490‑5p expression was significantly depressed in primary pharyngolaryngeal cancer tissues and cell lines, leading to an unfavorable prognosis. Evidently, miR‑490‑5p overexpression decreased the cell viabilities of BICR 18 and FaDu cells. Mechanically, miR‑490‑5p could target mitogen‑activated protein kinase kinasekinase 9 (MAP3K9). The overexpression of MAP3K9 could promote cell viability, migration and invasion rates, EMT process and ability of cloning, miR‑490‑5p could target MAP3K9 and further modulate the proliferation, migration, invasion and EMT of pharyngolaryngeal cancer cells. The results of the present study provide a novel entry point to the treatment of pharyngolaryngeal cancer.
Collapse
Affiliation(s)
- Arikin Abdeyrim
- Department of Otorhinolaryngology Head and Neck Surgery, The People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, Xinjiang 830001, P.R. China
| | - Xiuqin Cheng
- Department of Otorhinolaryngology Head and Neck Surgery, The People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, Xinjiang 830001, P.R. China
| | - Meng Lian
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, P.R. China
| | - Yuanyouan Tan
- Department of Otorhinolaryngology Head and Neck Surgery, The People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, Xinjiang 830001, P.R. China
| |
Collapse
|
13
|
Tang Z, Wei G, Zhang L, Xu Z. Signature microRNAs and long noncoding RNAs in laryngeal cancer recurrence identified using a competing endogenous RNA network. Mol Med Rep 2019; 19:4806-4818. [PMID: 31059106 PMCID: PMC6522811 DOI: 10.3892/mmr.2019.10143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 03/25/2019] [Indexed: 12/20/2022] Open
Abstract
The aim of the present study was to identify novel microRNA (miRNA) or long noncoding RNA (lncRNA) signatures of laryngeal cancer recurrence and to investigate the regulatory mechanisms associated with this malignancy. Datasets of recurrent and nonrecurrent laryngeal cancer samples were downloaded from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus database (GSE27020 and GSE25727) to examine differentially expressed miRNAs (DE-miRs), lncRNAs (DE-lncRs) and mRNAs (DEGs). miRNA-mRNA and lncRNA-miRNA networks were constructed by investigating the associations among these RNAs in various databases. Subsequently, the interactions identified were combined into a competing endogenous RNA (ceRNA) regulatory network. Feature genes in the miRNA-mRNA network were identified via topological analysis and a recursive feature elimination algorithm. A support vector machine (SVM) classifier was established using the betweenness centrality values in the miRNA-mRNA network, consisting of 32 optimal feature-coding genes. The classification effect was tested using two validation datasets. Furthermore, coding genes in the ceRNA network were examined via pathway enrichment analyses. In total, 21 DE-lncRs, 507 DEGs and 55 DE-miRs were selected. The SVM classifier exhibited an accuracy of 94.05% (79/84) for sample classification prediction in the TCGA dataset, and 92.66 and 91.07% in the two validation datasets. The ceRNA regulatory network comprised 203 nodes, corresponding to mRNAs, miRNAs and lncRNAs, and 346 lines, corresponding to the interactions among RNAs. In particular, the interactions with the highest scores were HLA complex group 4 (HCG4)-miR-33b, HOX transcript antisense RNA (HOTAIR)-miR-1-MAGE family member A2 (MAGEA2), EMX2 opposite strand/antisense RNA (EMX2OS)-miR-124-calcitonin related polypeptide α (CALCA) and EMX2OS-miR-124-γ-aminobutyric acid type A receptor γ2 subunit (GABRG2). Gene enrichment analysis of the genes in the ceRNA network identified that 11 pathway terms and 16 molecular function terms were significantly enriched. The SVM classifier based on 32 feature coding genes exhibited high accuracy in the classification of laryngeal cancer samples. miR-1, miR-33b, miR-124, HOTAIR, HCG4 and EMX2OS may be novel biomarkers of recurrent laryngeal cancer, and HCG4-miR-33b, HOTAIR-miR-1-MAGEA2 and EMX2OS-miR-124-CALCA/GABRG2 may be associated with the molecular mechanisms regulating recurrent laryngeal cancer.
