1
|
Das DR, Mahalik S. Engineering Escherichia coli to metabolize sorbitol as the sole carbon source for synthesis of recombinant L-Asparaginase-II. Prep Biochem Biotechnol 2024:1-10. [PMID: 39672810 DOI: 10.1080/10826068.2024.2440425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
Abstract
Sorbitol, known as D-Glucitol, is a hexose sugar alcohol that occurs naturally in various fruits, including berries, cherries, plums, pears, and apples. It is noteworthy that sorbitol can be metabolized by microbes, plants, and humans through distinct pathways. Nevertheless, in bacteria like Escherichia coli (E. coli), sorbitol is not the primary carbon source and its utilization is generally suppressed due to carbon catabolite repression. In this context, Escherichia coli has been engineered to enable the use of sorbitol as the sole carbon source for producing recombinant proteins. This modification involves a two-plasmid system where the sorbitol-6-phosphate dehydrogenase (srlD) gene is upregulated under an araBAD promoter, while the recombinant protein is expressed from a second plasmid under the tac promoter. The overexpression of srlD in the engineered E. coli strain enhances the utilization of sorbitol as the sole carbon source. When cultured in a medium supplemented solely with sorbitol, the engineered E. coli strain exhibits a 3.6 times higher specific growth rate and yields substantially higher concentration of recombinant protein compared to the wild-type strain. Additionally, the engineered strain demonstrates a higher YP/X ratio than the wild-type strain.
Collapse
Affiliation(s)
- Dibya Ranjan Das
- Post Graduate Department of Biosciences & Biotechnology, Fakir Mohan University, Balasore, Odisha, India
| | - Shubhashree Mahalik
- Post Graduate Department of Biosciences & Biotechnology, Fakir Mohan University, Balasore, Odisha, India
| |
Collapse
|
2
|
Hao S, Xu M, Li L, Wang L, Su Z. Enhancing isoprene production by supplementing mevalonate pathway expressed in E. coli with immobilized enzymes. Bioprocess Biosyst Eng 2024:10.1007/s00449-024-03093-2. [PMID: 39333406 DOI: 10.1007/s00449-024-03093-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Isoprene is an important component in rubber production, which can be produced using the E. coli mevalonic acid (MVA) pathway, and this method has the advantage of green environmental protection and sustainable. However, due to the excessive accumulation of intermediates, the growth of cells was inhibited and the enzyme activity decreased gradually, so it was difficult to increase the yield of isoprene. The immobilized enzyme has the characteristics of high stability and strong reusability, so in this study, the immobilized enzyme was added to the fermentation process of isoprene production by mevalonate metabolizing bacteria (PT-P), to explore the effect on isoprene synthesis. Under the optimum conditions, compared with PT-P fermentation alone, the enzyme catalyzes the conversion of MVA with an efficiency of up to 50.86%, and the yield of isoprene increased by about 30%, reaching 234.47 mg/L.
Collapse
Affiliation(s)
- Shenghu Hao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, People's Republic of China
| | - Mei Xu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, People's Republic of China
| | - Lu Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, People's Republic of China
| | - Luyao Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, People's Republic of China
| | - Zhongliang Su
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, People's Republic of China.
| |
Collapse
|
3
|
Wu QZ, Lin WQ, Wu JY, Cao LW, Li HH, Gao R, Du WZ, Sheng GP, Chen YG, Li WW. Transcriptomic Insights into Metabolism-Dependent Biosynthesis of Bacterial Nanocellulose. ACS APPLIED BIO MATERIALS 2024; 7:1801-1809. [PMID: 38416780 DOI: 10.1021/acsabm.3c01222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Bacterial nanocellulose (BNC) is an attractive green-synthesized biomaterial for biomedical applications and various other applications. However, effective engineering of BNC production has been limited by our poor knowledge of the related metabolic processes. In contrast to the traditional perception that genome critically determines biosynthesis behaviors, here we discover that the glucose metabolism could also drastically affect the BNC synthesis in Gluconacetobacter hansenii. The transcriptomic profiles of two model BNC-producing strains, G. hansenii ATCC 53582 and ATCC 23769, which have highly similar genomes but drastically different BNC yields, were compared. The results show that their BNC synthesis capacities were highly related to metabolic activities such as ATP synthesis, ion transport protein assembly, and carbohydrate metabolic processes, confirming an important role of metabolism-related transcriptomes in governing the BNC yield. Our findings provide insights into the microbial biosynthesis behaviors from a transcriptome perspective, potentially guiding cellular engineering for biomaterial synthesis.
