1
|
Zhu J, Zhou L, Zhou Y, Lin Y, Cai Y, Wu J, Shi C. Diagnosis of schizophrenia by integrated saccade scores and associations with psychiatric symptoms, and functioning. Medicine (Baltimore) 2024; 103:e39935. [PMID: 39465854 PMCID: PMC11479490 DOI: 10.1097/md.0000000000039935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/13/2024] [Indexed: 10/29/2024] Open
Abstract
Eye movement as a neurobiological biomarker of schizophrenia. We aim to estimate diagnostic accuracy of integrated pro/antisaccade eye movement measurements to discriminate between healthy individuals and schizophrenic patients. We compared the eye movement performance of 85 healthy individuals and 116 schizophrenia-stable patients during prosaccade and antisaccade tasks. The difference eye movement measurements were accumulated by stepwise discriminant analysis to produce an integrated score. Finally, the diagnostic value of the integrated score was calculated by the receiver operating characteristic (ROC) area under the curve (AUC), and the best sensitivity and specificity were calculated based on the given cutoff values. Using discriminant analysis, an integrated score included the residual gain and latency (step) during the prosaccade test, the error rate, and the corrected error rate during the antisaccade test. We found that the integrated score could well classify schizophrenia patients and healthy individuals with an accuracy of 80.6%. In the ROC, Youden's index was 0.634 (sensitivity = 81.0%, specificity = 82.4%) and AUC was 0.871. There were significant difference patterns of correlation between the severity of psychiatric symptoms and daily functioning and diagnostic eye movement measurements. Using only 2 saccade tasks to discriminate well between schizophrenia patients and healthy controls, suggesting that abnormalities in saccade behavior is a potential biomarker and efficient diagnostic tool for identifying schizophrenia. The underlying neuropathologic mechanisms associated with abnormal saccades may provide insights into the intervention and diagnosis of schizophrenia.
Collapse
Affiliation(s)
- Jiahui Zhu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Li Zhou
- School of Education, Xinjiang Normal University, Xinjiang, China
| | - Yuanyuan Zhou
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Yunhan Lin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Yumei Cai
- Peking University Institute of Population Research, Beijing, China
| | - Jiayuan Wu
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chuan Shi
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| |
Collapse
|
2
|
Chae J, Nguyen TT, Oh SY. Quantification of saccadic fatigability and diagnostic efficacy for myasthenia gravis. J Neurol 2024; 271:5035-5045. [PMID: 38796801 DOI: 10.1007/s00415-024-12461-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND AND OBJECTIVES The diagnostic challenge of myasthenia gravis (MG) is exacerbated by the variable efficacy of current testing methodologies, necessitating innovative approaches to accurately identify the condition. This study aimed to assess ocular muscle fatigue in patients with MG using video-oculography (VOG) by examining repetitive saccadic eye movements and comparing these metrics to those of healthy control participants. METHODS This prospective, cross-sectional study was conducted at a tertiary care center and involved 62 patients diagnosed with MG (48 with ocular MG and 14 with generalized MG) and a control group of 31 healthy individuals, matched for age and sex. The assessment involved recording saccadic eye movements within a ± 15° range, both horizontally and vertically, at a rate of 15 saccades per minute over a 5-min period, resulting in 75 cycles. Participants were afforded a 3-min rest interval between each set to mitigate cumulative fatigue. The primary outcome was the detection of oculomotor fatigue, assessed through changes in saccadic waveforms, range, peak velocity, latency, and the duration from onset to target, with a focus on comparing the second saccade against the average of the last five saccades. RESULTS In the evaluation of repetitive saccadic movements, patients with MG exhibited a reduced saccadic range and a prolonged duration to reach the target, compared to healthy subjects. Furthermore, a significant elevation in the frequency of multistep saccades was observed among MG patients, with a marked rise observed over consecutive trials. Receiver operating characteristic (ROC) analysis revealed the discriminative performance of multistep saccade frequency, in conjunction with variations in saccadic range and duration from onset to target achievement between the second saccade and the mean of the final five saccades, as effective in distinguishing MG patients from healthy subjects. Although alterations in peak saccadic velocity and latency were less pronounced, they were nevertheless detectable. DISCUSSION The utilization of VOG for repetitive saccadic testing in the diagnosis of MG has demonstrated considerable diagnostic precision. This methodology affords significant accuracy in evaluating ocular muscle fatigue in MG patients, providing class III evidence supportive of its clinical application.
Collapse
Affiliation(s)
- Juhee Chae
- Department of Neurology, Jeonbuk National University College of Medicine, Jeonbuk National University Hospital, Jeonbuk National University School of Medicine, 20 Geonji-ro, Deokjin-Gu, Jeonju, 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Thanh Tin Nguyen
- Department of Pharmacology, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Sun-Young Oh
- Department of Neurology, Jeonbuk National University College of Medicine, Jeonbuk National University Hospital, Jeonbuk National University School of Medicine, 20 Geonji-ro, Deokjin-Gu, Jeonju, 54907, Republic of Korea.