Collapse
Affiliation(s)
- Zhengyi Tang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R China
| | - Ganguan Wei
- Department of Otolaryngology Head and Neck Surgery, 923 Hospital of People's Liberation Army, Nanning, Guangxi 530021, P.R China
| | - Longcheng Zhang
- Department of Otolaryngology Head and Neck Surgery, 923 Hospital of People's Liberation Army, Nanning, Guangxi 530021, P.R China
| | - Zhiwen Xu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R China
| |
Collapse
|
14
|
Annexin-A1 – A Blessing or a Curse in Cancer? Trends Mol Med 2019; 25:315-327. [DOI: 10.1016/j.molmed.2019.02.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/24/2022]
|
15
|
Hu C, Peng J, Lv L, Wang X, Zhou Y, Huo J, Liu D. miR-196a regulates the proliferation, invasion and migration of esophageal squamous carcinoma cells by targeting ANXA1. Oncol Lett 2019; 17:5201-5209. [PMID: 31186736 DOI: 10.3892/ol.2019.10186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 01/16/2019] [Indexed: 01/08/2023] Open
Abstract
MicroRNA (miR)-196a is upregulated in various types of malignancy, including esophageal squamous cell carcinoma (ESCC); however, its role in ESCC is currently unclear. The present study aimed to investigate the biological role and molecular mechanism of miR-196a in ESCC. The expression levels of miR-196a in 25 tumor tissues and adjacent non-tumor tissues from patients with ESCC were measured by reverse transcription-quantitative polymerase chain reaction. In addition, miR-196a expression levels were assessed in the human normal esophageal epithelial cell line Het-1A and the ESCC cell line EC109. The effects of miR-196a on the proliferation, apoptosis, invasion and migration of EC109 cells were determined by MTT, flow cytometry and Transwell assays, respectively. A luciferase reporter assay and western blotting were performed to confirm the target gene of miR-196a, and to explore the molecular mechanism underlying the effects of miR-196a on regulation of ESCC cell phenotypes. The results demonstrated that miR-196a was markedly upregulated in ESCC tissues and EC109 cells. In addition, miR-196a downregulation suppressed EC109 cell proliferation, invasion and migration, but did not affect apoptosis. Annexin A1 (ANXA1) was demonstrated to be a direct target gene of miR-196a. ANXA1 protein knockdown reversed the effects of miR-196a inhibition on EC109 cell proliferation, invasion and migration. Furthermore, alongside the downregulation of miR-196a and the increase in ANXA1 expression, cyclooxygenase 2 (COX2), matrix metalloproteinase (MMP)-2 and Snail were downregulated, and E-cadherin was upregulated in EC109 cells. The results of the present study suggested that miR-196a may act as an oncogene in ESCC, and that miR-196a may regulate the proliferation, invasion and migration of ESCC cells by targeting ANXA1. Subsequently, ANXA1 may further modulate the expression levels of COX2, MMP-2, Snail and E-cadherin. In conclusion, the miR-196a/ANXA1 axis may represent a potential therapeutic target in ESCC.
Collapse
Affiliation(s)
- Changmei Hu
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Hunan, Changsha 410011, P.R. China
| | - Jie Peng
- Department of Haematology, Xiangya Hospital, Central South University, Hunan, Changsha 410078, P.R. China
| | - Liang Lv
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Hunan, Changsha 410011, P.R. China
| | - Xuehong Wang
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Hunan, Changsha 410011, P.R. China
| | - Yuqian Zhou
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Hunan, Changsha 410011, P.R. China
| | - Jirong Huo
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Hunan, Changsha 410011, P.R. China
| | - Deliang Liu
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Hunan, Changsha 410011, P.R. China
| |
Collapse
|
16
|
Luo M, Sun G, Sun JW. MiR-196b affects the progression and prognosis of human LSCC through targeting PCDH-17. Auris Nasus Larynx 2018; 46:583-592. [PMID: 30454973 DOI: 10.1016/j.anl.2018.10.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/09/2018] [Accepted: 10/30/2018] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To explore the effect of miR-196bon the biological features of human laryngeal squamous cell carcinoma (LSCC) through targeting PCDH-17. METHODS miR-196b and PCDH-17 expressions were determined in tissues, and the targeting relation of miR-196b and PCDH-17 was verified through dual-luciferase reporter system. In vitro, Hep-2 cells were divided into the Control, miR-196b inhibitors, miR-NC, PCDH-17, and miR-196b mimics+PCDH-17 groups. The miR-196b and PCDH-17 expressions were determined by qRT-PCR or/and Western blot, and the biological features by MTT, Annexin V-FITC/PI, wound-healing and Transwell assays. RESULTS MiR-196b was found to be up-regulated, while PCDH-17 was down-regulated in a negative correlation in LSCC patients, which was related to histological grade and TNM stage. And low expression of miR-196b and high expression of PCDH-17 contributed to an increase in the 5-year-survival rate of LSCC patients. Besides, miR-196b directly targeted PCDH-17, while miR-196b inhibitors could up-regulate the PCDH-17 in Hep-2 cells. Moreover, miR-196b inhibitors and PCDH-17 curbed Hep-2 cell proliferation but facilitated the apoptosis, with decreases in cell invasion and migration. In addition, no statistical significance was found in cell proliferation, apoptosis, invasion and migration between Control group and miR-196b mimics+PCDH-17 group. CONCLUSION LSCC patients exhibited the up-regulated miR-196b and down-regulated PCDH-17, which are correlated with the major clinical features and prognosis. Inhibiting miR-196b may suppress proliferation, migration and invasion abilities, and promote apoptosis of Hep-2 cells via targeting PCDH-17.
