1
|
Laltha M, Sewsynker-Sukai Y, Gueguim Kana EB. Simultaneous saccharification and citric acid production from paper wastewater pretreated banana pseudostem: Optimization of fermentation medium formulation and kinetic assessment. BIORESOURCE TECHNOLOGY 2022; 361:127700. [PMID: 35901862 DOI: 10.1016/j.biortech.2022.127700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
This study optimized the simultaneous saccharification and citric acid (CA) production from banana pseudostem (BP). Thereafter, kinetic assessment of Aspergillus brasiliensis growth and CA production were determined for the optimum conditions using fresh water (SSFoptimizedFW) or dairy wastewater (SSFDWW) and compared to Sabouraud Dextrose Emmon's medium modified with BP (SSFSDEmodified). The optimized conditions gave a CA concentration of 14.408 g/L. Kinetic assessment revealed the same maximum specific growth rates (μmax) (0.05 h-1) for all three bioprocesses, while the SSFSDEmodified process resulted in the highest maximum potential CA concentration (Pm) (13.991 g/L) in comparison to the SSFDWW (Pm = 13.095 g/L) and SSFoptimizedFW (Pm = 12.967 g/L) systems. Findings from this study facilitates the implementation of waste-based lignocellulosic bioprocesses that may eradicate the use of expensive pretreatment chemicals, fermentation medium constituents, and resources, in keeping with the water, energy and food nexus towards developing a circular bioeconomy.
Collapse
Affiliation(s)
- Milesh Laltha
- University of KwaZulu-Natal, School of Life Sciences, Pietermaritzburg, South Africa
| | - Y Sewsynker-Sukai
- University of Fort Hare, Fort Hare Institute of Technology, Private Bag X1314, Alice 5700, South Africa
| | - E B Gueguim Kana
- University of KwaZulu-Natal, School of Life Sciences, Pietermaritzburg, South Africa.
| |
Collapse
|
2
|
Verburg K, van Neer J, Duca M, de Cock H. Novel Treatment Approach for Aspergilloses by Targeting Germination. J Fungi (Basel) 2022; 8:758. [PMID: 35893126 PMCID: PMC9331470 DOI: 10.3390/jof8080758] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/03/2022] [Accepted: 07/19/2022] [Indexed: 12/24/2022] Open
Abstract
Germination of conidia is an essential process within the Aspergillus life cycle and plays a major role during the infection of hosts. Conidia are able to avoid detection by the majority of leukocytes when dormant. Germination can cause severe health problems, specifically in immunocompromised people. Aspergillosis is most often caused by Aspergillus fumigatus (A. fumigatus) and affects neutropenic patients, as well as people with cystic fibrosis (CF). These patients are often unable to effectively detect and clear the conidia or hyphae and can develop chronic non-invasive and/or invasive infections or allergic inflammatory responses. Current treatments with (tri)azoles can be very effective to combat a variety of fungal infections. However, resistance against current azoles has emerged and has been increasing since 1998. As a consequence, patients infected with resistant A. fumigatus have a reported mortality rate of 88% to 100%. Especially with the growing number of patients that harbor azole-resistant Aspergilli, novel antifungals could provide an alternative. Aspergilloses differ in defining characteristics, but germination of conidia is one of the few common denominators. By specifically targeting conidial germination with novel antifungals, early intervention might be possible. In this review, we propose several morphotypes to disrupt conidial germination, as well as potential targets. Hopefully, new antifungals against such targets could contribute to disturbing the ability of Aspergilli to germinate and grow, resulting in a decreased fungal burden on patients.
Collapse
Affiliation(s)
- Kim Verburg
- Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (K.V.); (J.v.N.)
| | - Jacq van Neer
- Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (K.V.); (J.v.N.)
| | - Margherita Duca
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands;
| | - Hans de Cock
- Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (K.V.); (J.v.N.)
| |
Collapse
|
3
|
Ellena V, Bucchieri D, Arcalis E, Sauer M, Steiger MG. Sclerotia formed by citric acid producing strains of Aspergillus niger: Induction and morphological analysis. Fungal Biol 2021; 125:485-494. [PMID: 34024596 DOI: 10.1016/j.funbio.2021.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Some strains of Aspergillus niger have been previously reported to produce sclerotia under certain conditions. Sclerotia are aggregations of hyphae which can act either as survival or as sexual structures in species related to A. niger. In this study, we were able to induce the formation of sclerotia in the progenitor of the industrial citric acid producing strains of A. niger, ATCC 1015, and in pyrG mutants derived from it. Sclerotia can be stably formed by ATCC 1015 on malt extract agar medium supplemented with raisins, showing a spatial differentiation of the fungus dependent on the addition and on the position of the fruits into the medium. On other media, including malt extract agar, pyrG auxotrophs also form abundant sclerotia, while the complementation of this gene reverses this phenotype. Additionally, a macro- and microscopical analysis of the sclerotia is reported. Our results show that the sclerotia formed by A. niger are similar to those formed by other fungi, not only in their morphology but also in their ability to germinate and regenerate the organism.
Collapse
Affiliation(s)
- Valeria Ellena
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 18, Vienna, Austria; Institute of Microbiology and Microbial Biotechnology, BOKU-VIBT, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, Austria; Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Daniela Bucchieri
- Institute of Microbiology and Microbial Biotechnology, BOKU-VIBT, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, Austria
| | - Elsa Arcalis
- Department of Applied Genetics and Cell Biology (DAGZ), University of Natural Resources and Life Sciences, Muthgasse 11, Vienna, Austria
| | - Michael Sauer
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 18, Vienna, Austria; Institute of Microbiology and Microbial Biotechnology, BOKU-VIBT, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, Austria; CD Laboratory for Biotechnology of Glycerol, Muthgasse 18, Vienna, Austria
| | - Matthias G Steiger
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 18, Vienna, Austria; Institute of Microbiology and Microbial Biotechnology, BOKU-VIBT, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, Austria; Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria.
| |
Collapse
|