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea.
| |
Collapse
|
3
|
Costa RG, Conceição A, Matos CA, Nóbrega C. The polyglutamine protein ATXN2: from its molecular functions to its involvement in disease. Cell Death Dis 2024; 15:415. [PMID: 38877004 PMCID: PMC11178924 DOI: 10.1038/s41419-024-06812-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
A CAG repeat sequence in the ATXN2 gene encodes a polyglutamine (polyQ) tract within the ataxin-2 (ATXN2) protein, showcasing a complex landscape of functions that have been progressively unveiled over recent decades. Despite significant progresses in the field, a comprehensive overview of the mechanisms governed by ATXN2 remains elusive. This multifaceted protein emerges as a key player in RNA metabolism, stress granules dynamics, endocytosis, calcium signaling, and the regulation of the circadian rhythm. The CAG overexpansion within the ATXN2 gene produces a protein with an extended poly(Q) tract, inducing consequential alterations in conformational dynamics which confer a toxic gain and/or partial loss of function. Although overexpanded ATXN2 is predominantly linked to spinocerebellar ataxia type 2 (SCA2), intermediate expansions are also implicated in amyotrophic lateral sclerosis (ALS) and parkinsonism. While the molecular intricacies await full elucidation, SCA2 presents ATXN2-associated pathological features, encompassing autophagy impairment, RNA-mediated toxicity, heightened oxidative stress, and disruption of calcium homeostasis. Presently, SCA2 remains incurable, with patients reliant on symptomatic and supportive treatments. In the pursuit of therapeutic solutions, various studies have explored avenues ranging from pharmacological drugs to advanced therapies, including cell or gene-based approaches. These endeavours aim to address the root causes or counteract distinct pathological features of SCA2. This review is intended to provide an updated compendium of ATXN2 functions, delineate the associated pathological mechanisms, and present current perspectives on the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Rafael G Costa
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal.
- PhD program in Biomedical Sciences, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve (UAlg), Faro, Portugal.
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve (UAlg), Faro, Portugal.
| | - André Conceição
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
- PhD program in Biomedical Sciences, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve (UAlg), Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve (UAlg), Faro, Portugal
- Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Carlos A Matos
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve (UAlg), Faro, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal.
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve (UAlg), Faro, Portugal.
| |
Collapse
|
4
|
Raghunathan N, Sankaran S, Miteu GD. A comprehensive review of iPS cell line-based disease modelling of the polyglutamine spinocerebellar ataxias 2 and 3: a focus on the research outcomes. Ann Med Surg (Lond) 2024; 86:3487-3498. [PMID: 38846892 PMCID: PMC11152827 DOI: 10.1097/ms9.0000000000001984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/07/2024] [Indexed: 06/09/2024] Open
Abstract
Spinocerebellar ataxias (SCAs) are a rare autosomal dominant neurodegenerative disorder. To date, approximately 50 different subtypes of SCAs have been characterized. The prevalent types of SCAs are usually of PolyQ origin, wherein the disease pathology is a consequence of multiple glutamine residues being encoded onto the disease proteins, causing expansions. SCAs 2 and 3 are the most frequently diagnosed subtypes, wherein affected patients exhibit certain characteristic physiological manifestations, such as gait ataxia and dysarthria. Nevertheless, other clinical signs were exclusive to these subtypes. Recently, multiple molecular diagnostic methods have been developed to identify and characterize these subtypes. Despite these advancements, the molecular pathology of SCAs remains unknown. To further understand the mechanisms involved in neurodegenerative SCAs 2 and 3, patient-derived induced pluripotent stem cell (iPSC)-based modelling is a compelling avenue to pursue. We cover the present state of iPSC-based in-vitro illness modelling of SCA subtypes 2 and 3 below, along with a list of cell lines created, and the relevance of research outcomes to personalized autologous therapy.
Collapse
Affiliation(s)
| | | | - Goshen D. Miteu
- School of Biosciences, Biotechnology, University of Nottingham, England, UK
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
- Department of Biochemistry, Caleb University, Lagos, Nigeria
| |
Collapse
|
5
|
Karaaslan Z, Hanağası HA, Gurvit İH, Bilgiç B. Video-Oculography Assessment in Neurodegenerative Ataxias and Niemann Pick Type C. Noro Psikiyatr Ars 2024; 61:101-106. [PMID: 38868844 PMCID: PMC11165611 DOI: 10.29399/npa.28563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/02/2023] [Indexed: 06/14/2024] Open
Abstract
Introduction Deceleration of vertical saccades, an early and characteristic finding of Niemann-Pick Type C (NP-C), may help diagnosis. Our aim in this study was to demonstrate the role of video-oculography (VOG), in the differential diagnosis of ataxia syndromes, particularly of NP-C, using this technique in the evaluation of saccadic velocity and smooth pursuit gain of ataxia patients. Methods We recruited consecutive 50 ataxia patients and 50 healthy control subjects who were age and sex-matched with the patient group. Saccadic eye movements and smooth pursuit eye movements for different angles and different directions from patients and healthy subjects were recorded by using VOG. Results Saccadic eye movement velocity and smooth pursuit gain values of the patients were significantly lower in all directions and at all angles as compared to healthy subjects. In the patient group, 3 cases out of 50 were selected as suspected NP-C, based on the dissociation between their markedly impaired vertical saccadic velocity and near normal to slightly impaired horizontal one and relatively intact smooth pursuit eye movements; the diagnoses in all 3 cases were confirmed with positive genetic testing, and thereupon Miglustat treatment was started. Conclusion Our findings support that cerebellar pathology in degenerative ataxia patients is associated with both impaired saccadic velocity and smooth pursuit gain, whereas in NP-C, only the impaired vertical saccades as opposed to relatively preserved other eye movements are seemingly a diagnostic marker for the entity. We conclude that recording of eye movements could be useful for differential diagnosis and monitorization of the treatment of ataxia syndromes as an easy and objective method.