Collapse
Affiliation(s)
- Qi-Zhong Wu
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research of USTC, Suzhou 215123, China
| | - Wei-Qiang Lin
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Jian-Yu Wu
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research of USTC, Suzhou 215123, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Li-Wen Cao
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Hui-Hui Li
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research of USTC, Suzhou 215123, China
| | - Rui Gao
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research of USTC, Suzhou 215123, China
| | - Wen-Zheng Du
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yin-Guang Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wen-Wei Li
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research of USTC, Suzhou 215123, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Nakanishi A, Omino N, Nakamura T, Goto S, Matsumoto R, Yomogita M, Narisawa N, Kimijima M, Iritani K. Evaluation of Cellular Responses of Heterotrophic Escherichia coli Cultured with Autotrophic Chlamydomonas reinhardtii as a Nutrient Source by Analyses Based on Microbiology and Transcriptome. Microorganisms 2024; 12:452. [PMID: 38543503 PMCID: PMC10972114 DOI: 10.3390/microorganisms12030452] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 11/12/2024] Open
Abstract
Heterotrophic microorganism Escherichia coli LS5218 was cultured with flesh green alga Chlamydomonas reinhardtii C-9: NIES-2235 as a nutrient supplier. In order to evaluate the cell response of Escherichia coli with Chlamydomonas reinhardtii, Escherichia coli was evaluated with microbial methods and comprehensive gene transcriptional analyses. Escherichia coli with Chlamydomonas reinhardtii showed a specific growth rate (µmax) of 1.04 ± 0.27, which was similar to that for cells growing in Luria-Bertani medium (µmax = 1.20 ± 0.40 h-1). Furthermore, comparing the cellular responses of Escherichia coli in a green-algae-containing medium with those in the Luria-Bertani medium, transcriptomic analysis showed that Escherichia coli upregulated gene transcription levels related to glycolysis, 5-phospho-d-ribosyl-1-diphosphate, and lipid synthesis; on the other hand, it decreased the levels related to lipid degradation. In particular, the transcription levels were increased by 103.7 times on pgm (p * < 0.05 (p = 0.015)) in glycolysis, and decreased by 0.247 times on fadE (p * < 0.05 (p = 0.041)) in lipolysis. These genes are unique and could regulate the direction of metabolism; these responses possibly indicate carbon source assimilation as a cellular response in Escherichia coli. This paper is the first report to clarify that Escherichia coli, a substance-producing strain, directly uses Chlamydomonas reinhardtii as a nutrient supplier by evaluation of the cellular responses analyzed with microbial methods and transcriptome analysis.
Collapse
Affiliation(s)
- Akihito Nakanishi
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji 192-0982, Japan; (N.O.); (T.N.); (S.G.); (R.M.)
- Graduate School of Bionics, Tokyo University of Technology, Hachioji 192-0982, Japan;
| | - Natsumi Omino
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji 192-0982, Japan; (N.O.); (T.N.); (S.G.); (R.M.)
| | - Tomoyo Nakamura
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji 192-0982, Japan; (N.O.); (T.N.); (S.G.); (R.M.)
- Graduate School of Bionics, Tokyo University of Technology, Hachioji 192-0982, Japan;
| | - Saki Goto
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji 192-0982, Japan; (N.O.); (T.N.); (S.G.); (R.M.)