Collapse
Affiliation(s)
- Min Luo
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Provincial Hospital of Medical University of Anhui, Hefei 230001, Anhui, China
| | - Gang Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Chaohu Hospital Affiliated to Medical University of Anhui, Chaohu 238000, Anhui, China
| | - Jing-Wu Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Provincial Hospital of Medical University of Anhui, Hefei 230001, Anhui, China.
| |
Collapse
|
17
|
Hui L, Zhang J, Guo X. MiR-125b-5p suppressed the glycolysis of laryngeal squamous cell carcinoma by down-regulating hexokinase-2. Biomed Pharmacother 2018; 103:1194-1201. [PMID: 29864898 DOI: 10.1016/j.biopha.2018.04.098] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 12/26/2022] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is the most common form of laryngeal carcinoma with poor prognosis. Exploring novel factors involved in the progression of LSCC is quite necessary for understanding the mechanisms and designing therapeutic strategies for LSCC. In this study, we showed that miR-125b-5p was significantly down-regulated in LSCC tissues and cell lines. The decreased expression of miR-125b-5p was associated with the tumor differentiation, metastasis and high clinical stage of the LSCC patients. Overexpression of miR-125b-5p suppressed the proliferation and induced apoptosis of LSCC cells. Bioinformatics analysis predicted hexokinase-2 (HK2), an essential enzyme involved in the glycolysis of cancer cells, as one of the downstream targets of miR-125b-5p. Further molecular studies showed that highly expressed miR-125b-5p bound the 3'-UTR of HK2 and decreased both the mRNA and protein levels of HK2. Consistent with the function of HK2 in glycolytic metabolism, overexpression of miR-125b-5p significantly suppressed the glucose consumption and lactate production of LSCC cells. Notably, restoration the expression of HK2 attenuated the inhibitory effect of miR-125b-5p on the glycolysis of LSCC cells. The inverse correlation between the expression of miR-125b-5p and HK2 in LSCC tissues further supported the involvement of miR-125b-5p-HK2 axis in the progression of LSCC. Collectively, these finding suggested the miR-125b-5p-HK2 pathway as a novel mechanism in regulating the glycolysis and progression of LSCC.
Collapse
Affiliation(s)
- Lian Hui
- Department of Otolaryngology, The First Hospital of China Medical University, No. 155 Nanjing Bei Street, Shenyang, 110001, China.
| | - Jingru Zhang
- Department of Otolaryngology, The First Hospital of China Medical University, No. 155 Nanjing Bei Street, Shenyang, 110001, China
| | - Xing Guo
- Department of Otolaryngology, The First Hospital of China Medical University, No. 155 Nanjing Bei Street, Shenyang, 110001, China
| |
Collapse
|
18
|
The lncRNA H19 Mediates Pulmonary Fibrosis by Regulating the miR-196a/COL1A1 Axis. Inflammation 2018; 41:896-903. [DOI: 10.1007/s10753-018-0744-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Li S, Wang B, Tang Q, Liu J, Yang X. Bisphenol A triggers proliferation and migration of laryngeal squamous cell carcinoma via GPER mediated upregulation of IL-6. Cell Biochem Funct 2017; 35:209-216. [PMID: 28466560 DOI: 10.1002/cbf.3265] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 12/14/2022]
Abstract
Bisphenol A (BPA) can be accumulated into the human body via food intake and inhalation. Numerous studies indicated that BPA can trigger the tumorigenesis and progression of cancer cells. Laryngeal cancer cells can be exposed to BPA directly via food digestion, while there were very limited data concerning the effect of BPA on the development of laryngeal squamous cell carcinoma (LSCC). Our present study revealed that nanomolar BPA can trigger the proliferation of LSCC cells. Bisphenol A also increased the in vitro migration and invasion of LSCC cells and upregulated the expression of matrix metallopeptidase 2. Among various chemokines tested, the expression of IL-6 was significantly increased in LSCC cells treated with BPA for 24 hours. Neutralization antibody of IL-6 or si-IL-6 can attenuate BPA-induced proliferation and migration of LSCC cells. Targeted inhibition of G protein-coupled estrogen receptor, while not estrogen receptor (ERα), abolished BPA-induced IL-6 expression, proliferation, and migration of LSCC cells. The increased IL-6 can further activate its downstream signal molecule STAT3, which was evidenced by the results of increased phosphorylation and nuclear translocation of STAT3, while si-IL-6 and si-GPER can both reverse BPA-induced activation of STAT3. Collectively, our present study revealed that BPA can trigger the progression of LSCC via GPER-mediated upregulation of IL-6. Therefore, more attention should be paid for the BPA exposure on the development of laryngeal cancer.
Collapse
Affiliation(s)
- Shisheng Li
- Department of Otolaryngology, Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Bin Wang
- Department of Otolaryngology, Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Qinglai Tang
- Department of Otolaryngology, Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Jiajia Liu
- Department of Otolaryngology, Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Xinming Yang
- Department of Otolaryngology, Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| |
Collapse
|