Collapse
Affiliation(s)
- Zerrin Karaaslan
- Istanbul University, Istanbul Faculty of Medicine, Department of Neurology, Istanbul, Turkey
- Istanbul University, Institute of Graduate Studies in Health Sciences, Istanbul, Turkey
| | - Haşmet Ayhan Hanağası
- Istanbul University, Istanbul Faculty of Medicine, Department of Neurology, Istanbul, Turkey
| | - İbrahim Hakan Gurvit
- Istanbul University, Istanbul Faculty of Medicine, Department of Neurology, Istanbul, Turkey
| | - Başar Bilgiç
- Istanbul University, Istanbul Faculty of Medicine, Department of Neurology, Istanbul, Turkey
| |
Collapse
|
6
|
Garces P, Antoniades CA, Sobanska A, Kovacs N, Ying SH, Gupta AS, Perlman S, Szmulewicz DJ, Pane C, Németh AH, Jardim LB, Coarelli G, Dankova M, Traschütz A, Tarnutzer AA. Quantitative Oculomotor Assessment in Hereditary Ataxia: Discriminatory Power, Correlation with Severity Measures, and Recommended Parameters for Specific Genotypes. CEREBELLUM (LONDON, ENGLAND) 2024; 23:121-135. [PMID: 36640220 PMCID: PMC10864420 DOI: 10.1007/s12311-023-01514-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Characterizing bedside oculomotor deficits is a critical factor in defining the clinical presentation of hereditary ataxias. Quantitative assessments are increasingly available and have significant advantages, including comparability over time, reduced examiner dependency, and sensitivity to subtle changes. To delineate the potential of quantitative oculomotor assessments as digital-motor outcome measures for clinical trials in ataxia, we searched MEDLINE for articles reporting on quantitative eye movement recordings in genetically confirmed or suspected hereditary ataxias, asking which paradigms are most promising for capturing disease progression and treatment response. Eighty-nine manuscripts identified reported on 1541 patients, including spinocerebellar ataxias (SCA2, n = 421), SCA3 (n = 268), SCA6 (n = 117), other SCAs (n = 97), Friedreich ataxia (FRDA, n = 178), Niemann-Pick disease type C (NPC, n = 57), and ataxia-telangiectasia (n = 85) as largest cohorts. Whereas most studies reported discriminatory power of oculomotor assessments in diagnostics, few explored their value for monitoring genotype-specific disease progression (n = 2; SCA2) or treatment response (n = 8; SCA2, FRDA, NPC, ataxia-telangiectasia, episodic-ataxia 4). Oculomotor parameters correlated with disease severity measures including clinical scores (n = 18 studies (SARA: n = 9)), chronological measures (e.g., age, disease duration, time-to-symptom onset; n = 17), genetic stratification (n = 9), and imaging measures of atrophy (n = 5). Recurrent correlations across many ataxias (SCA2/3/17, FRDA, NPC) suggest saccadic eye movements as potentially generic quantitative oculomotor outcome. Recommendation of other paradigms was limited by the scarcity of cross-validating correlations, except saccadic intrusions (FRDA), pursuit eye movements (SCA17), and quantitative head-impulse testing (SCA3/6). This work aids in understanding the current knowledge of quantitative oculomotor parameters in hereditary ataxias, and identifies gaps for validation as potential trial outcome measures in specific ataxia genotypes.
Collapse
Affiliation(s)
- Pilar Garces
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Chrystalina A Antoniades
- NeuroMetrology Lab, Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, OX3 9DU, UK
| | - Anna Sobanska
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Norbert Kovacs
- Department of Neurology, Medical School, University of Pecs, Pecs, Hungary
| | - Sarah H Ying
- Department of Otology and Laryngology and Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Anoopum S Gupta
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Susan Perlman
- University of California Los Angeles, Los Angeles, CA, USA
| | - David J Szmulewicz
- Balance Disorders and Ataxia Service, Royal Victoria Eye and Ear Hospital, East Melbourne, Melbourne, VIC, 3002, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC, 3052, Australia
| | - Chiara Pane
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Andrea H Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Laura B Jardim
- Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica/Centro de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Giulia Coarelli
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR7225, Sorbonne Université, Paris, France
- Department of Genetics, Neurogene National Reference Centre for Rare Diseases, Pitié-Salpêtrière University Hospital, Assistance Publique, Hôpitaux de Paris, Paris, France
| | - Michaela Dankova
- Department of Neurology, Centre of Hereditary Ataxias, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Andreas Traschütz
- Research Division "Translational Genomics of Neurodegenerative Diseases," Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Alexander A Tarnutzer
- Cantonal Hospital of Baden, Baden, Switzerland.
- Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Liu X, Li Y, Xu L, Zhang T, Cui H, Wei Y, Xia M, Su W, Tang Y, Tang X, Zhang D, Spillmann L, Max Andolina I, McLoughlin N, Wang W, Wang J. Spatial and Temporal Abnormalities of Spontaneous Fixational Saccades and Their Correlates With Positive and Cognitive Symptoms in Schizophrenia. Schizophr Bull 2024; 50:78-88. [PMID: 37066730 PMCID: PMC10754167 DOI: 10.1093/schbul/sbad039] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND AND HYPOTHESIS Visual fixation is a dynamic process, with the spontaneous occurrence of microsaccades and macrosaccades. These fixational saccades are sensitive to the structural and functional alterations of the cortical-subcortical-cerebellar circuit. Given that dysfunctional cortical-subcortical-cerebellar circuit contributes to cognitive and behavioral impairments in schizophrenia, we hypothesized that patients with schizophrenia would exhibit abnormal fixational saccades and these abnormalities would be associated with the clinical manifestations. STUDY DESIGN Saccades were recorded from 140 drug-naïve patients with first-episode schizophrenia and 160 age-matched healthy controls during ten separate trials of 6-second steady fixations. Positive and negative symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS). Cognition was assessed using the Measurement and Treatment Research to Improve Cognition in Schizophrenia Consensus Cognitive Battery (MCCB). STUDY RESULTS Patients with schizophrenia exhibited fixational saccades more vertically than controls, which was reflected in more vertical saccades with angles around 90° and a greater vertical shift of horizontal saccades with angles around 0° in patients. The fixational saccades, especially horizontal saccades, showed longer durations, faster peak velocities, and larger amplitudes in patients. Furthermore, the greater vertical shift of horizontal saccades was associated with higher PANSS total and positive symptom scores in patients, and the longer duration of horizontal saccades was associated with lower MCCB neurocognitive composite, attention/vigilance, and speed of processing scores. Finally, based solely on these fixational eye movements, a K-nearest neighbors model classified patients with an accuracy of 85%. Conclusions: Our results reveal spatial and temporal abnormalities of fixational saccades and suggest fixational saccades as a promising biomarker for cognitive and positive symptoms and for diagnosis of schizophrenia.
