1
|
Skolotneva ES, Kosman E, Kelbin VN, Morozova EV, Laprina YV, Baranova OA, Kolomiets TM, Kiseleva MI, Sergeeva EM, Salina EA. SSR Variability of Stem Rust Pathogen on Spring Bread Wheat in Russia. PLANT DISEASE 2023; 107:493-499. [PMID: 36265157 DOI: 10.1094/pdis-10-22-2373-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Wheat stem rust, caused by Puccinia graminis f. sp. tritici, which used to be a harmful disease of winter wheat in the southern part of Russia, has been largely affecting the yield of spring bread wheat in the territories of the temperate climate zone since 2009. In total, 222 P. graminis f. sp. tritici isolates were obtained from samples of susceptible cultivars of spring bread wheat in Central and Volga regions and Omsk and Novosibirsk provinces in 2019. Genotyping of the isolates was carried out at 16 simple-sequence repeat (SSR) loci. Number of alleles, proportion of heterozygotes, and deviation from Hardy-Weinberg equilibrium were determined at each SSR locus. Based on genetic variability of SSR genotypes, it was shown that the P. graminis f. sp. tritici population is subdivided into two large clusters in the territory of the Russian temperate climate zone: the "European" population (the Central region) and the "Asian" one (the Volga region and two main wheat provinces of Western Siberia). Both of the P. graminis f. sp. tritici populations are characterized by a mixed mode of reproduction (sexual and clonal) but different sources of inoculum seem to shape a genotype structure within them. A group of P. graminis f. sp. tritici genotypes with high variability, the inbreeding coefficient closed to zero, and low observed heterozygosity was revealed among samples from Omsk. Moreover, two singular SSR genotypes identified among the Asian samples of P. graminis f. sp. tritici isolates should attract special attention in the monitoring of stem rust in order to disclose unexpected rapid changes of the pathogen in the corresponding regions and to prevent disease outbreak.
Collapse
Affiliation(s)
- Ekaterina S Skolotneva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Evsey Kosman
- Institute for Cereal Crops Research, School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Vasiliy N Kelbin
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Eugenia V Morozova
- Branch of Institute of Cytology and Genetics SB RAS, Siberian Research Institute of Plant Industry and Breeding, Krasnoobsk 630501, Russia
| | - Yulia V Laprina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Olga A Baranova
- All-Russian Institute of Plant Protection, St. Petersburg-Pushkin 196608, Russia
| | | | - Marina I Kiseleva
- All-Russian Research Institute of Phytopathology, Moscow 143050, Russia
| | - Ekaterina M Sergeeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena A Salina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Rodriguez-Algaba J, Hovmøller MS, Schulz P, Hansen JG, Lezáun JA, Joaquim J, Randazzo B, Czembor P, Zemeca L, Slikova S, Hanzalová A, Holdgate S, Wilderspin S, Mascher F, Suffert F, Leconte M, Flath K, Justesen AF. Stem rust on barberry species in Europe: Host specificities and genetic diversity. Front Genet 2022; 13:988031. [PMID: 36246643 PMCID: PMC9554944 DOI: 10.3389/fgene.2022.988031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The increased emergence of cereal stem rust in southern and western Europe, caused by the pathogen Puccinia graminis, and the prevalence of alternate (sexual) host, Berberis species, have regained attention as the sexual host may serve as source of novel pathogen variability that may pose a threat to cereal supply. The main objective of the present study was to investigate the functional role of Berberis species in the current epidemiological situation of cereal stem rust in Europe. Surveys in 11 European countries were carried out from 2018 to 2020, where aecial infections from five barberry species were collected. Phylogenetic analysis of 121 single aecial clusters of diverse origin using the elongation factor 1-α gene indicated the presence of different special forms (aka formae speciales) of P. graminis adapted to different cereal and grass species. Inoculation studies using aecial clusters from Spain, United Kingdom, and Switzerland resulted in 533 stem rust isolates sampled from wheat, barley, rye, and oat, which confirmed the presence of multiple special forms of P. graminis. Microsatellite marker analysis of a subset of 192 sexually-derived isolates recovered on wheat, barley and rye from the three populations confirmed the generation of novel genetic diversity revealed by the detection of 135 multilocus genotypes. Discriminant analysis of principal components resulted in four genetic clusters, which grouped at both local and country level. Here, we demonstrated that a variety of Berberis species may serve as functional alternate hosts for cereal stem rust fungi and highlights the increased risks that the sexual cycle may pose to cereal production in Europe, which calls for new initiatives within rust surveillance, epidemiological research and resistance breeding.
