1
|
Jones GL, Xiong Q, Liu X, Bouma BE, Villiger M. Single-input polarization-sensitive optical coherence tomography through a catheter. BIOMEDICAL OPTICS EXPRESS 2023; 14:4609-4626. [PMID: 37791262 PMCID: PMC10545192 DOI: 10.1364/boe.497123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 10/05/2023]
Abstract
Intravascular polarimetry with catheter-based polarization-sensitive optical coherence tomography (PS-OCT) complements the high-resolution structural tomograms of OCT with morphological contrast available through polarimetry. Its clinical translation has been complicated by the need for modification of conventional OCT hardware to enable polarimetric measurements. Here, we present a signal processing method to reconstruct the polarization properties of tissue from measurements with a single input polarization state, bypassing the need for modulation or multiplexing of input states. Our method relies on a polarization symmetry intrinsic to round-trip measurements and uses the residual spectral variation of the polarization states incident on the tissue to avoid measurement ambiguities. We demonstrate depth-resolved birefringence and optic axis orientation maps reconstructed from in-vivo data of human coronary arteries. We validate our method through comparison with conventional dual-input state measurements and find a mean cumulative retardance error of 13.2deg without observable bias. The 95% limit of agreement between depth-resolved birefringence is 2.80 · 10-4, which is less than the agreement between two repeat pullbacks of conventional PS-OCT (3.14 · 10-4), indicating that the two methods can be used interchangeably. The hardware simplification arising from using a single input state may be decisive in realizing the potential of polarimetric measurements for assessing coronary atherosclerosis in clinical practice.
Collapse
Affiliation(s)
- Georgia L. Jones
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Qiaozhou Xiong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xinyu Liu
- Singapore Eye Research Institute, Singapore National Eye Centre, 169856, Singapore
- Academic Clinical Program, Duke-NUS Medical School, 169857, Singapore
| | - Brett E. Bouma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Martin Villiger
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
2
|
Ciftci Kavaklioglu B, Erdman L, Goldenberg A, Kavaklioglu C, Alexander C, Oppermann HM, Patel A, Hossain S, Berenbaum T, Yau O, Yea C, Ly M, Costello F, Mah JK, Reginald A, Banwell B, Longoni G, Ann Yeh E. Machine learning classification of multiple sclerosis in children using optical coherence tomography. Mult Scler 2022; 28:2253-2262. [PMID: 35946086 DOI: 10.1177/13524585221112605] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND In children, multiple sclerosis (MS) is the ultimate diagnosis in only 1/5 to 1/3 of cases after a first episode of central nervous system (CNS) demyelination. As the visual pathway is frequently affected in MS and other CNS demyelinating disorders (DDs), structural retinal imaging such as optical coherence tomography (OCT) can be used to differentiate MS. OBJECTIVE This study aimed to investigate the utility of machine learning (ML) based on OCT features to identify distinct structural retinal features in children with DDs. METHODS This study included 512 eyes from 187 (neyes = 374) children with demyelinating diseases and 69 (neyes = 138) controls. Input features of the analysis comprised of 24 auto-segmented OCT features. RESULTS Random Forest classifier with recursive feature elimination yielded the highest predictive values and identified DDs with 75% and MS with 80% accuracy, while multiclass distinction between MS and monophasic DD was performed with 64% accuracy. A set of eight retinal features were identified as the most important features in this classification. CONCLUSION This study demonstrates that ML based on OCT features can be used to support a diagnosis of MS in children.