Collapse
Affiliation(s)
- Xu Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Yu Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Psychological Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiru Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanyan Wei
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengqing Xia
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjun Su
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaochen Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lothar Spillmann
- Department of Neurology, University of Freiburg, Freiburg, Germany
| | - Ian Max Andolina
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain and Brain-inspired Intelligence Technology, Shanghai, China
| | - Niall McLoughlin
- School of Optometry and Vision Science, University of Bradford, Bradford, UK
| | - Wei Wang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain and Brain-inspired Intelligence Technology, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Beijing, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Tichanek F. Psychiatric-Like Impairments in Mouse Models of Spinocerebellar Ataxias. CEREBELLUM (LONDON, ENGLAND) 2023; 22:14-25. [PMID: 35000108 DOI: 10.1007/s12311-022-01367-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Many patients with spinocerebellar ataxia (SCA) suffer from diverse neuropsychiatric issues, including memory impairments, apathy, depression, or anxiety. These neuropsychiatric aspects contribute per se to the reduced quality of life and worse prognosis. However, the extent to which SCA-related neuropathology directly contributes to these issues remains largely unclear. Behavioral profiling of various SCA mouse models can bring new insight into this question. This paper aims to synthesize recent findings from behavioral studies of SCA patients and mouse models. The role of SCA neuropathology for shaping psychiatric-like impairments may be exemplified in mouse models of SCA1. These mice evince robust cognitive impairments which are shaped by both the cerebellar as well as out-of-cerebellar pathology. Although emotional-related alternations are also present, they seem to be less robust and more affected by the specific distribution and character of the neuropathology. For example, cerebellar-specific pathology seems to provoke behavioral disinhibition, leading to seemingly decreased anxiety, whereas complex SCA1 neuropathology induces anxiety-like phenotype. In SCA1 mice with complex neuropathology, some of the psychiatric-like impairments are present even before marked cerebellar degeneration and ataxia and correlate with hippocampal atrophy. Similarly, complete or partial deletion of the implicated gene (Atxn1) leads to cognitive dysfunction and anxiety-like behavior, respectively, without apparent ataxia and cerebellar degeneration. Altogether, these findings collectively suggest that the neuropsychiatric issues have a biological basis partially independent of the cerebellum. As some neuropsychiatric issues may stem from weakening the function of the implicated gene, therapeutic reduction of its expression by molecular approaches may not necessarily mitigate the neuropsychiatric issues.
Collapse
Affiliation(s)
- Filip Tichanek
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic.
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic.
| |
Collapse
|
9
|
Vujosevic S, Parra MM, Hartnett ME, O'Toole L, Nuzzi A, Limoli C, Villani E, Nucci P. Optical coherence tomography as retinal imaging biomarker of neuroinflammation/neurodegeneration in systemic disorders in adults and children. Eye (Lond) 2023; 37:203-219. [PMID: 35428871 PMCID: PMC9012155 DOI: 10.1038/s41433-022-02056-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/10/2022] [Accepted: 03/31/2022] [Indexed: 01/28/2023] Open
Abstract
The retina and the optic nerve are considered extensions of the central nervous system (CNS) and thus can serve as the window for evaluation of CNS disorders. Spectral domain optical coherence tomography (OCT) allows for detailed evaluation of the retina and the optic nerve. OCT can non-invasively document changes in single retina layer thickness and structure due to neuronal and retinal glial cells (RGC) modifications in systemic and local inflammatory and neurodegenerative diseases. These can include evaluation of retinal nerve fibre layer and ganglion cell complex, hyper-reflective retinal spots (HRS, sign of activated microglial cells in the retina), subfoveal neuroretinal detachment, disorganization of the inner retinal layers (DRIL), thickness and integrity of the outer retinal layers and choroidal thickness. This review paper will report the most recent data on the use of OCT as a non invasive imaging biomarker for evaluation of the most common systemic neuroinflammatory and neurodegenerative/neurocognitive disorders in the adults and in paediatric population. In the adult population the main focus will be on diabetes mellitus, multiple sclerosis, optic neuromyelitis, neuromyelitis optica spectrum disorders, longitudinal extensive transverse myelitis, Alzheimer and Parkinson diseases, Amyotrophic lateral sclerosis, Huntington's disease and schizophrenia. In the paediatric population, demyelinating diseases, lysosomal storage diseases, Nieman Pick type C disease, hypoxic ischaemic encephalopathy, human immunodeficiency virus, leukodystrophies spinocerebellar ataxia will be addressed.
