1
|
Shakya R, Suffczynski P, Shrestha S, Dangol S, Poudyal P, Mansur DI. 40 Hz binaural beats entrainment enhances the mood and cognition of medical students. Int J Neurosci 2024:1-13. [PMID: 39535938 DOI: 10.1080/00207454.2024.2429495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/11/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Background: Many medical students experience psychological distress from high academic demands, potentially harming their performance and mental health. Binaural beats (BB) stimulation, particularly gamma band entrainment, has been suggested to enhance neural communication, cognition, and reduce anxiety. Objective: This study aimed to determine whether 40 Hz BB could improve cognitive performance and mood in medical students. Method: Forty participants, selected based on the inclusion criteria of good health, normal hearing, and no mental illness were recruited considering factors such as all sessions availability and consent. Participants listened to BB for 15 min, three times a week, over three consecutive weeks. Electroencephalogram recordings confirmed that 40 Hz BB induced gamma neural oscillations in the brain. Emotional states were assessed using the 32-item Brunel Mood Scale (BRUMS) with ratings on a 5-point Likert scale, whereas cognitive function was measured with the Stroop's test, based on reaction time in milliseconds. Pre- and post-BB comparisons and gender-related differences were analyzed using paired and unpaired t-tests or appropriate non-parametric tests. Result: Listening to BB significantly reduced negative emotions (p < 0.001), enhanced positive emotions (p < 0.001), and facilitated improvements in cognitive performance. However, the effects of BB were gender-specific, with female students showing greater improvements in 'happiness' and 'calmness', (p < 0.001), while males experienced more pronounced enhancements in cognitive performance (p < 0.001). Additionally, time-dependent effects of BB were also observed. Conclusion: 40 Hz BB appears to be an effective tool for helping students manage their challenges calmly and more efficiently.
Collapse
Affiliation(s)
- Rubina Shakya
- Department of Anatomy, Kathmandu University School of Medical Sciences, Kavre, Nepal
| | - Piotr Suffczynski
- Department of Biomedical Physics, Institute of Experimental Physics, University of Warsaw, Warsaw, Poland
| | - Sachin Shrestha
- Department of Electronics & Communication Engineering, Nepal Engineering College, Pokhara University, Bhaktapur, Nepal
| | - Srijana Dangol
- Department of Pediatrics, Dhulikhel Hospital, Kavre, Nepal
| | | | - Dil Islam Mansur
- Department of Anatomy, Kathmandu University School of Medical Sciences, Kavre, Nepal
| |
Collapse
|
2
|
Basu S, Phogat R, Jartarkar M, Banerjee B, Parmananda P. Role of visual brainwave entrainment on the resting state brainwaves of children with and without attention-deficit/hyperactivity disorder. APPLIED NEUROPSYCHOLOGY. CHILD 2024:1-19. [PMID: 38996080 DOI: 10.1080/21622965.2024.2377656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
The relationship between brainwave oscillations and Attention-Deficit/Hyperactivity Disorder (ADHD)-related cognitive challenges is a trending proposition in the field of Cognitive Neuroscience. Studies suggest the role of brainwave oscillations in the symptom expressions of ADHD-diagnosed children. Intervention studies have further suggested the scope of brain stimulation techniques in improving cognition. The current manuscript explored the effect of changes in the brainwaves post-sensory entrainment on cognitive performance of children. We calculated each participant's brainwave difference and ratios of theta, alpha, and beta power after the entrainment sessions. Further, we explored possible correlations between these values and the psychometric scores. The beta resting state showed the strongest association with selective attention performance of all participants. Theta-beta ratio (TBR) showed an inverse correlation with selective attention and working memory performances. The theta frequency was associated with decreased working performance in children without ADHD. Our findings also suggest a predominant role of TBR than the theta-alpha ratio in determining the cognitive performance of children with ADHD. The individual differences in the entrainment reception were attributed to the participant's age, IQ, and their innate baseline frequencies. The implications of our findings can initiate substantiating brainwave-based entrainment sessions as a therapeutic modality to improve cognition among children.