Collapse
Affiliation(s)
- Beyza Ciftci Kavaklioglu
- Neuroscience and Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada/Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Lauren Erdman
- Department of Computer Science, University of Toronto, Toronto, ON, Canada; Vector Institute, Toronto, ON, Canada
| | - Anna Goldenberg
- Department of Computer Science, University of Toronto, Toronto, ON, Canada; Vector Institute, Toronto, ON, Canada/Temerty Centre for AI Research and Education in Medicine, University of Toronto, Toronto, ON, Canada
| | - Can Kavaklioglu
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, Canada
| | - Cara Alexander
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Hannah M Oppermann
- Department of Computer Science, University of Toronto, Toronto, ON, Canada/Department of Information and Computing Sciences, Utrecht University, Utrecht, the Netherlands
| | - Amish Patel
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Soaad Hossain
- Department of Computer Science, University of Toronto, Toronto, ON, Canada/Temerty Centre for AI Research and Education in Medicine, University of Toronto, Toronto, ON, Canada/Environics Analytics, Toronto, ON, Canada
| | - Tara Berenbaum
- Division of Neurology, Department of Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Olivia Yau
- Division of Neurology, Department of Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Carmen Yea
- Division of Neurology, Department of Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mina Ly
- Division of Neurology, Department of Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Fiona Costello
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada/Department of Surgery (Ophthalmology), University of Calgary, Calgary, AB, Canada
| | - Jean K Mah
- Department Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Arun Reginald
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada/Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada
| | - Brenda Banwell
- Division of Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Giulia Longoni
- SickKids Research Institute, Neuroscience and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada/Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada/Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - E Ann Yeh
- SickKids Research Institute, Neuroscience and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada/Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada/Department of Pediatrics, University of Toronto, Toronto, ON, Canada.,Neuroscience and Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
3
|
Yang K, Cui L, Chen X, Yang C, Zheng J, Zhu X, Xiao Y, Su B, Li C, Shi K, Lu F, Qu J, Li M. Decreased Vessel Density in Retinal Capillary Plexus and Thinner Ganglion Cell Complex Associated With Cognitive Impairment. Front Aging Neurosci 2022; 14:872466. [PMID: 35557840 PMCID: PMC9087336 DOI: 10.3389/fnagi.2022.872466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundTo determine the association of the retinal capillary plexus (RCP) and ganglion cell complex (GCC) with cognitive impairment using optical coherence tomography angiography (OCTA).MethodsA cross-sectional, community-based study utilizing data from the participants enrolled between August 2019 and January 2020 in the Jidong Eye Cohort Study. We assessed the vessel density in RCP and GCC thickness using OCTA, and cognitive testing using the Montreal Cognitive Assessment (MoCA). Cognitive impairment in this study was defined as MoCA score < 24. We used multivariable analysis to evaluate the association of RCP and GCC with cognitive impairment after adjusting for confounders.ResultsThis study analyzed 1555 participants. The mean age of participants was 52.3 (8.4) years, and 861 (55.4%) were women. Cognitive impairment was observed in 268 (17.2%) participants. The adjusted odds ratio (OR) with 95% confidence interval (95% CI) for parafovea vessel density in the deep RCP with cognitive impairment was 1.20 (1.03–1.39). For vessel area and length density surrounding foveal avascular zone with cognitive impairment, the ORs with 95% CIs were 1.23 (1.07–1.41) and 1.30 (1.13–1.49), respectively. For thickness in the superior GCC with cognitive impairment, the OR with 95% CI was 1.16 (1.01–1.32).ConclusionLower vessel density in the RCP and thinner GCC were associated with cognitive impairment. Our results suggest that alterations in the RCP and GCC could provide further evidence when assessing the cognitive function and may even be potentially useful biomarkers in the detection of cognitive impairment.