Collapse
Affiliation(s)
- Stela Vujosevic
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
- Eye Clinic, IRCCS MultiMedica, Milan, Italy.
| | - M Margarita Parra
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - M Elizabeth Hartnett
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Louise O'Toole
- Department of Ophthalmology Mater Private Network, Dublin, Ireland
| | - Alessia Nuzzi
- Eye Clinic, IRCCS MultiMedica, Milan, Italy
- University of Milan, Milan, Italy
| | - Celeste Limoli
- Eye Clinic, IRCCS MultiMedica, Milan, Italy
- University of Milan, Milan, Italy
| | - Edoardo Villani
- Eye Clinic, IRCCS MultiMedica, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Paolo Nucci
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| |
Collapse
|
10
|
Madhusudanan M. ABC of Gaze and Ocular Oscillations. Ann Indian Acad Neurol 2022; 25:S113-S119. [PMID: 36589031 PMCID: PMC9795706 DOI: 10.4103/aian.aian_400_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/06/2022] [Accepted: 09/20/2022] [Indexed: 01/04/2023] Open
Abstract
The chief goal of all eye movements is to maintain the image of an object steady on the retina especially the macula to preserve visual acuity. Gaze palsy refers to lack of the conjugate movements due to a failure of supranuclear control mechanisms. Supranuclear control is maintained by not one, but multiple eye movement systems and gaze mechanisms. Supranuclear gaze palsies can be associated with a myriad of aetiologies- from trauma or metabolic abnormalities to stroke, demyelinating disorders and space occupying lesions like tumours. Culprit lesions may be in frontal motor centres, brainstem gaze centres gaze or interconnecting segments. While the brainstem network for horizontal gaze lies in pons, that for vertical gaze is situated in midbrain. Further, ocular oscillations and nystagmus are abnormal eye movements that disrupt a steady fixation of gaze. It is prudent to be aware of various gaze pathways and their anatomical corelates in order to establish a topographic relationship of clinical findings. A systematic clinical examination may provide deep insights on the patho-physiological mechanisms along with aiding in localizing the lesion accurately. This review deals with systematic clinical approach to various gaze control systems.
Collapse
Affiliation(s)
- Mohan Madhusudanan
- Department of Neurology, Travancore Medicity Medical College, Kollam, Kerala, India,Address for correspondence: Dr. Mohan Madhusudanan, Professor and Head, Department of Neurology, Travancore Medicity Medical College, Kollam, Kerala, India. E-mail:
| |
Collapse
|
11
|
Ouchi H, Ishiguro H, Shibano K, Hara K, Sugawara M, Enomoto K, Miyata H. Primary degeneration of oculomotor, motor, and somatosensory systems and auditory and visual pathways in spinocerebellar ataxia type 7: A clinicopathological study in a Japanese autopsy case. Neuropathology 2022; 43:164-175. [PMID: 36168676 DOI: 10.1111/neup.12869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022]
Abstract
Spinocerebellar ataxia type 7 (SCA7) is an autosomal dominant neurodegenerative disorder characterized by progressive cerebellar ataxia associated with retinal degeneration. The disease is rare in Japan, and this is the first full description of clinicopathological findings in a Japanese autopsy case of genetically confirmed SCA7 having 49 cytosine-adenine-guanine (CAG) trinucleotide repeats in the ataxin 7 gene. A 34-year-old Japanese man with no family history of clinically apparent neurodegenerative diseases presented with gait disturbance, gradually followed by truncal instability with progressive visual loss by the age of 42 years. He became wheelchair-dependent by 51 years old, neurologically exhibiting cerebellar ataxia, slow eye movement, slurred and scanning speech, lower limb spasticity, hyperreflexia, action-related slowly torsional dystonic movements in the trunk and limbs, diminished vibratory sensation in the lower limbs, auditory impairment, and macular degeneration. Brain magnetic resonance imaging revealed atrophy of the brainstem and cerebellum. He died of pneumonia at age 60 with a 26-year clinical duration of disease. Postmortem neuropathological examination revealed pronounced atrophy of the spinal cord, brainstem, cerebellum, external globus pallidus (GP), and subthalamic nucleus, microscopically showing neuronal cell loss and fibrillary astrogliosis with polyglutamine-immunoreactive neuronal nuclei and/or neuronal nuclear inclusions (NNIs). Degeneration was also accentuated in the oculomotor system, auditory and visual pathways, upper and lower motor neurons, and somatosensory system, including the spinal dorsal root ganglia. There was a weak negative correlation between the frequency of nuclear polyglutamine-positive neurons and the extent of neuronal cell loss. Clinicopathological features in the present case suggest that neurological symptoms, such as oculomotor, auditory, visual, and sensory impairments, are attributable to degeneration in their respective projection systems affected by SCA7 pathomechanisms and that dystonic movement is related to more significant degeneration in the external than internal GP.
