1
|
Yacoubi B, Christou EA. Motor Output Variability in Movement Disorders: Insights From Essential Tremor. Exerc Sport Sci Rev 2024; 52:95-101. [PMID: 38445865 DOI: 10.1249/jes.0000000000000338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Findings on individuals with essential tremor suggest that tremor (within-trial movement unsteadiness) and inconsistency (trial-to-trial movement variance) stem from distinct pathologies and affect function uniquely. Nonetheless, the intricacies of inconsistency in movement disorders remain largely unexplored, as exemplified in ataxia where inconsistency below healthy levels is associated with greater pathology. We advocate for clinical assessments that quantify both tremor and inconsistency.
Collapse
|
2
|
Kroneberg D, Nümann A, Minnerop M, Rönnefarth M, Endres M, Kühn AA, Paul F, Doss S, Solbrig S, Elshehabi M, Maetzler W, Schmitz-Hübsch T. Gait Variability as a Potential Motor Marker of Cerebellar Disease-Relationship between Variability of Stride, Arm Swing and Trunk Movements, and Walking Speed. SENSORS (BASEL, SWITZERLAND) 2024; 24:3476. [PMID: 38894268 PMCID: PMC11174553 DOI: 10.3390/s24113476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Excessive stride variability is a characteristic feature of cerebellar ataxias, even in pre-ataxic or prodromal disease stages. This study explores the relation of variability of arm swing and trunk deflection in relationship to stride length and gait speed in previously described cohorts of cerebellar disease and healthy elderly: we examined 10 patients with spinocerebellar ataxia type 14 (SCA), 12 patients with essential tremor (ET), and 67 healthy elderly (HE). Using inertial sensors, recordings of gait performance were conducted at different subjective walking speeds to delineate gait parameters and respective coefficients of variability (CoV). Comparisons across cohorts and walking speed categories revealed slower stride velocities in SCA and ET patients compared to HE, which was paralleled by reduced arm swing range of motion (RoM), peak velocity, and increased CoV of stride length, while no group differences were found for trunk deflections and their variability. Larger arm swing RoM, peak velocity, and stride length were predicted by higher gait velocity in all cohorts. Lower gait velocity predicted higher CoV values of trunk sagittal and horizontal deflections, as well as arm swing and stride length in ET and SCA patients, but not in HE. These findings highlight the role of arm movements in ataxic gait and the impact of gait velocity on variability, which are essential for defining disease manifestation and disease-related changes in longitudinal observations.
Collapse
Affiliation(s)
- Daniel Kroneberg
- Department of Neurology with Experimental Neurology, Charité–Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Astrid Nümann
- Department of Neurology with Experimental Neurology, Charité–Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Experimental and Clinical Research Center, a cooperation of Max-Delbrueck Center of Molecular Medicine and Charité–Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany;
| | - Martina Minnerop
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, 52425 Jülich, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Center for Movement Disorders and Neuromodulation, Department of Neurology, Medical Faculty & University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Maria Rönnefarth
- Department of Neurology with Experimental Neurology, Charité–Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Matthias Endres
- Department of Neurology with Experimental Neurology, Charité–Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Center for Stroke Research Berlin, Charitéplatz 1, 10117 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité–University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Partner Site Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 10117 Berlin, Germany
- German Center for Mental Health (DZPG), Partner Site Berlin, 10117 Berlin, Germany
| | - Andrea A. Kühn
- Department of Neurology with Experimental Neurology, Charité–Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité–University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Partner Site Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Friedemann Paul