Collapse
Affiliation(s)
- Kai Yang
- Eye Hospital and School of Ophthalmology and Optometry, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
| | - Lele Cui
- Eye Hospital and School of Ophthalmology and Optometry, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
| | - Xueyu Chen
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuang Yang
- Department of Mental Health, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingwei Zheng
- Eye Hospital and School of Ophthalmology and Optometry, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
| | - Xiaoxuan Zhu
- Eye Hospital and School of Ophthalmology and Optometry, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
| | - Yunfan Xiao
- Eye Hospital and School of Ophthalmology and Optometry, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
| | - Binbin Su
- Eye Hospital and School of Ophthalmology and Optometry, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
| | - Chunmei Li
- Eye Hospital and School of Ophthalmology and Optometry, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
| | - Keai Shi
- Eye Hospital and School of Ophthalmology and Optometry, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
| | - Fan Lu
- Eye Hospital and School of Ophthalmology and Optometry, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
| | - Jia Qu
- Eye Hospital and School of Ophthalmology and Optometry, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jia Qu,
| | - Ming Li
- Eye Hospital and School of Ophthalmology and Optometry, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
- Ming Li,
| |
Collapse
|
4
|
Chen Q, Fang M, Miri S, Thakor K, Delgado S, Hernandez J, Alba DE, Gregori G, Porciatti V, Wang J, Jiang H. Retinal microvascular and neuronal function in patients with multiple sclerosis: 2-year follow-up. Mult Scler Relat Disord 2021; 56:103314. [PMID: 34634624 DOI: 10.1016/j.msard.2021.103314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 09/11/2021] [Accepted: 10/03/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To determine the longitudinal changes in retinal microstructure, microvasculature, microcirculation, and axonal and neuronal functions in patients with relapsing-remitting multiple sclerosis (RRMS) over the time course of about two years. METHODS A total of 30 patients (60 eyes) with RRMS were followed for a period of 27 ± 6 months and evaluated with a battery of clinical tests including low contrast letter acuity (LCLA), intraretinal layer thicknesses by optical coherence tomography (OCT), ganglion cell function by steady-state pattern electroretinography (PERG), axonal function by polarization-sensitive OCT, volumetric vessel density (VVD) by OCT angiography, and retinal tissue perfusion (RTP) by retinal function imager. RESULTS Axonal function measured as retinal nerve fiber layer birefringence in the temporal quadrant and vessel density in the deep vascular plexus were significantly decreased at 2-year follow-up (P < 0.05). Subgroup analyses showed that the increased retinal blood flow volume occurred in patients with no evidence of disease activity (NEDA), and with stable or improved visual function (P < 0.05). There was no significant difference in the expanded disability state scale, LCLA, RTP, VVD, or PERG measures between the two visits (P > 0.05). CONCLUSION To our best knowledge, this is the first 2-year prospective comprehensive study with a detailed assessment of retinal microstructure and neuronal functions in patients with RRMS. The recovery of retinal microcirculation occurred in patients with NEDA, and stable or improved visual function, suggesting these measurements as potential imaging biomarkers for monitoring disease progression.
Collapse
Affiliation(s)
- Qi Chen
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Min Fang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States; Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, China
| | - Shahnaz Miri
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Kinjal Thakor
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Silvia Delgado
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jeffrey Hernandez
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Diego Eduardo Alba
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Giovanni Gregori
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Vittorio Porciatti
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jianhua Wang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Hong Jiang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States.
| |
Collapse
|
5
|
Tan O, Liu L, You Q, Wang J, Chen A, Ing E, Morrison JC, Jia Y, Huang D. Focal Loss Analysis of Nerve Fiber Layer Reflectance for Glaucoma Diagnosis. Transl Vis Sci Technol 2021; 10:9. [PMID: 34111254 PMCID: PMC8107497 DOI: 10.1167/tvst.10.6.9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To evaluate nerve fiber layer (NFL) reflectance for glaucoma diagnosis. Methods Participants were imaged with 4.5 × 4.5 mm volumetric disc scans using spectral-domain optical coherence tomography. The normalized NFL reflectance map was processed by an azimuthal filter to reduce directional reflectance bias caused by variation of beam incidence angle. The peripapillary area of the map was divided into 160 superpixels. Average reflectance was the mean of superpixel reflectance. Low-reflectance superpixels were identified as those with NFL reflectance below the fifth percentile normative cutoff. Focal reflectance loss was measured by summing loss in low-reflectance superpixels. Results Thirty-five normal, 30 preperimetric, and 35 perimetric glaucoma participants were enrolled. Azimuthal filtering improved the repeatability of the normalized NFL reflectance, as measured by the pooled superpixel standard deviation (SD), from 0.73 to 0.57 dB (P < 0.001, paired t-test) and reduced the population SD from 2.14 to 1.78 dB (P < 0.001, t-test). Most glaucomatous reflectance maps showed characteristic patterns of contiguous wedge or diffuse defects. Focal NFL reflectance loss had significantly higher diagnostic sensitivity than the best NFL thickness parameter (from map or profile): 77% versus 55% (P < 0.001) in glaucoma eyes with the specificity fixed at 99%. Conclusions Azimuthal filtering reduces the variability of NFL reflectance measurements. Focal NFL reflectance loss has excellent glaucoma diagnostic accuracy compared to the standard NFL thickness parameters. The reflectance map may be useful for localizing NFL defects. Translational Relevance The high diagnostic accuracy of NFL reflectance may make population-based screening feasible.