Collapse
Affiliation(s)
- Sandhya Basu
- Department of Humanities and Social Sciences, BITS Pilani, Zuarinagar, Goa, India
- School of Arts and Sciences, Azim Premji University, Bengaluru, Karnataka; India
| | - Richa Phogat
- Department of Physics, Indian Institute of Technology - Bombay, Mumbai, Maharashtra, India
| | - Mayur Jartarkar
- Centre for Behavioral Science in Finance, Economics, and Marketing, Indian Institute of Management, Ahmedabad, India
| | - Bidisha Banerjee
- Department of Humanities and Social Sciences, BITS Pilani, Zuarinagar, Goa, India
| | - Punit Parmananda
- Department of Physics, Indian Institute of Technology - Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
3
|
Abdelmissih S, Abdelgwad M, Ali DME, Negm MSI, Eshra MA, Youssef A. High-dose Agomelatine Combined with Haloperidol Decanoate Improves Cognition, Downregulates MT2, Upregulates D5, and Maintains Krüppel-like Factor 9 But Alters Cardiac Electrophysiology. J Pharmacol Exp Ther 2024; 390:125-145. [PMID: 38816228 DOI: 10.1124/jpet.123.002087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 06/01/2024] Open
Abstract
Haloperidol decanoate (HD) has been implicated in cognitive impairment. Agomelatine (AGO) has been claimed to improve cognition. We aimed at investigating the effects of HD + low- or high-dose AGO on cognition, verifying the melatonergic/dopaminergic to the cholinergic hypothesis of cognition and exploring relevant cardiovascular issues in adult male Wistar albino rats. HD + high-dose AGO prolonged the step-through latency by +61.47% (P < 0.0001), increased the time spent in bright light by +439.49% (P < 0.0001), reduced the time spent in dim light by -66.25% (P < 0.0001), and increased the percent of alternations by +71.25% (P < 0.0001), despite the reductions in brain acetylcholine level by -10.67% (P < 0.0001). Neurodegeneration was minimal, while the mean power frequency of the source wave was reduced by -23.39% (P < 0.05). Concurrently, the relative expression of brain melatonin type 2 receptors was reduced by -18.75% (P < 0.05), against increased expressions of dopamine type 5 receptors by +22.22% (P < 0.0001) and angiopoietin-like 4 by +119.18% (P < 0.0001). Meanwhile, electrocardiogram (ECG) demonstrated inverted P wave, reduced P wave duration by -36.15% (P < 0.0001) and PR interval by -19.91% (P < 0.0001), prolonged RR interval by +27.97% (P < 0.05), increased R wave amplitude by +523.15% (P < 0.0001), and a depressed ST segment and inverted T wave. In rats administered AGO, HD, or HD+ low-dose AGO, Alzheimer's disease (AD)-like neuropathologic features were more evident, accompanied by extensive ECG and neurochemical alterations. HD + high-dose AGO enhances cognition but alters cardiac electrophysiology. SIGNIFICANCE STATEMENT: Given the issue of cognitive impairment associated with HD and the claimed cognitive-enhancing activity of AGO, combined high-dose AGO with HD improved cognition of adult male rats, who exhibited minimal neurodegenerative changes. HD+ high-dose AGO was relatively safe regarding triggering epileptogenesis, while it altered cardiac electrophysiology. In the presence of low acetylcholine, the melatonergic/dopaminergic hypothesis, added to angiopoietin-like 4 and Krüppel-like factor 9, could offer some clue, thus offering novel targets for pharmacologic manipulation of cognition.