- Department of Neurology with Experimental Neurology, Charité–Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Experimental and Clinical Research Center, a cooperation of Max-Delbrueck Center of Molecular Medicine and Charité–Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany;
- NCRC-Neuroscience Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Sarah Doss
- Department of Neurology with Experimental Neurology, Charité–Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Susanne Solbrig
- Department of Neurodegenerative Diseases, Center for Neurology, Hertie Institute, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
| | - Morad Elshehabi
- Department of Neurology, Universitätsklinikum Schleswig-Holstein, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Walter Maetzler
- Department of Neurodegenerative Diseases, Center for Neurology, Hertie Institute, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
- Department of Neurology, Universitätsklinikum Schleswig-Holstein, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Tanja Schmitz-Hübsch
- Experimental and Clinical Research Center, a cooperation of Max-Delbrueck Center of Molecular Medicine and Charité–Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany;
- NCRC-Neuroscience Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
3
|
Cabaraux P, Agrawal SK, Cai H, Calabro RS, Casali C, Damm L, Doss S, Habas C, Horn AKE, Ilg W, Louis ED, Mitoma H, Monaco V, Petracca M, Ranavolo A, Rao AK, Ruggieri S, Schirinzi T, Serrao M, Summa S, Strupp M, Surgent O, Synofzik M, Tao S, Terasi H, Torres-Russotto D, Travers B, Roper JA, Manto M. Consensus Paper: Ataxic Gait. CEREBELLUM (LONDON, ENGLAND) 2022; 22:394-430. [PMID: 35414041 DOI: 10.1007/s12311-022-01373-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 12/19/2022]
Abstract
The aim of this consensus paper is to discuss the roles of the cerebellum in human gait, as well as its assessment and therapy. Cerebellar vermis is critical for postural control. The cerebellum ensures the mapping of sensory information into temporally relevant motor commands. Mental imagery of gait involves intrinsically connected fronto-parietal networks comprising the cerebellum. Muscular activities in cerebellar patients show impaired timing of discharges, affecting the patterning of the synergies subserving locomotion. Ataxia of stance/gait is amongst the first cerebellar deficits in cerebellar disorders such as degenerative ataxias and is a disabling symptom with a high risk of falls. Prolonged discharges and increased muscle coactivation may be related to compensatory mechanisms and enhanced body sway, respectively. Essential tremor is frequently associated with mild gait ataxia. There is growing evidence for an important role of the cerebellar cortex in the pathogenesis of essential tremor. In multiple sclerosis, balance and gait are affected due to cerebellar and spinal cord involvement, as a result of disseminated demyelination and neurodegeneration impairing proprioception. In orthostatic tremor, patients often show mild-to-moderate limb and gait ataxia. The tremor generator is likely located in the posterior fossa. Tandem gait is impaired in the early stages of cerebellar disorders and may be particularly useful in the evaluation of pre-ataxic stages of progressive ataxias. Impaired inter-joint coordination and enhanced variability of gait temporal and kinetic parameters can be grasped by wearable devices such as accelerometers. Kinect is a promising low cost technology to obtain reliable measurements and remote assessments of gait. Deep learning methods are being developed in order to help clinicians in the diagnosis and decision-making process. Locomotor adaptation is impaired in cerebellar patients. Coordinative training aims to improve the coordinative strategy and foot placements across strides, cerebellar patients benefiting from intense rehabilitation therapies. Robotic training is a promising approach to complement conventional rehabilitation and neuromodulation of the cerebellum. Wearable dynamic orthoses represent a potential aid to assist gait. The panel of experts agree that the understanding of the cerebellar contribution to gait control will lead to a better management of cerebellar ataxias in general and will likely contribute to use gait parameters as robust biomarkers of future clinical trials.
Collapse
Affiliation(s)
- Pierre Cabaraux
- Unité Des Ataxies Cérébelleuses, Department of Neurology, CHU de Charleroi, Charleroi, Belgium.