Collapse
Affiliation(s)
- Ou Tan
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Liang Liu
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Qisheng You
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Jie Wang
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Aiyin Chen
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Eliesa Ing
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - John C Morrison
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Yali Jia
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - David Huang
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
6
|
Chen Q, Jiang H, Delgado S, Hernandez J, Alba DE, Gregori G, Rammohan KW, Porciatti V, Wang J. Longitudinal Study of Retinal Structure, Vascular, and Neuronal Function in Patients With Relapsing-Remitting Multiple Sclerosis: 1-Year Follow-Up. Transl Vis Sci Technol 2021; 10:6. [PMID: 34111252 PMCID: PMC8107487 DOI: 10.1167/tvst.10.6.6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Objective The purpose of this study was to quantify retinal structural, vascular, and functional changes in patients with relapsing-remitting multiple sclerosis (RRMS) over 1 year. Methods Eighty-eight eyes of 44 patients with RRMS underwent assessments of low contrast letter acuity (LCLA), retinal ganglion cell function detected by the steady-state pattern electroretinogram (PERG), axonal microstructural integrity measured as birefringence, intraretinal layer thicknesses by ultra-high-resolution optical coherence tomography (OCT), volumetric vessel density (VVD) by OCT angiography, and retinal tissue perfusion (RTP) by the Retinal Function Imager (RFI). All measurements were performed at baseline and 1-year follow-up. The impacts of disease activities and a history of optic neuritis (ON) were analyzed. Results Compared to baseline, there were no significant differences in all variables (P > 0.05), except for the axonal birefringence and RTP. The birefringence's of the retinal fiber layer at the temporal and superior quadrants was significantly decreased (P < 0.05), whereas RTP was significantly increased (P < 0.05). In the subgroup with ON, significantly longer PERG latency and decreased VVD were observed at follow-up (P < 0.05). In patients with improved LCLA, significantly increased RTP and decreased VVD (P < 0.05) were also observed. Conclusions This is the first longitudinal study that assessed the RTP and VVD, along with other retinal structural and functional parameters in MS. The recovery of retinal vascular function occurred with the improved LCLA, suggesting that these measurements may be associated with disease progression. Translational Relevance The retinal microvascular changes could be potential biomarkers for monitoring therapeutic efficacy in MS.
Collapse
Affiliation(s)
- Qi Chen
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China,Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hong Jiang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA,Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Silvia Delgado
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeffrey Hernandez
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Diego Eduardo Alba
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Giovanni Gregori
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kottil W. Rammohan
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vittorio Porciatti
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jianhua Wang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
7
|
Real E, Icardo JM, Fernández-Barreras G, Revuelta JM, Calvo Díez M, Pontón A, Gutiérrez JF, López Higuera JM, Conde OM. Identification of Human Pathological Mitral Chordae Tendineae Using Polarization-sensitive Optical Coherence Tomography. SENSORS 2019; 19:s19030543. [PMID: 30696054 PMCID: PMC6386950 DOI: 10.3390/s19030543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/24/2019] [Accepted: 01/26/2019] [Indexed: 12/14/2022]
Abstract
Defects of the mitral valve complex imply heart malfunction. The chordae tendineae (CTs) are tendinous strands connecting the mitral and tricuspid valve leaflets to the papillary muscles. These CTs are composed of organized, wavy collagen bundles, making them a strongly birefringent material. Disorder of the collagen structure due to different diseases (rheumatic, degenerative) implies the loss or reduction of tissue birefringence able to be characterized with Polarization Sensitive Optical Coherence Tomography (PS-OCT). PS-OCT is used to discriminate healthy from diseased chords, as the latter must be excised and replaced in clinical conventional interventions. PS-OCT allows to quantify birefringence reduction in human CTs affected by degenerative and rheumatic pathologies. This tissue optical property is proposed as a diagnostic marker for the identification of degradation of tendinous chords to guide intraoperative mitral valve surgery.