Collapse
Affiliation(s)
- Sherine Abdelmissih
- Departments of Medical Pharmacology (S.A., A.Y.), Medical Biochemistry and Molecular Biology (M.A.), Pathology (M.S.I.N.), and Medical Physiology (M.A.E.), Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt; and Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Sohag University, Sohag, Egypt (D.M.E.A.)
| | - Marwa Abdelgwad
- Departments of Medical Pharmacology (S.A., A.Y.), Medical Biochemistry and Molecular Biology (M.A.), Pathology (M.S.I.N.), and Medical Physiology (M.A.E.), Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt; and Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Sohag University, Sohag, Egypt (D.M.E.A.)
| | - Doaa Mohamed Elroby Ali
- Departments of Medical Pharmacology (S.A., A.Y.), Medical Biochemistry and Molecular Biology (M.A.), Pathology (M.S.I.N.), and Medical Physiology (M.A.E.), Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt; and Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Sohag University, Sohag, Egypt (D.M.E.A.)
| | - Mohamed Sharif Ismail Negm
- Departments of Medical Pharmacology (S.A., A.Y.), Medical Biochemistry and Molecular Biology (M.A.), Pathology (M.S.I.N.), and Medical Physiology (M.A.E.), Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt; and Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Sohag University, Sohag, Egypt (D.M.E.A.)
| | - Mohamed Ali Eshra
- Departments of Medical Pharmacology (S.A., A.Y.), Medical Biochemistry and Molecular Biology (M.A.), Pathology (M.S.I.N.), and Medical Physiology (M.A.E.), Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt; and Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Sohag University, Sohag, Egypt (D.M.E.A.)
| | - Amal Youssef
- Departments of Medical Pharmacology (S.A., A.Y.), Medical Biochemistry and Molecular Biology (M.A.), Pathology (M.S.I.N.), and Medical Physiology (M.A.E.), Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt; and Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Sohag University, Sohag, Egypt (D.M.E.A.)
| |
Collapse
|
4
|
Black T, Jenkins BW, Laprairie RB, Howland JG. Therapeutic potential of gamma entrainment using sensory stimulation for cognitive symptoms associated with schizophrenia. Neurosci Biobehav Rev 2024; 161:105681. [PMID: 38641090 DOI: 10.1016/j.neubiorev.2024.105681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Schizophrenia is a complex neuropsychiatric disorder with significant morbidity. Treatment options that address the spectrum of symptoms are limited, highlighting the need for innovative therapeutic approaches. Gamma Entrainment Using Sensory Stimulation (GENUS) is an emerging treatment for neuropsychiatric disorders that uses sensory stimulation to entrain impaired oscillatory network activity and restore brain function. Aberrant oscillatory activity often underlies the symptoms experienced by patients with schizophrenia. We propose that GENUS has therapeutic potential for schizophrenia. This paper reviews the current status of schizophrenia treatment and explores the use of sensory stimulation as an adjunctive treatment, specifically through gamma entrainment. Impaired gamma frequency entrainment is observed in patients, particularly in response to auditory and visual stimuli. Thus, sensory stimulation, such as music listening, may have therapeutic potential for individuals with schizophrenia. GENUS holds novel therapeutic potential to improve the lives of individuals with schizophrenia, but further research is required to determine the efficacy of GENUS, optimize its delivery and therapeutic window, and develop strategies for its implementation in specific patient populations.
