1
|
Rohr K, Gremm L, Geinitz B, Jourdier E, Wiechert W, Ben Chaabane F, Oldiges M. Optimizing microbioreactor cultivation strategies for Trichoderma reesei: from batch to fed-batch operations. Microb Cell Fact 2024; 23:112. [PMID: 38622596 PMCID: PMC11334512 DOI: 10.1186/s12934-024-02371-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/18/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Filamentous fungi have long been recognized for their exceptional enzyme production capabilities. Among these, Trichoderma reesei has emerged as a key producer of various industrially relevant enzymes and is particularly known for the production of cellulases. Despite the availability of advanced gene editing techniques for T. reesei, the cultivation and characterization of resulting strain libraries remain challenging, necessitating well-defined and controlled conditions with higher throughput. Small-scale cultivation devices are popular for screening bacterial strain libraries. However, their current use for filamentous fungi is limited due to their complex morphology. RESULTS This study addresses this research gap through the development of a batch cultivation protocol using a microbioreactor for cellulase-producing T. reesei strains (wild type, RutC30 and RutC30 TR3158) with offline cellulase activity analysis. Additionally, the feasibility of a microscale fed-batch cultivation workflow is explored, crucial for mimicking industrial cellulase production conditions. A batch cultivation protocol was developed and validated using the BioLector microbioreactor, a Round Well Plate, adapted medium and a shaking frequency of 1000 rpm. A strong correlation between scattered light intensity and cell dry weight underscores the reliability of this method in reflecting fungal biomass formation, even in the context of complex fungal morphology. Building on the batch results, a fed-batch strategy was established for T. reesei RutC30. Starting with a glucose concentration of 2.5 g l- 1 in the batch phase, we introduced a dual-purpose lactose feed to induce cellulase production and prevent carbon catabolite repression. Investigating lactose feeding rates from 0.3 to 0.75 g (l h)- 1 , the lowest rate of 0.3 g (l h)- 1 revealed a threefold increase in cellobiohydrolase and a fivefold increase in β -glucosidase activity compared to batch processes using the same type and amount of carbon sources. CONCLUSION We successfully established a robust microbioreactor batch cultivation protocol for T. reesei wild type, RutC30 and RutC30 TR3158, overcoming challenges associated with complex fungal morphologies. The study highlights the effectiveness of microbioreactor workflows in optimizing cellulase production with T. reesei, providing a valuable tool for simultaneous assessment of critical bioprocess parameters and facilitating efficient strain screening. The findings underscore the potential of microscale fed-batch strategies for enhancing enzyme production capabilities, revealing insights for future industrial applications in biotechnology.
Collapse
Affiliation(s)
- Katja Rohr
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Lisa Gremm
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Bertram Geinitz
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Etienne Jourdier
- IFP Énergies nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
- Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, 52074, Aachen, Germany
| | - Fadhel Ben Chaabane
- IFP Énergies nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Marco Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany.
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany.
| |
Collapse
|
2
|
Soerjawinata W, Kockler I, Wommer L, Frank R, Schüffler A, Schirmeister T, Ulber R, Kampeis P. Novel bioreactor internals for the cultivation of spore-forming fungi in pellet form. Eng Life Sci 2022; 22:474-483. [PMID: 35865648 PMCID: PMC9288991 DOI: 10.1002/elsc.202100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/18/2022] Open
Abstract
This study introduced an automated long-term fermentation process for fungals grown in pellet form. The goal was to reduce the overgrowth of bioreactor internals and sensors while better rheological properties in the fermentation broth, such as oxygen transfer and mixing time, can be achieved. Because this could not be accomplished with continuous culture and fed-batch fermentation, repeated-batch fermentation was implemented with the help of additional bioreactor internals ("sporulation supports"). This should capture some biomass during fermentation. After harvesting the suspended biomass, intermediate cleaning was performed using a cleaning device. The biomass retained on the sporulation support went through the sporulation phase. The spores were subsequently used as inocula for the next batch. The reason for this approach was that the retained pellets could otherwise cause problems (e.g., overgrowth on sensors) in subsequent batches because the fungus would then show undesirable hyphal growth. Various sporulation supports were tested for sufficient biomass fixation to start the next batch. A reproducible spore concentration within the range of the requirements could be achieved by adjusting the sporulation support (design and construction material), and an intermediate cleaning adapted to this.
Collapse
Affiliation(s)
- Winda Soerjawinata
- Institute for Biotechnical Process DesignTrier University of Applied Sciences, Environmental Campus BirkenfeldHoppstädten‐WeiersbachGermany
| | - Isabelle Kockler
- Institute for Biotechnical Process DesignTrier University of Applied Sciences, Environmental Campus BirkenfeldHoppstädten‐WeiersbachGermany
| | - Lars Wommer
- Institute for Biotechnical Process DesignTrier University of Applied Sciences, Environmental Campus BirkenfeldHoppstädten‐WeiersbachGermany
| | - Robert Frank
- Institute for Biotechnical Process DesignTrier University of Applied Sciences, Environmental Campus BirkenfeldHoppstädten‐WeiersbachGermany
| | - Anja Schüffler
- Institut für Biotechnologie und Wirkstoff‐Forschung gGmbH (IBWF)MainzGermany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical SciencesJohannes Gutenberg University of MainzMainzGermany
| | - Roland Ulber
- Institute of Bioprocess EngineeringTechnical University KaiserslauternKaiserslauternGermany
| | - Percy Kampeis
- Institute for Biotechnical Process DesignTrier University of Applied Sciences, Environmental Campus BirkenfeldHoppstädten‐WeiersbachGermany
| |
Collapse
|
3
|
Fungal morphology: a challenge in bioprocess engineering industries for product development. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2021.100729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Something old, something new: challenges and developments in Aspergillus niger biotechnology. Essays Biochem 2021; 65:213-224. [PMID: 33955461 PMCID: PMC8314004 DOI: 10.1042/ebc20200139] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
The filamentous ascomycete fungus Aspergillus niger is a prolific secretor of organic acids, proteins, enzymes and secondary metabolites. Throughout the last century, biotechnologists have developed A. niger into a multipurpose cell factory with a product portfolio worth billions of dollars each year. Recent technological advances, from genome editing to other molecular and omics tools, promise to revolutionize our understanding of A. niger biology, ultimately to increase efficiency of existing industrial applications or even to make entirely new products. However, various challenges to this biotechnological vision, many several decades old, still limit applications of this fungus. These include an inability to tightly control A. niger growth for optimal productivity, and a lack of high-throughput cultivation conditions for mutant screening. In this mini-review, we summarize the current state-of-the-art for A. niger biotechnology with special focus on organic acids (citric acid, malic acid, gluconic acid and itaconic acid), secreted proteins and secondary metabolites, and discuss how new technological developments can be applied to comprehensively address a variety of old and persistent challenges.