| | | | - Huaying Cai
- Department of Neurology, Neuroscience Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | | | - Carlo Casali
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy
| | - Loic Damm
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | - Sarah Doss
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, USA
| | - Christophe Habas
- Université Versailles Saint-Quentin, Versailles, France.,Service de NeuroImagerie, Centre Hospitalier National des 15-20, Paris, France
| | - Anja K E Horn
- Institute of Anatomy and Cell Biology I, Ludwig Maximilians-University Munich, Munich, Germany
| | - Winfried Ilg
- Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - Elan D Louis
- Department of Neurology, University of Texas Southwestern, Dallas, TX, USA
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo, Japan
| | - Vito Monaco
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Maria Petracca
- Department of Human Neurosciences, University of Rome Sapienza, Rome, Italy
| | - Alberto Ranavolo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, Rome, Italy
| | - Ashwini K Rao
- Department of Rehabilitation & Regenerative Medicine (Programs in Physical Therapy), Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Serena Ruggieri
- Department of Human Neurosciences, University of Rome Sapienza, Rome, Italy.,Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Tommaso Schirinzi
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Mariano Serrao
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy.,Movement Analysis LAB, Policlinico Italia, Rome, Italy
| | - Susanna Summa
- MARlab, Neuroscience and Neurorehabilitation Department, Bambino Gesù Children's Hospital - IRCCS, Rome, Italy
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Hospital of the Ludwig Maximilians-University Munich, Munich, Germany
| | - Olivia Surgent
- Neuroscience Training Program and Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Matthis Synofzik
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research and Centre of Neurology, Tübingen, Germany
| | - Shuai Tao
- Dalian Key Laboratory of Smart Medical and Health, Dalian University, Dalian, 116622, China
| | - Hiroo Terasi
- Department of Neurology, Tokyo Medical University, Tokyo, Japan
| | - Diego Torres-Russotto
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, USA
| | - Brittany Travers
- Department of Kinesiology and Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jaimie A Roper
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | - Mario Manto
- Unité Des Ataxies Cérébelleuses, Department of Neurology, CHU de Charleroi, Charleroi, Belgium.,Service Des Neurosciences, University of Mons, UMons, Mons, Belgium
| |
Collapse
|
4
|
Simmons RW, Taggart TC, Thomas JD, Mattson SN, Riley EP. Gait control in children with attention-deficit/hyperactivity disorder. Hum Mov Sci 2020; 70:102584. [PMID: 32217203 DOI: 10.1016/j.humov.2020.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 10/25/2022]
Abstract
The current profile of gait control in children with ADHD is incomplete and predominately based on children walking forward at a self-selected pace. There are no studies of potential gait deficits in this clinical population when walking in different directions in combination with varying rates of stepping that are freely selected and entrained to an external stimulus. The purpose of the current study was to address this lack of information by assessing gait of children aged 7-17 years with (n = 17) and without (n = 26) ADHD. Participants walked forward and backward along an electronically instrumented carpet at a self-selected stepping rate and in synchrony to a metronome that dictated an increased and decreased stepping rate. Using repeated measures analysis of covariance (ANCOVA) to assess spatiotemporal gait parameters, results showed that children with ADHD exhibited a significantly exaggerated, toes 'turned out,' foot position for all walking conditions compared to typically developing children. When walking backward, children with ADHD produced an increased step width, higher stepping cadence, and increased velocity. Additionally, coefficient of variation ratios indicated that children with ADHD produced greater variability of velocity, cadence, and step time for all walking conditions, and greater variability for stride length when walking at an increased stepping rate. Results were interpreted in terms of clinical significance and practical ramifications that inform rehabilitation specialists in designing therapies that ameliorate the reported gait deficits.
Collapse
Affiliation(s)
- Roger W Simmons
- Motor Control Laboratory, School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182, United States of America.