Collapse
Affiliation(s)
- Haruka Ouchi
- Department of Neurology, Japanese Red Cross Akita Hospital, Akita, Japan
| | - Hideaki Ishiguro
- Department of Neurology, Japanese Red Cross Akita Hospital, Akita, Japan.,Department of Neurology, Onoba Hospital, Akita, Japan
| | - Ken Shibano
- Department of Neurology, Japanese Red Cross Akita Hospital, Akita, Japan
| | - Kenju Hara
- Department of Neurology, Japanese Red Cross Akita Hospital, Akita, Japan
| | | | - Katsuhiko Enomoto
- Department of Pathology, Japanese Red Cross Akita Hospital, Akita, Japan
| | - Hajime Miyata
- Department of Neuropathology, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, Akita, Japan
| |
Collapse
|
12
|
Saccadic premotor burst neurons and histochemical correlates of their firing patterns in rhesus monkey. J Neurol Sci 2022; 439:120328. [DOI: 10.1016/j.jns.2022.120328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/20/2022]
|
13
|
Boutsen F, Park E, Dvorak JD. Reading Warm-Up, Reading Skill, and Reading Prosody When Reading the My Grandfather Passage: An Exploratory Study Born Out of the Motor Planning Theory of Prosody and Reading Prosody Research. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2022; 65:2047-2063. [PMID: 35640099 DOI: 10.1044/2022_jslhr-21-00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
PURPOSE The Motor Planning Theory of Prosody and reading prosody research indicate that "out of the blue" oral reading, as practiced in clinical and research settings, invokes surface rather than covert prosody, particularly when readers are recorded, less skilled, and/or speech impaired. Warm-up is not considered in passage reading for motor-speech assessment. We report on a preliminary study aimed to investigate the effect of warm-up on reading prosody in two conditions: silent reading alone and reading "out of the blue" followed by silent reading. A secondary aim of the study was to examine the effect of reading skill on reading prosody. METHOD Twenty-one monolingual, English-speaking volunteers were recorded reading the My Grandfather Passage (GP) while their eye movements were tracked. Participants were randomly assigned to one of two reading conditions: (a) silent-oral (SO) and (b) oral-silent-oral (OSO). In the SO condition, participants read the GP silently as a warm-up for the subsequent oral reading. In the OSO condition, participants first read the GP aloud ("out of the blue") and then read the same passage silently with the instruction to do this in preparation for a second oral reading. Reading skill was quantified using eye-voice span and Wide Range Achievement Test-Fourth Edition testing. Reading prosody was evaluated using pause indexes, the Acoustic Multidimensional Prosody Index, and speech rate. CONCLUSIONS One oral reading before a silent reading but not a silent reading alone before oral reading was shown to affect reading prosody. In terms of reading skill, results indicate that predictive associations patterned differently in the reading conditions explored, suggesting different underlying skill sets.
Collapse
Affiliation(s)
- Frank Boutsen
- Department of Communication Disorders, New Mexico State University, Las Cruces
| | - Eunsun Park
- Department of Communication Disorders and Sciences, William Paterson University, Wayne, NJ
| | - Justin D Dvorak
- Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City
| |
Collapse
|
14
|
Mahanama B, Jayawardana Y, Rengarajan S, Jayawardena G, Chukoskie L, Snider J, Jayarathna S. Eye Movement and Pupil Measures: A Review. FRONTIERS IN COMPUTER SCIENCE 2022. [DOI: 10.3389/fcomp.2021.733531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our subjective visual experiences involve complex interaction between our eyes, our brain, and the surrounding world. It gives us the sense of sight, color, stereopsis, distance, pattern recognition, motor coordination, and more. The increasing ubiquity of gaze-aware technology brings with it the ability to track gaze and pupil measures with varying degrees of fidelity. With this in mind, a review that considers the various gaze measures becomes increasingly relevant, especially considering our ability to make sense of these signals given different spatio-temporal sampling capacities. In this paper, we selectively review prior work on eye movements and pupil measures. We first describe the main oculomotor events studied in the literature, and their characteristics exploited by different measures. Next, we review various eye movement and pupil measures from prior literature. Finally, we discuss our observations based on applications of these measures, the benefits and practical challenges involving these measures, and our recommendations on future eye-tracking research directions.
Collapse
|
15
|
Ocular Motor and Vestibular Characteristics of Antiglutamic Acid Decarboxylase-Associated Neurologic Disorders. J Neuroophthalmol 2021; 41:e665-e671. [PMID: 33105411 DOI: 10.1097/wno.0000000000001084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Antiglutamic acid decarboxylase (GAD)-associated neurologic disorders are rare, with varied presentations, including stiff-person syndrome (SPS) and cerebellar ataxia (CA). Vestibular and ocular motor (VOM) dysfunction can be the main presentation in a subset of patients. METHODS Retrospective review of the Johns Hopkins Hospital medical records from 1997 to 2018 identified a total of 22 patients with a diagnosis of anti-GAD-associated SPS or CA who had detailed VOM assessments. Eight had prominent VOM dysfunction at the initial symptom onset and were referred to neurology from ophthalmology or otolaryngology ("early dominant"). Fourteen patients had VOM dysfunction that was not their dominant presentation and were referred later in their disease course from neurology to neuro-ophthalmology ("nondominant"). We reviewed clinical history, immunological profiles, and VOM findings, including available video-oculography. RESULTS In the 8 patients with early dominant VOM dysfunction, the average age of symptom onset was 53 years, and 5 were men. The most common symptom was dizziness, followed by diplopia. Seven had features of CA, and 4 had additional features of SPS. None had a structural lesion on brain MRI accounting for their symptoms. The most common VOM abnormalities were downbeating and gaze-evoked nystagmus and saccadic pursuit. All received immune therapy and most received symptomatic therapy. Most experienced improvement in clinical outcome measures (modified Rankin scale and/or timed 25-foot walk test) or VOM function. By contrast, in the 14 patients in whom VOM dysfunction was nondominant, most had an SPS phenotype and were women. VOM abnormalities, when present, were more subtle, although mostly still consistent with cerebellar and/or brainstem dysfunction. CONCLUSIONS Individuals with anti-GAD-associated neurologic disorders may present with prominent VOM abnormalities at the initial symptom onset that localize to the cerebellum and/or brainstem. In our cohort, immune and symptomatic therapies improved clinical outcomes and symptomatology.