Collapse
Affiliation(s)
- Tallan Black
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Bryan W Jenkins
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada; Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
5
|
Hsiung PC, Hsieh PJ. Forty-Hertz audiovisual stimulation does not have a promoting effect on visual threshold and visual spatial memory. J Vis 2024; 24:8. [PMID: 38393743 PMCID: PMC10901250 DOI: 10.1167/jov.24.2.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 01/08/2024] [Indexed: 02/25/2024] Open
Abstract
Previous research has demonstrated that 40-Hz audiovisual stimulation can improve pathological conditions and promote cognitive function in mouse models of Alzheimer's disease. However, limited research has been conducted on humans, and the results have been inconsistent. In our study, we divided participants into an experimental group and a control group to investigate whether 40-Hz stimulation could enhance performance in visual threshold tasks and working memory task. In Experiment 1, we used a light bulb as the stimulus source and found a general practice effect, but no difference between the groups. In Experiment 2, we used a computer screen as the stimulus source and set the stimulation frequency to 48 Hz. In Experiment 3 , we used a computer screen and audio as stimulus sources, simultaneously applying a 40-Hz stimulation to both visual and auditory modalities. Both experiments only revealed the disappearance of practice effects in the 40-Hz (48-Hz) group. Experiment 4 focused on testing visual spatial memory, but did not identify any significant differences between or within groups. In Experiment 5, we tested various visual spatial frequencies; yet again, no significant differences were found. Based on the comprehensive results, we conclude that a 40-Hz stimulation does not have a promoting effect on visual threshold or visual spatial memory.
Collapse
Affiliation(s)
- Pin-Cheng Hsiung
- Department of Psychology, National Taiwan University, Taipei City, Taiwan
| | - Po-Jang Hsieh
- Department of Psychology, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
6
|
Blanco-Duque C, Chan D, Kahn MC, Murdock MH, Tsai LH. Audiovisual gamma stimulation for the treatment of neurodegeneration. J Intern Med 2024; 295:146-170. [PMID: 38115692 PMCID: PMC10842797 DOI: 10.1111/joim.13755] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Alzheimer's disease (AD) is the most common type of neurodegenerative disease and a health challenge with major social and economic consequences. In this review, we discuss the therapeutic potential of gamma stimulation in treating AD and delve into the possible mechanisms responsible for its positive effects. Recent studies reveal that it is feasible and safe to induce 40 Hz brain activity in AD patients through a range of 40 Hz multisensory and noninvasive electrical or magnetic stimulation methods. Although research into the clinical potential of these interventions is still in its nascent stages, these studies suggest that 40 Hz stimulation can yield beneficial effects on brain function, disease pathology, and cognitive function in individuals with AD. Specifically, we discuss studies involving 40 Hz light, auditory, and vibrotactile stimulation, as well as noninvasive techniques such as transcranial alternating current stimulation and transcranial magnetic stimulation. The precise mechanisms underpinning the beneficial effects of gamma stimulation in AD are not yet fully elucidated, but preclinical studies have provided relevant insights. We discuss preclinical evidence related to both neuronal and nonneuronal mechanisms that may be involved, touching upon the relevance of interneurons, neuropeptides, and specific synaptic mechanisms in translating gamma stimulation into widespread neuronal activity within the brain. We also explore the roles of microglia, astrocytes, and the vasculature in mediating the beneficial effects of gamma stimulation on brain function. Lastly, we examine upcoming clinical trials and contemplate the potential future applications of gamma stimulation in the management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Cristina Blanco-Duque
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Diane Chan
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Martin C Kahn
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mitchell H Murdock
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
Ren B, Zhou Q, Chen J. Assessing cognitive workloads of assembly workers during multi-task switching. Sci Rep 2023; 13:16356. [PMID: 37773513 PMCID: PMC10542341 DOI: 10.1038/s41598-023-43477-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
Complex assembly tasks with multiple manual operations and steps often require rapid judgment and action under time pressure and cause most human-related errors. The task switching and action transitions are major sources of these errors. This study intends to implement an electroencephalography (EEG) approach to quantitatively evaluate the mental workload during task switching and transition. The time-frequency and spectrum analysis were utilized to compute and reflect the task demand between the intervals of individual tasks. This study developed an experiment to validate the proposed assessment approach and benchmark the results with the National Aeronautics and Space Administration task load index (NASA-TLX) subjective evaluation scale analysis. The results show that the average value of the power spectral densities (PSDs) of the gamma band signal of the AF4 channel and the beta band signal of Channel F3 show distinctive signal patterns among task stages and intervals. During the interval between the idling stage and the part selection stage, the peak of the PSD envelope increased from 18 to 27 Hz, suggesting advanced cognition increases the mental workload of the interval between different tasks. Therefore, the task switching period cannot be regarded as rest and need to be optimized with better task organization.