| | - Tenille C Taggart
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, CA 92120, United States of America; Clinical Psychology Doctoral Program, Department of Psychology, Stony Brook University, Stony Brook, NY 11794, United States of America
| | - Jennifer D Thomas
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, CA 92120, United States of America
| | - Sarah N Mattson
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, CA 92120, United States of America
| | - Edward P Riley
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, CA 92120, United States of America
| |
Collapse
|
5
|
Rao AK, Louis ED. Ataxic Gait in Essential Tremor: A Disease-Associated Feature? TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2019; 9:648. [PMID: 31413894 PMCID: PMC6691745 DOI: 10.7916/d8-28jq-8t52] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/05/2019] [Indexed: 12/25/2022]
Abstract
Background While accumulating evidence suggests that balance and gait impairments are commonly seen in patients with essential tremor (ET), questions remain regarding their prevalence, their relationship with normal aging, whether they are similar to the impairments seen in spinocerebellar ataxias, their functional consequences, and whether some ET patients carry greater susceptibility. Methods We conducted a literature search (until December 2018) on this topic. Results We identified 23 articles on gait or balance impairments in ET. The prevalence of balance impairment (missteps on tandem walk test) was seven times higher in ET patients than controls. Gait impairments in ET included reduced speed, increased asymmetry, and impaired dynamic balance. While balance and gait problems worsened with age, ET patients were more impaired than controls, independent of age. The pattern of impairments seen in ET was qualitatively similar to that seen in spinocerebellar ataxias. Balance and gait impairments resulted in greater number of near falls in ET patients. Factors associated with balance and gait impairments in ET included age, presence of tremor in midline structures, and cognitive dysfunction. Discussion Accumulating evidence suggests that balance and gait impairments are common in ET patients and occur to a greater extent in controls. Thus, they represent a disease-associated feature. These impairments, which are qualitatively similar to those seen in spinocerebellar ataxias, are not merely subclinical but result in difficulty performing functional tasks and increase falls risk. A subset of patients is more susceptible to balance and gait impairments. The full spectrum of impairments remains to be characterized.
Collapse
Affiliation(s)
- Ashwini K Rao
- Department of Rehabilitation & Regenerative Medicine (Program in Physical Therapy), G.H. Sergievsky Center, Huntington's Disease Center of Excellence, Center of Excellence in Alzheimer's Disease, Columbia University, New York, NY, USA
| | - Elan D Louis
- Department of Neurology and Epidemiology (Chronic Diseases); Chief, Division of Movement Disorders, Co-Director- Center for Neuroepidemiology and Clinical Neurology Research, New Haven, CT, USA
| |
Collapse
|
6
|
Roper JA, Terza MJ, De Jesus S, Jacobson CE, Hess CW, Hass CJ. Spatiotemporal gait parameters and tremor distribution in essential tremor. Gait Posture 2019; 71:32-37. [PMID: 31004995 DOI: 10.1016/j.gaitpost.2019.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/26/2019] [Accepted: 04/07/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Essential Tremor is characterized by an action tremor of the upper extremities, which may or may not be accompanied by a head, voice, leg or trunk tremor. Problems with gait and balance have also been identified in persons with Essential Tremor. Therefore, understanding gait performance is an important area of focus for clinicians and researchers. RESEARCH QUESTION We sought to 1) conduct a factor analysis on a broad spectrum of spatiotemporal gait parameters 2) build upon the normative database of gait measures in persons with Essential Tremor 3) understand the influence of age on gait speed in persons with Essential Tremor and 4) identify the relationships between gait performance and clinical measures of disease severity. METHODS Gait data and Tremor Rating Scale scores were retrospectively collected from one hundred and forty-two ambulatory participants with a diagnosis of Essential Tremor. A factor analysis was used to characterize spatiotemporal gait parameters and regression models were applied to associate tremor scores to gait performance factors. RESULTS Three domains of gait performance factors were identified in persons with Essential Tremor. Specifically, we observed a pace, rhythm, and stability factor. In sum, these factors accounted for 91.9% of the variance in gait performance. Only the pace and stability factors were associated with disease severity, suggesting these factors are most sensitive to disease severity compared to the rhythm factor. Our linear regression analysis revealed a significant influence of age on gait speed. Gait speed decreased with age significantly by 0.64 cm/s/year. SIGNIFICANCE Reference values for 12 gait parameters will be highly useful for assessing gait performance in individuals with Essential Tremor. Our observations suggest that a clinical assessment of gait and balance would be an important measure to consider in routine clinical practice when treating persons with Essential Tremor.
