1
|
Rashad WA, Sakr S, Domouky AM. Comparative study of oral versus parenteral crocin in mitigating acrolein-induced lung injury in albino rats. Sci Rep 2022; 12:10233. [PMID: 35715565 PMCID: PMC9205959 DOI: 10.1038/s41598-022-14252-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/03/2022] [Indexed: 11/10/2022] Open
Abstract
Acrolein (Ac) is the second most commonly inhaled toxin, produced in smoke of fires, tobacco smoke, overheated oils, and fried foods; and usually associated with lung toxicity. Crocin (Cr) is a natural carotenoid with a direct antioxidant capacity. Yet, oral administration of crocin as a natural rout is doubtful, because of poor absorbability. Therefore, the current study aimed to compare the potential protective effect of oral versus intraperitoneal (ip) crocin in mitigating Ac-induced lung toxicity. 50 Adult rats were randomly divided into 5 equal groups; Control (oral-saline and ip-saline) group, Cr (oral-Cr and ip-Cr) group, Ac group, oral-Cr/Ac group, and ip-Cr/Ac group; for biochemical, histopathological, and immunohistochemical investigations. Results indicated increased oxidative stress and inflammatory biomarkers in lungs of Ac-treated group. Histopathological and immunohistochemical examinations revealed lung edema, infiltration, fibrosis, and altered expression of apoptotic and anti-apoptotic markers. Compared to oral-Cr/Ac group, the ip-Cr/Ac group demonstrated remarkable improvement in the oxidative, inflammatory, and apoptotic biomarkers, as well as the histopathological alterations. In conclusion, intraperitoneal crocin exerts a more protective effect on acrolein-induced lung toxicity than the orally administered crocin.
Collapse
Affiliation(s)
- Walaa Abdelhaliem Rashad
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Alsharquiah, Egypt.
| | - Samar Sakr
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Alsharquiah, Egypt
| | - Ayat M Domouky
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Alsharquiah, Egypt
| |
Collapse
|
2
|
Oxygen Toxicity to the Immature Lung-Part I: Pathomechanistic Understanding and Preclinical Perspectives. Int J Mol Sci 2021; 22:ijms222011006. [PMID: 34681665 PMCID: PMC8540649 DOI: 10.3390/ijms222011006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 01/13/2023] Open
Abstract
In utero, the fetus and its lungs develop in a hypoxic environment, where HIF-1α and VEGFA signaling constitute major determinants of further development. Disruption of this homeostasis after preterm delivery and extrauterine exposure to high fractions of oxygen are among the key events leading to bronchopulmonary dysplasia (BPD). Reactive oxygen species (ROS) production constitutes the initial driver of pulmonary inflammation and cell death, altered gene expression, and vasoconstriction, leading to the distortion of further lung development. From preclinical studies mainly performed on rodents over the past two decades, the deleterious effects of oxygen toxicity and the injurious insults and downstream cascades arising from ROS production are well recognized. This article provides a concise overview of disease drivers and different therapeutic approaches that have been successfully tested within experimental models. Despite current studies, clinical researchers are still faced with an unmet clinical need, and many of these strategies have not proven to be equally effective in clinical trials. In light of this challenge, adapting experimental models to the complexity of the clinical situation and pursuing new directions constitute appropriate actions to overcome this dilemma. Our review intends to stimulate research activities towards the understanding of an important issue of immature lung injury.
Collapse
|
3
|
Behnke J, Dippel CM, Choi Y, Rekers L, Schmidt A, Lauer T, Dong Y, Behnke J, Zimmer KP, Bellusci S, Ehrhardt H. Oxygen Toxicity to the Immature Lung-Part II: The Unmet Clinical Need for Causal Therapy. Int J Mol Sci 2021; 22:10694. [PMID: 34639034 PMCID: PMC8508961 DOI: 10.3390/ijms221910694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/11/2022] Open
Abstract
Oxygen toxicity continues to be one of the inevitable injuries to the immature lung. Reactive oxygen species (ROS) production is the initial step leading to lung injury and, subsequently, the development of bronchopulmonary dysplasia (BPD). Today, BPD remains the most important disease burden following preterm delivery and results in life-long restrictions in lung function and further important health sequelae. Despite the tremendous progress in the pathomechanistic understanding derived from preclinical models, the clinical needs for preventive or curative therapies remain unmet. This review summarizes the clinical progress on guiding oxygen delivery to the preterm infant and elaborates future directions of research that need to take into account both hyperoxia and hypoxia as ROS sources and BPD drivers. Many strategies have been tested within clinical trials based on the mechanistic understanding of ROS actions, but most have failed to prove efficacy. The majority of these studies were tested in an era before the latest modes of non-invasive respiratory support and surfactant application were introduced or were not appropriately powered. A comprehensive re-evaluation of enzymatic, antioxidant, and anti-inflammatory therapies to prevent ROS injury is therefore indispensable. Strategies will only succeed if they are applied in a timely and vigorous manner and with the appropriate outcome measures.
Collapse
Affiliation(s)
- Judith Behnke
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Feulgenstrasse 12, 35392 Giessen, Germany; (J.B.); (C.M.D.); (Y.C.); (L.R.); (A.S.); (T.L.); (Y.D.); (K.-P.Z.)
| | - Constanze M. Dippel
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Feulgenstrasse 12, 35392 Giessen, Germany; (J.B.); (C.M.D.); (Y.C.); (L.R.); (A.S.); (T.L.); (Y.D.); (K.-P.Z.)
| | - Yesi Choi
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Feulgenstrasse 12, 35392 Giessen, Germany; (J.B.); (C.M.D.); (Y.C.); (L.R.); (A.S.); (T.L.); (Y.D.); (K.-P.Z.)
| | - Lisa Rekers
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Feulgenstrasse 12, 35392 Giessen, Germany; (J.B.); (C.M.D.); (Y.C.); (L.R.); (A.S.); (T.L.); (Y.D.); (K.-P.Z.)
| | - Annesuse Schmidt
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Feulgenstrasse 12, 35392 Giessen, Germany; (J.B.); (C.M.D.); (Y.C.); (L.R.); (A.S.); (T.L.); (Y.D.); (K.-P.Z.)
| | - Tina Lauer
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Feulgenstrasse 12, 35392 Giessen, Germany; (J.B.); (C.M.D.); (Y.C.); (L.R.); (A.S.); (T.L.); (Y.D.); (K.-P.Z.)
| | - Ying Dong
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Feulgenstrasse 12, 35392 Giessen, Germany; (J.B.); (C.M.D.); (Y.C.); (L.R.); (A.S.); (T.L.); (Y.D.); (K.-P.Z.)
| | - Jonas Behnke
- Department of Internal Medicine V, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Klinikstrasse 33, 35392 Giessen, Germany;
| | - Klaus-Peter Zimmer
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Feulgenstrasse 12, 35392 Giessen, Germany; (J.B.); (C.M.D.); (Y.C.); (L.R.); (A.S.); (T.L.); (Y.D.); (K.-P.Z.)
| | - Saverio Bellusci
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Cardiopulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Aulweg 130, 35392 Giessen, Germany;
| | - Harald Ehrhardt
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Feulgenstrasse 12, 35392 Giessen, Germany; (J.B.); (C.M.D.); (Y.C.); (L.R.); (A.S.); (T.L.); (Y.D.); (K.-P.Z.)
| |
Collapse
|