Collapse
Affiliation(s)
- Julian Rodriguez-Algaba
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Slagelse, Denmark
- *Correspondence: Julian Rodriguez-Algaba,
| | - Mogens S. Hovmøller
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Slagelse, Denmark
| | - Philipp Schulz
- Federal Research Centre for Cultivated Plants, Julius Kühn-Institut, Institute for Plant Protection in Field Crops and Grassland, Kleinmachnow, Germany
| | - Jens G. Hansen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Slagelse, Denmark
| | - Juan Antonio Lezáun
- INTIA, Institute for Agrifood Technology and Infrastructures of Navarra, Villava, Navarra, Spain
| | - Jessica Joaquim
- Agroscope, Crop Plant Breeding and Genetic Ressources, Nyon, Switzerland
| | | | - Paweł Czembor
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, Poland
| | - Liga Zemeca
- Institute of Plant Protection Research “Agrihorts”, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | | | - Alena Hanzalová
- Crop Research Institute, Department of Genetics and Plant Breeding Methods, Prague, Czech Republic
| | - Sarah Holdgate
- National Institute of Agricultural Botany (NIAB), Cambridge, United Kingdom
| | - Sarah Wilderspin
- National Institute of Agricultural Botany (NIAB), Cambridge, United Kingdom
| | - Fabio Mascher
- Agroscope, Crop Plant Breeding and Genetic Ressources, Nyon, Switzerland
| | - Frederic Suffert
- INRAE (French National Institute for Agriculture Food and Environment), Université Paris-Saclay, Thiverval-Grignon, France
| | - Marc Leconte
- INRAE (French National Institute for Agriculture Food and Environment), Université Paris-Saclay, Thiverval-Grignon, France
| | - Kerstin Flath
- Federal Research Centre for Cultivated Plants, Julius Kühn-Institut, Institute for Plant Protection in Field Crops and Grassland, Kleinmachnow, Germany
| | - Annemarie F. Justesen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Slagelse, Denmark
| |
Collapse
|
3
|
McTaggart AR, James TY, Idnurm A, Park RF, Shuey LS, Demers MNK, Aime MC. Sexual reproduction is the null hypothesis for life cycles of rust fungi. PLoS Pathog 2022; 18:e1010439. [PMID: 35617196 PMCID: PMC9135232 DOI: 10.1371/journal.ppat.1010439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sexual reproduction, mutation, and reassortment of nuclei increase genotypic diversity in rust fungi. Sexual reproduction is inherent to rust fungi, coupled with their coevolved plant hosts in native pathosystems. Rust fungi are hypothesised to exchange nuclei by somatic hybridisation with an outcome of increased genotypic diversity, independent of sexual reproduction. We provide criteria to demonstrate whether somatic exchange has occurred, including knowledge of parental haplotypes and rejection of fertilisation in normal rust life cycles.
Collapse
Affiliation(s)
- Alistair R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, Queensland, Australia
| | - Timothy Y. James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alexander Idnurm
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Robert F. Park
- Plant Breeding Institute, The University of Sydney, Cobbitty, New South Wales, Australia
| | - Louise S. Shuey
- Queensland Department of Agriculture and Fisheries, Ecosciences Precinct, Dutton Park, Queensland, Australia
| | - Michelle N. K. Demers
- Plant Breeding Institute, The University of Sydney, Cobbitty, New South Wales, Australia
| | - M. Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
4
|
Capador H, Samils B, Kaitera J, Olson Å. Genetic evidence for sexual reproduction and multiple infections of Norway spruce cones by the rust fungus Thekopsora areolata. Ecol Evol 2020; 10:7389-7403. [PMID: 32760536 PMCID: PMC7391340 DOI: 10.1002/ece3.6466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 11/06/2022] Open
Abstract
Rust fungi are obligate parasites, of plants, with complex and in many cases poorly known life cycles which may include host alteration and up to five spore types with haploid, diploid, and dikaryotic nuclear stages. This study supports that Thekopasora areolata, the causal agent of cherry-spruce rust in Norway spruce, is a macrocyclic heteroecious fungus with all five spore stages which uses two host plants Prunus padus and Picea abies to complete its life cycle. High genotypic diversity without population structure was found, which suggests predominantly sexual reproduction, random mating and a high gene flow within and between the populations in Fennoscandia. There was no evidence for an autoecious life cycle resulting from aeciospore infection of pistillate cones that would explain the previously reported rust epidemics without the alternate host. However, within cones and scales identical multilocus genotypes were repeatedly sampled which can be explained by vegetative growth of the fertilized mycelia or repeated mating of mycelium by spermatia of the same genotype. The high genotypic diversity within cones and haplotype inference show that each pistillate cone is infected by several basidiospores. This study provides genetic evidence for high gene flow, sexual reproduction, and multiple infections of Norway spruce cone by the rust fungus T. areolata which expands the general understanding of the biology of rust fungi.