Collapse
|
16
|
Atypical Phenotype in a Spinocerebellar Ataxia Type 2 Kindred. Tremor Other Hyperkinet Mov (N Y) 2021; 11:32. [PMID: 34430069 PMCID: PMC8344955 DOI: 10.5334/tohm.639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/27/2021] [Indexed: 11/20/2022] Open
Abstract
Background Non-ataxic manifestations in autosomal dominant cerebellar ataxias are variable and influenced by CAG repeat length and age at onset. This report describes a genetically proven SCA2 kindred with an atypical phenotype resembling SCA3. Case Report The phenotype of five genetically proven patients with SCA2 in this report differed from the typical phenotype owing to persistence of reflexes late into the course of illness, absence of peripheral neuropathy, and very prominent facial twitches. Discussion Despite descriptions of typical phenotypes of SCA, significant variations occur, especially within kindreds. Caution should be exercised in clinical diagnoses of SCA, especially with atypical features.
Collapse
|
17
|
Lacruz Ballester L, Fernandez-Fournier M, Puertas Muñoz I, Rodriguez Fraga O, Lastras Fernandez-Escandon C, Rodriguez de Rivera Garrido FJ, Alba Suarez EM, Tallon Barranco A. Serum glutamate decarboxylase antibodies and neurological disorders: when to suspect their association? Neurol Sci 2021; 43:633-641. [PMID: 33914193 DOI: 10.1007/s10072-021-05281-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/21/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To explore different neurological manifestations with suspicion of being associated to serum glutamate decarboxylase antibodies (GAD-Abs) in order to better characterize anti-GAD neurological syndromes. METHODS Observational retrospective study including all patients for whom GAD65-Abs titers in serum were requested by the Neurology Department at La Paz University Hospital between 2015 and 2019. GAD-Abs were measured by ELISA. Demographic data, neurological symptoms, comorbidity with diabetes mellitus (DM) or with another autoimmune disease, and GAD-Abs titers were studied. Stiff-person syndrome, ataxia, encephalitis, and epilepsy were considered typical anti-GAD neurological syndromes and were compared to other atypical manifestations. RESULTS A total of 173 patients (51.7% men, mean age 51.62) were included. A progressive increase in requests of serum GAD-Abs has occurred over the last 5 years, especially in patients with atypical neurological manifestations. GAD-Abs were found in the serum of 22 patients (12.7%); of those, 15 (68.18%) suffered a typical anti-GAD syndrome. Presence of DM or another organ-specific autoimmune disease was predictive of GAD-AB seropositivity (p < 0.001). 6.6% of requested patients with an atypical syndrome had GAD-Abs, but serum levels were significantly lower than those found in patients with a typical syndrome (706.67 vs 1430.23 UI/mL; Mann-Whitney U, p = 0.034), and were finally diagnosed with another neurological disease. CONCLUSION Serum GAD-Abs were infrequently found in patients with clinical phenotypes other than those classically described as anti-GAD disorders, and with very low titers. In typical anti-GAD syndromes, there is a high comorbidity with DM and with other autoimmune diseases, and high serum GAD-Abs levels are usually present.
Collapse
Affiliation(s)
- Laura Lacruz Ballester
- Department of Neurology, Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046, Madrid, Spain.
| | - Mireya Fernandez-Fournier
- Department of Neurology, Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046, Madrid, Spain
| | - Inmaculada Puertas Muñoz
- Department of Neurology, Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046, Madrid, Spain
| | - Olaia Rodriguez Fraga
- Department of Clinical Analysis, Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046, Madrid, Spain
| | | | | | - Elda Maria Alba Suarez
- Department of Neurology, Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046, Madrid, Spain
| | - Antonio Tallon Barranco
- Department of Neurology, Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046, Madrid, Spain
| |
Collapse
|
18
|
Deciphering the saccade velocity profile of progressive supranuclear palsy: A sign of latent cerebellar/brainstem dysfunction? Clin Neurophysiol 2021; 141:147-159. [PMID: 33632587 DOI: 10.1016/j.clinph.2020.12.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 12/02/2020] [Accepted: 12/05/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To study whether the velocity profile of horizontal saccades could be used as an indicator of brainstem and cerebellar output dysfunction, depending on progressive supranuclear palsy (PSP) subtype. METHODS We compared the velocity profiles in 32 PSP patients of various subtypes with 38 age-matched normal subjects, including Richardson syndrome (RS), PSP-parkinsonism (PSPp), and pure akinesia (PAGF), and cerebellar subtypes of PSP (PSPc). RESULTS PSP patients showed reduced peak velocity along with increased duration, especially in the deceleration phase. This alteration was more prominent for larger target eccentricities (20-30 degrees), and correlated with disease severity. The changes were most pronounced in PSPc patients, with irregular increases and decreases in velocity profile, followed by RS patients, whereas the change was smaller in PSPp and normal in PAGF patients. CONCLUSIONS Saccade velocity profile can be an indicator of brainstem and/or cerebellar output. Altered velocity profile of PSP patients may reflect the pathology in the brainstem, but may also reflect cerebellar dysfunction, most prominently in PSPc. SIGNIFICANCE Saccade velocity profile may be used as an indicator of latent cerebellar/brainstem dysfunction.
Collapse
|
19
|
Vandervert L. The prominent role of the cerebellum in the social learning of the phonological loop in working memory: How language was adaptively built from cerebellar inner speech required during stone-tool making. AIMS Neurosci 2020; 7:333-343. [PMID: 32995491 PMCID: PMC7519967 DOI: 10.3934/neuroscience.2020020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/30/2020] [Indexed: 01/16/2023] Open
Abstract
Based on advances in cerebellum research as to its cognitive, social, and language contributions to working memory, the purpose of this article is to describe new support for the prominent involvement of cerebellar internal models in the adaptive selection of language. Within this context it has been proposed that (1) cerebellar internal models of inner speech during stone-tool making accelerated the adaptive evolution of new cause-and-effect sequences of precision stone-tool knapping requirements, and (2) that these evolving cerebellar internal models coded (i.e., learned in corticonuclear microcomplexes) such cause-and-effect sequences as phonological counterparts and, these, when sent to the cerebral cortex, became new phonological working memory. This article describes newer supportive research findings on (1) the cerebellum's role in silent speech in working memory, and (2) recent findings on genetic aspects (FOXP2) of the role of silent speech in language evolution. It is concluded that within overall cerebro-cerebellar evolution, without the evolution of cerebellar coding of stone-tool making sequences of primitive working memory (beginning approximately 1.7 million years ago) language would not have evolved in the subsequent evolution of Homo sapiens.