Collapse
Affiliation(s)
- Eusebio Real
- Photonics Engineering Group, Department TEISA, University of Cantabria, 39005 Santander, Spain.
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain.
| | - José Manuel Icardo
- Department of Anatomy and Cell Biology, University of Cantabria, 39011 Santander, Spain.
| | | | | | - Marta Calvo Díez
- Cardiovascular Surgery Service, Marqués de Valdecilla University Hospital, 39011 Santander, Spain.
| | - Alejandro Pontón
- Cardiovascular Surgery Service, Marqués de Valdecilla University Hospital, 39011 Santander, Spain.
| | - José Francisco Gutiérrez
- Cardiovascular Surgery Service, Marqués de Valdecilla University Hospital, 39011 Santander, Spain.
| | - José Miguel López Higuera
- Photonics Engineering Group, Department TEISA, University of Cantabria, 39005 Santander, Spain.
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain.
- Centro de Investigación Biomédica en Red - Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain.
| | - Olga María Conde
- Photonics Engineering Group, Department TEISA, University of Cantabria, 39005 Santander, Spain.
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain.
- Centro de Investigación Biomédica en Red - Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain.
| |
Collapse
|
8
|
Qu D, Lin Y, Jiang H, Shao Y, Shi Y, Airen S, Gregori G, Wang J. Retinal nerve fiber layer (RNFL) integrity and its relations to retinal microvasculature and microcirculation in myopic eyes. EYE AND VISION 2018; 5:25. [PMID: 30349842 PMCID: PMC6190551 DOI: 10.1186/s40662-018-0120-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/26/2018] [Indexed: 11/10/2022]
Abstract
Background The aim was to determine retinal nerve fiber layer function and its relations to retinal microvasculature and microcirculation in patients with myopia. Method Polarization-sensitive optical coherence tomography (PS-OCT) was used to measure phase retardation per unit depth (PR/UD, proportional to the birefringence) of the retinal nerve fiber layer (RNFL). Optical coherence tomography angiography (OCTA) was used to measure macular vessel density analyzed using fractal analysis. In addition, a retinal function imager (RFI) was used to measure macular blood flow velocities in arterioles and venules. Twenty-two patients with moderate myopia (MM, refraction > 3 and < 6 diopters), seventeen patients with high myopia (HM, ≥ 6 D) and 29 healthy control subjects (HC, ≤ 3.00 D) were recruited. One eye of each patient was imaged. Results Although the average PR/UD of the RNFL in the HM group did not reach a significant level, the birefringence of the inferior quadrant was significantly lower (P < 0.05) in the HM group compared to the HC group. Significant thinning of the average RNFL and focal thinning of RFNL in temporal, superior and inferior quadrants in the HM group were found, compared to the HC group (P < 0.05). There were no significant differences of retinal blood flow velocities in arterioles and venules among groups (P > 0.05). The macular vessel density in both superficial and deep vascular plexuses was significantly lower in the HM group than in the other two groups (P < 0.05) as well as in the MM group than in the HC group (P < 0.05). The average PR/UD and PR/UD in the inferior quadrant were not related to refraction, axial length, blood flow velocities and macular vessel densities (r ranged from − 0.09 to 0.19, P > 0.05). Conclusions The impairment of the retinal nerve fiber birefringence in the HM group may be one of the independent features in high myopic eyes, which appeared not to relate to macular microvascular density and blood flow velocity.
Collapse
Affiliation(s)
- Dongyi Qu
- 1Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL USA
| | - Ying Lin
- 1Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL USA.,2State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Hong Jiang
- 1Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL USA.,3Department of Neurology, University of Miami Miller School of Medicine, Miami, FL USA
| | - Yi Shao
- 1Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL USA
| | - Yingying Shi
- 1Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL USA
| | - Shriya Airen
- 4College of Arts and Sciences, University of Miami, Miami, FL USA
| | - Giovanni Gregori
- 1Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL USA
| | - Jianhua Wang
- 1Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL USA.,5Department of Ophthalmology Bascom Palmer Eye Institute, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
| |
Collapse
|