Collapse
|
5
|
Jansen R, Morschett H, Hasenklever D, Moch M, Wiechert W, Oldiges M. Microbioreactor-assisted cultivation workflows for time-efficient phenotyping of protein producing Aspergillus niger in batch and fed-batch mode. Biotechnol Prog 2021; 37:e3144. [PMID: 33745237 DOI: 10.1002/btpr.3144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/20/2021] [Accepted: 02/28/2021] [Indexed: 11/10/2022]
Abstract
In recent years, many fungal genomes have become publicly available. In combination with novel gene editing tools, this allows for accelerated strain construction, making filamentous fungi even more interesting for the production of valuable products. However, besides their extraordinary production and secretion capacities, fungi most often exhibit challenging morphologies, which need to be screened for the best operational window. Thereby, combining genetic diversity with various environmental parameters results in a large parameter space, creating a strong demand for time-efficient phenotyping technologies. Microbioreactor systems, which have been well established for bacterial organisms, enable an increased cultivation throughput via parallelization and miniaturization, as well as enhanced process insight via non-invasive online monitoring. Nevertheless, only few reports about microtiter plate cultivation for filamentous fungi in general and even less with online monitoring exist in literature. Moreover, screening under batch conditions in microscale, when a fed-batch process is performed in large-scale might even lead to the wrong identification of optimized parameters. Therefore, in this study a novel workflow for Aspergillus niger was developed, allowing for up to 48 parallel microbioreactor cultivations in batch as well as fed-batch mode. This workflow was validated against lab-scale bioreactor cultivations to proof scalability. With the optimized cultivation protocol, three different micro-scale fed-batch strategies were tested to identify the best protein production conditions for intracellular model product GFP. Subsequently, the best feeding strategy was again validated in a lab-scale bioreactor.
Collapse
Affiliation(s)
- Roman Jansen
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-1: Biotechnology, Jülich, Germany.,Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Holger Morschett
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-1: Biotechnology, Jülich, Germany
| | - Dennis Hasenklever
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-1: Biotechnology, Jülich, Germany
| | - Matthias Moch
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-1: Biotechnology, Jülich, Germany
| | - Wolfgang Wiechert
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-1: Biotechnology, Jülich, Germany.,Computational Systems Biotechnology, RWTH Aachen University, Jülich, Germany
| | - Marco Oldiges
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-1: Biotechnology, Jülich, Germany.,Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
6
|
Jansen R, Küsters K, Morschett H, Wiechert W, Oldiges M. A fully automated pipeline for the dynamic at-line morphology analysis of microscale Aspergillus cultivation. Fungal Biol Biotechnol 2021; 8:2. [PMID: 33676585 PMCID: PMC7937226 DOI: 10.1186/s40694-021-00109-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/16/2021] [Indexed: 11/27/2022] Open
Abstract
Background Morphology, being one of the key factors influencing productivity of filamentous fungi, is of great interest during bioprocess development. With increasing demand of high-throughput phenotyping technologies for fungi due to the emergence of novel time-efficient genetic engineering technologies, workflows for automated liquid handling combined with high-throughput morphology analysis have to be developed. Results In this study, a protocol allowing for 48 parallel microbioreactor cultivations of Aspergillus carbonarius with non-invasive online signals of backscatter and dissolved oxygen was established. To handle the increased cultivation throughput, the utilized microbioreactor is integrated into a liquid handling platform. During cultivation of filamentous fungi, cell suspensions result in either viscous broths or form pellets with varying size throughout the process. Therefore, tailor-made liquid handling parameters such as aspiration/dispense height, velocity and mixing steps were optimized and validated. Development and utilization of a novel injection station enabled a workflow, where biomass samples are automatically transferred into a flow through chamber fixed under a light microscope. In combination with an automated image analysis concept, this enabled an automated morphology analysis pipeline. The workflow was tested in a first application study, where the projected biomass area was determined at two different cultivation temperatures and compared to the microbioreactor online signals. Conclusions A novel and robust workflow starting from microbioreactor cultivation, automated sample harvest and processing via liquid handling robots up to automated morphology analysis was developed. This protocol enables the determination of projected biomass areas for filamentous fungi in an automated and high-throughput manner. This measurement of morphology can be applied to describe overall pellet size distribution and heterogeneity.
Collapse
Affiliation(s)
- Roman Jansen
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany.,Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Kira Küsters
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany.,Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Holger Morschett
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany.,Computational Systems Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany. .,Institute of Biotechnology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|