Collapse
Affiliation(s)
- Larry Vandervert
- American Nonlinear Systems, 1529 W. Courtland Ave. Spokane, WA 99205, USA
| |
Collapse
|
20
|
Park JY, Joo K, Woo SJ. Ophthalmic Manifestations and Genetics of the Polyglutamine Autosomal Dominant Spinocerebellar Ataxias: A Review. Front Neurosci 2020; 14:892. [PMID: 32973440 PMCID: PMC7472957 DOI: 10.3389/fnins.2020.00892] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022] Open
Abstract
Spinocerebellar ataxia (SCA) is a part of the cerebellar neurodegenerative disease group that is diverse in genetics and phenotypes. It usually shows autosomal dominant inheritance. SCAs, always together with the cerebellar degeneration, may exhibit clinical deficits in brainstem or eye, especially retina or optic nerve. Interestingly, autosomal dominant SCAs share a common genetic mechanism; the length of the glutamine chain is abnormally expanded due to the increase in the cytosine–adenine–guanine (CAG) repeats of the disease causing gene. Studies have suggested that the mutant ataxin induces alteration of protein conformation and abnormal aggregation resulting in nuclear inclusions, and causes cellular loss of photoreceptors through a toxic effect. As a result, these pathologic changes induce a downregulation of genes involved in the phototransduction, development, and differentiation of photoreceptors such as CRX, one of the photoreceptor transcription factors. However, the exact mechanism of neuronal degeneration by mutant ataxin restricted to only certain type of neuronal cell including cerebellar Purkinje neurons and photoreceptor is still unclear. The most common SCAs are types 1, 2, 3, 6, 7, and 17 which contain about 80% of autosomal dominant SCA cases. Various aspects of eye movement abnormalities are evident depending on the degree of cerebellar and brainstem degeneration in SCAs. In addition, certain types of SCAs such as SCA7 are characterized by both cerebellar ataxia and visual loss mainly due to retinal degeneration. The severity of the retinopathy can vary from occult macular photoreceptor disruption to extensive retinal atrophy and is correlated with the number of CAG repeats. The value of using optical coherence tomography in conjunction with electrodiagnostic and genetic testing is emphasized as the combination of these tests can provide critical information regarding the etiology, morphological evaluation, and functional significances. Therefore, ophthalmologists need to recognize and differentiate SCAs in order to properly diagnose and evaluate the disease. In this review, we have described and discussed SCAs showing ophthalmic abnormalities with particular attention to their ophthalmic features, neurodegenerative mechanisms, genetics, and future perspectives.
Collapse
Affiliation(s)
- Jun Young Park
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Kwangsic Joo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
21
|
Zuma E Maia F, Ramos BF, Mangabeira Albernaz PL, Cal R, Schubert MC. An Algorithm for the Diagnosis of Vestibular, Cerebellar, and Oculomotor Disorders Using a Systematized Clinical Bedside Examination. THE CEREBELLUM 2020; 20:760-767. [PMID: 32180117 DOI: 10.1007/s12311-020-01124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The bedside examination associated with their clinical history remains the most critical means to accurately diagnose the cause for most of the signs and symptoms related to pathology of the cerebellum and vestibular system in patients presenting with dizziness and imbalance. This paper focuses on those critical bedside examinations, suggests when laboratory testing might be useful to confirm the clinical suspicion, and considers the shared neural circuitry within the visual and vestibular systems to offer an algorithmic approach in conducting the clinical bedside examination.
Collapse
Affiliation(s)
| | | | | | - Renato Cal
- Otolaryngology, Universidade Federal do Pará, Belém, Brazil
| | - Michael C Schubert
- Laboratory of Vestibular Neuroadaptation, Department of Otolaryngology Head and Neck Surgery and Department of Physical Medicine and Rehabilitation, The Johns Hopkins University School of Medicine, Broadway, MD, USA
| |
Collapse
|
22
|
Egorova PA, Bezprozvanny IB. Molecular Mechanisms and Therapeutics for Spinocerebellar Ataxia Type 2. Neurotherapeutics 2019; 16:1050-1073. [PMID: 31435879 PMCID: PMC6985344 DOI: 10.1007/s13311-019-00777-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The effective therapeutic treatment and the disease-modifying therapy for spinocerebellar ataxia type 2 (SCA2) (a progressive hereditary disease caused by an expansion of polyglutamine in the ataxin-2 protein) is not available yet. At present, only symptomatic treatment and methods of palliative care are prescribed to the patients. Many attempts were made to study the physiological, molecular, and biochemical changes in SCA2 patients and in a variety of the model systems to find new therapeutic targets for SCA2 treatment. A better understanding of the uncovered molecular mechanisms of the disease allowed the scientific community to develop strategies of potential therapy and helped to create some promising therapeutic approaches for SCA2 treatment. Recent progress in this field will be discussed in this review article.
Collapse
Affiliation(s)
- Polina A Egorova
- Laboratory of Molecular Neurodegeneration, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, 195251, Russia.
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, ND12.200, Dallas, Texas, 75390, USA.
| |
Collapse
|