Collapse
Affiliation(s)
- Bin Ren
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Qinyu Zhou
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Jiayu Chen
- School of Civil Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
8
|
Influence of Binaural Beats Stimulation of Gamma Frequency over Memory Performance and EEG Spectral Density. Healthcare (Basel) 2023; 11:healthcare11060801. [PMID: 36981458 PMCID: PMC10048082 DOI: 10.3390/healthcare11060801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Similar to short-term memory, working memory cannot hold information for a long period of time. Studies have shown that binaural beats (BB) can stimulate the brain through sound, affecting working memory function. Although the literature is not conclusive regarding the effects of BB stimulation (stim) on memory, some studies have shown that gamma-BB stim (40 Hz) can increase attentional focusing and improve visual working memory. To better understand the relationship between BB stim and memory, we collected electroencephalographic data (EEG) from 30 subjects in 3 phases—a baseline, with gamma-BB stim, and control stim—in a rest state, with eyes closed, and while performing memory tasks. Both EEG data and memory task performance were analyzed. The results showed no significant changes in the memory task performance or the EEG data when comparing experimental and control conditions. We concluded that brain entrainment was not achieved with our parameters of gamma-BB stimulation when analyzing EEG power spectral density (PSD) and memory task performance. Hence, we suggest that other aspects of EEG data, such as connectivity and correlations with task performance, should also be analyzed for future studies.
Collapse
|
9
|
Yin Y, Wang P, Childs PRN. Understanding creativity process through electroencephalography measurement on creativity-related cognitive factors. Front Neurosci 2022; 16:951272. [PMID: 36532268 PMCID: PMC9748076 DOI: 10.3389/fnins.2022.951272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/28/2022] [Indexed: 11/04/2023] Open
Abstract
Introduction Neurotechnology approaches, such as electroencephalography (EEG), can aid understanding of the cognitive processes behind creativity. Methods To identify and compare the EEG characteristics of creativity-related cognitive factors (remote association, common association, combination, recall, and retrieval), 30 participants were recruited to conduct an EEG induction study. Results From the event-related potential (ERP) results and spectral analysis, the study supports that creativity is related to the frontal lobe areas of the brain and common association is an unconscious process. Discussion The results help explain why some creativity-related cognitive factors are involved either more or less readily than others in the creative design process from workload aspects. This study identifies the part of the brain that is involved in the combination cognitive factor and detects the ERP results on cognitive factors. This study can be used by designers and researchers to further understand the cognitive processes of creativity.
Collapse
Affiliation(s)
- Yuan Yin
- Imperial College London, London, United Kingdom
| | - Pan Wang
- School of Design, Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | | |
Collapse
|
10
|
Khachatryan E, Wittevrongel B, Reinartz M, Dauwe I, Carrette E, Meurs A, Van Roost D, Boon P, Van Hulle MM. Cognitive tasks propagate the neural entrainment in response to a visual 40 Hz stimulation in humans. Front Aging Neurosci 2022; 14:1010765. [PMID: 36275007 PMCID: PMC9582357 DOI: 10.3389/fnagi.2022.1010765] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
Introduction Alzheimer's disease is one of the great challenges in the coming decades, and despite great efforts, a widely effective disease-modifying therapy in humans remains elusive. One particular promising non-pharmacological therapy that has received increased attention in recent years is based on the Gamma ENtrainment Using Sensory stimulation (GENUS), a high-frequency neural response elicited by a visual and/or auditory stimulus at 40 Hz. While this has shown to be effective in animal models, studies on human participants have reported varying success. The current work hypothesizes that the varying success in humans is due to differences in cognitive workload during the GENUS sessions. Methods We recruited a cohort of 15 participants who underwent a scalp-EEG recording as well as one epilepsy patient who was implanted with 50 subdural surface electrodes over temporo-occipital and temporo-basal cortex and 14 depth contacts that targeted the hippocampus and insula. All participants completed several GENUS sessions, in each of which a different cognitive task was performed. Results We found that the inclusion of a cognitive task during the GENUS session not only has a positive effect on the strength and extent of the gamma entrainment, but also promotes the propagation of gamma entrainment to additional neural areas including deep ones such as hippocampus which were not recruited when no cognitive task was required from the participants. The latter is of particular interest given that the hippocampal complex is considered to be one of the primary targets for AD therapies. Discussion This work introduces a possible improvement strategy for GENUS therapy that might contribute to increasing the efficacy of the therapy or shortening the time needed for the positive outcome.