Collapse
Affiliation(s)
| | | | - Sol De Jesus
- Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, United States
| | | | | | - Chris J Hass
- University of Florida, Gainesville, FL, United States
| |
Collapse
|
7
|
Srivastava A, Ahmad OF, Pacia CP, Hallett M, Lungu C. The Relationship between Saccades and Locomotion. J Mov Disord 2018; 11:93-106. [PMID: 30086615 PMCID: PMC6182301 DOI: 10.14802/jmd.18018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/26/2018] [Indexed: 12/11/2022] Open
Abstract
Human locomotion involves a complex interplay among multiple brain regions and depends on constant feedback from the visual system. We summarize here the current understanding of the relationship among fixations, saccades, and gait as observed in studies sampling eye movements during locomotion, through a review of the literature and a synthesis of the relevant knowledge on the topic. A significant overlap in locomotor and saccadic neural circuitry exists that may support this relationship. Several animal studies have identified potential integration nodes between these overlapping circuitries. Behavioral studies that explored the relationship of saccadic and gait-related impairments in normal conditions and in various disease states are also discussed. Eye movements and locomotion share many underlying neural circuits, and further studies can leverage this interplay for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Anshul Srivastava
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Omar F Ahmad
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Pham Pacia
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Codrin Lungu
- Division of Clinical Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Abstract
Tremor is a phenomenon observed in a broad spectrum of diseases with different pathophysiologies. While patients with tremor may not complain in the clinic of symptoms of imbalance, gait difficulties, or falls, laboratory research studies using quantitative analysis of gait and posture and neurophysiologic techniques have demonstrated impaired gait and balance across a variety of tremor etiologies. These findings have been supported by careful epidemiologic studies assessing symptoms of imbalance. Imaging and neurophysiologic studies have identified cerebellar networks as important mediators of tremor, and therefore a likely common site of dysfunction to explain the phenomenologic overlap between impaired postural and gait control with tremor. Further understanding of these mechanisms and networks is of crucial importance in the development of new treatments, particularly surgical or minimally invasive lesional therapies.
Collapse
Affiliation(s)
- Hugo Morales-Briceño
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Sydney, NSW, Australia
| | - Alessandro F Fois
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Sydney, NSW, Australia
| | - Victor S C Fung
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Sydney, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Taggart TC, Simmons RW, Thomas JD, Riley EP. Children with Heavy Prenatal Alcohol Exposure Exhibit Atypical Gait Characteristics. Alcohol Clin Exp Res 2017; 41:1648-1655. [PMID: 28727159 DOI: 10.1111/acer.13450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/13/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Impaired motor function in children with histories of prenatal exposure to alcohol has been previously reported but, to date, no studies using quantitatively based analyses have been performed to assess gait in these children. METHODS Gait of children with (n = 18) or without (n = 26) prenatal alcohol exposure was assessed using an electronically instrumented walkway. Children completed blocks of trials traversing the walkway with different combinations of walking condition (increased, self-paced, and decreased cadence) and direction (forward and backward). Gait velocity, cadence, stride length, step width, foot angle, and double support time, as well as the variability of these temporal-spatial markers, were used to assess gait. RESULTS Results indicated that, in comparison with typically developing children, alcohol-exposed children produced exaggerated foot angle and increased step width. Additionally, alcohol-exposed children produced greater intrasubject variability of gait velocity and walking cadence while walking forward and backward, and greater variability in step width when walking backward and for all 3 walking conditions. CONCLUSIONS The results indicate that selected gait markers are adversely affected by prenatal exposure to alcohol. Clinicians and front-line personnel (e.g., teachers) should provide movement enriched experiences to help ameliorate these alcohol-related deficits.
Collapse
Affiliation(s)
- Tenille C Taggart
- Center for Behavioral Teratology , Department of Psychology, San Diego State University, San Diego, California.,Clinical Psychology Doctoral Program , Department of Psychology, Stony Brook University, Stony Brook, New York
| | - Roger W Simmons
- Motor Control Laboratory , School of Exercise and Nutritional Sciences, San Diego State University, San Diego, California
| | - Jennifer D Thomas
- Center for Behavioral Teratology , Department of Psychology, San Diego State University, San Diego, California
| | - Edward P Riley
- Center for Behavioral Teratology , Department of Psychology, San Diego State University, San Diego, California
| |
Collapse
|