Collapse
Affiliation(s)
- Hernán Capador
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | - Berit Samils
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | - Juha Kaitera
- Natural Resources Institute FinlandUniversity of OuluOuluFinland
| | - Åke Olson
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
5
|
Covo S. Genomic Instability in Fungal Plant Pathogens. Genes (Basel) 2020; 11:E421. [PMID: 32295266 PMCID: PMC7230313 DOI: 10.3390/genes11040421] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/29/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
Fungi and fungal-like organisms (oomycetes) that cause diseases in plants have impacted human communities for centuries and probably from the dawn of agriculture. In modern agriculture, there is a constant race between new strategies to manage fungal plant pathogens and their ability to adapt. An important component in this race is fungal genetic diversity. Mechanisms such as sexual and parasexual recombination that contribute to the creation of novel allele combinations in fungal plant pathogens are briefly discussed in the first part of this review. Advances in genomics have enabled the investigation of chromosomal aberrations of agriculturally important fungal isolates at the nucleotide level. Some of these cases are summarized in the second part of this review; it is claimed that the effect of chromosomal aberrations on pathogenicity should be studied mechanistically. More data on the effect of gene copy number variations on phenotypes that are relevant to agriculture are especially needed. Genome rearrangements through translocations have shaped the genome of fungal plant pathogens by creating lineage-specific chromosome territories encoding for genes participating in plant diseases. Pathogenicity chromosomes are unique cases of such lineage-specific genetic elements, interestingly these chromosomes can be transferred horizontally and thus transforming a non-pathogenic strain to a pathogenic one. The third part of this review describes our attempts to reveal mutators in fungal plant pathogens by identifying fungi that lack important DNA repair genes or respond to DNA damage in an unconventional way. We found that a group of fungal plant pathogens lack conserved genes that are needed for an important Holliday junction resolution pathway. In addition, in Fusarium oxysporum, the rate-limiting step in dNTP production is not induced under DNA replication stress. This is very different from organisms from bacteria to humans. It remains to be seen if these mechanisms promote genetic instability in fungal plant pathogens.
Collapse
Affiliation(s)
- Shay Covo
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University, Rehovot 76100001, Israel
| |
Collapse
|
6
|
Harris MO, Pitzschke A. Plants make galls to accommodate foreigners: some are friends, most are foes. THE NEW PHYTOLOGIST 2020; 225:1852-1872. [PMID: 31774564 DOI: 10.1111/nph.16340] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
At the colonization site of a foreign entity, plant cells alter their trajectory of growth and development. The resulting structure - a plant gall - accommodates various needs of the foreigner, which are phylogenetically diverse: viruses, bacteria, protozoa, oomycetes, true fungi, parasitic plants, and many types of animals, including rotifers, nematodes, insects, and mites. The plant species that make galls also are diverse. We assume gall production costs the plant. All is well if the foreigner provides a gift that makes up for the cost. Nitrogen-fixing nodule-inducing bacteria provide nutritional services. Gall wasps pollinate fig trees. Unfortunately for plants, most galls are made for foes, some of which are deeply studied pathogens and pests: Agrobacterium tumefaciens, Rhodococcus fascians, Xanthomonas citri, Pseudomonas savastanoi, Pantoea agglomerans, 'Candidatus' phytoplasma, rust fungi, Ustilago smuts, root knot and cyst nematodes, and gall midges. Galls are an understudied phenomenon in plant developmental biology. We propose gall inception for discovering unifying features of the galls that plants make for friends and foes, talk about molecules that plants and gall-inducers use to get what they want from each other, raise the question of whether plants colonized by arbuscular mycorrhizal fungi respond in a gall-like manner, and present a research agenda.
Collapse
Affiliation(s)
- Marion O Harris
- Department of Entomology, North Dakota State University, Fargo, ND, 58014, USA
| | - Andrea Pitzschke
- Department of Biosciences, Salzburg University, Hellbrunner Strasse 34, A-5020, Salzburg, Austria
| |
Collapse
|