Collapse
Affiliation(s)
- Elvira Khachatryan
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
- Department of Neurology, General Hospital Maria Middelares, Ghent, Belgium
- Department of Neuroscience, Laboratory for Neuro- and Psychophysiology, KU Leuven, Leuven, Belgium
- *Correspondence: Elvira Khachatryan
| | - Benjamin Wittevrongel
- Department of Neuroscience, Laboratory for Neuro- and Psychophysiology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), Leuven, Belgium
| | - Mariska Reinartz
- Leuven Brain Institute (LBI), Leuven, Belgium
- Department of Neuroscience, Laboratory for Cognitive Neurology, KU Leuven, Leuven, Belgium
| | - Ine Dauwe
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Evelien Carrette
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Alfred Meurs
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Dirk Van Roost
- Department of Neurosurgery, Ghent University Hospital, Ghent, Belgium
| | - Paul Boon
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Marc M. Van Hulle
- Department of Neuroscience, Laboratory for Neuro- and Psychophysiology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), Leuven, Belgium
| |
Collapse
|
11
|
Tian T, Qin X, Wang Y, Shi Y, Yang X. 40 Hz Light Flicker Promotes Learning and Memory via Long Term Depression in Wild-Type Mice. J Alzheimers Dis 2021; 84:983-993. [PMID: 34602491 DOI: 10.3233/jad-215212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND 40 Hz light flicker is a well-known non-invasive treatment that is thought to be effective in treating Alzheimer's disease. However, the effects of 40 Hz visual stimulation on neural networks, synaptic plasticity, and learning and memory in wild-type animals remain unclear. OBJECTIVE We aimed to explore the impact of 40 Hz visual stimulation on synaptic plasticity, place cell, and learning and memory in wild-type mice. METHODS c-Fos+ cell distribution and in vivo electrophysiology was used to explore the effects of 40 Hz chronic visual stimulation on neural networks and neuroplasticity in wild-type mice. The character of c-Fos+ distribution in the brain and the changes of corticosterone levels in the blood were used to investigate the state of animal. Place cell analysis and novel location test were utilized to examine the effects of 40 Hz chronic visual stimulation on learning and memory in wild-type mice. RESULTS We found that 40 Hz light flicker significantly affected many brain regions that are related to stress. Also, 40 Hz induced gamma enrichment within 15 min after light flickers and impaired the expression of long-term potentiation (LTP), while facilitated the expression of long-term depression (LTD) in the hippocampal CA1. Furthermore, 40 Hz light flicker enhanced the expression of corticosterone, rendered well-formed place cells unstable and improved animal's learning and memory in novel local recognition test, which could be blocked by pre-treatment with the LTD specific blocker Glu2A-3Y. CONCLUSION These finding suggested that 40 Hz chronic light flicker contains stress effects, promoting learning and memory in wild-type mice via LTD.
Collapse
Affiliation(s)
- Tian Tian
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Xin Qin
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Yali Wang
- Key Laboratory for the Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Yan Shi
- Faculty of Laboratory Medicine, School of Medicine, Hunan Normal University, Changsha, China
| | - Xin Yang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|