- Graduate School of Bionics, Tokyo University of Technology, Hachioji 192-0982, Japan;
| | - Riri Matsumoto
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji 192-0982, Japan; (N.O.); (T.N.); (S.G.); (R.M.)
| | - Misaki Yomogita
- Graduate School of Bionics, Tokyo University of Technology, Hachioji 192-0982, Japan;
| | - Naoki Narisawa
- Bioresource Utilization Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa 252-0880, Japan; (N.N.); (M.K.)
| | - Manami Kimijima
- Bioresource Utilization Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa 252-0880, Japan; (N.N.); (M.K.)
| | - Kohei Iritani
- Department of Applied Chemistry, School of Engineering, Tokyo University of Technology, Hachioji 192-0982, Japan
- Research Center for Advanced Lignin-Based Materials, Tokyo University of Technology, Hachioji 192-0982, Japan
| |
Collapse
|
5
|
Cao Y, Niu W, Guo J, Guo J, Liu H, Liu H, Xian M. Production of Optically Pure ( S)-3-Hydroxy-γ-butyrolactone from d-Xylose Using Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20167-20176. [PMID: 38088131 DOI: 10.1021/acs.jafc.3c06589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Biocatalysis has advantages in asymmetric synthesis due to the excellent stereoselectivity of enzymes. The present study established an efficient biosynthesis pathway for optically pure (S)-3-hydroxy-γ-butyrolactone [(S)-3HγBL] production using engineered Escherichia coli. We mimicked the 1,2,4-butanetriol biosynthesis route and constructed a five-step pathway consisting of d-xylose dehydrogenase, d-xylonolactonase, d-xylonate dehydratase, 2-keto acid decarboxylase, and aldehyde dehydrogenase. The engineered strain harboring the five enzymes could convert d-xylose to 3HγBL with glycerol as the carbon source. Stereochemical analysis by chiral GC proved that the microbially synthesized product was a single isomer, and the enantiomeric excess (ee) value reached 99.3%. (S)-3HγBL production was further enhanced by disrupting the branched pathways responsible for d-xylose uptake and intermediate reduction. Fed-batch fermentation of the best engineered strain showed the highest (S)-3HγBL titer of 3.5 g/L. The volumetric productivity and molar yield of (S)-3HγBL on d-xylose reached 50.6 mg/(L·h) and 52.1%, respectively. The final fermentation product was extracted, purified, and confirmed by NMR. This process utilized renewable d-xylose as the feedstock and offered an alternative approach for the production of the valuable chemical.
Collapse
Affiliation(s)
- Yujin Cao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Wei Niu
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Jing Guo
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Hui Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Huizhou Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| |
Collapse
|
6
|
Kurt E, Qin J, Williams A, Zhao Y, Xie D. Perspectives for Using CO 2 as a Feedstock for Biomanufacturing of Fuels and Chemicals. Bioengineering (Basel) 2023; 10:1357. [PMID: 38135948 PMCID: PMC10740661 DOI: 10.3390/bioengineering10121357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Microbial cell factories offer an eco-friendly alternative for transforming raw materials into commercially valuable products because of their reduced carbon impact compared to conventional industrial procedures. These systems often depend on lignocellulosic feedstocks, mainly pentose and hexose sugars. One major hurdle when utilizing these sugars, especially glucose, is balancing carbon allocation to satisfy energy, cofactor, and other essential component needs for cellular proliferation while maintaining a robust yield. Nearly half or more of this carbon is inevitably lost as CO2 during the biosynthesis of regular metabolic necessities. This loss lowers the production yield and compromises the benefit of reducing greenhouse gas emissions-a fundamental advantage of biomanufacturing. This review paper posits the perspectives of using CO2 from the atmosphere, industrial wastes, or the exhausted gases generated in microbial fermentation as a feedstock for biomanufacturing. Achieving the carbon-neutral or -negative goals is addressed under two main strategies. The one-step strategy uses novel metabolic pathway design and engineering approaches to directly fix the CO2 toward the synthesis of the desired products. Due to the limitation of the yield and efficiency in one-step fixation, the two-step strategy aims to integrate firstly the electrochemical conversion of the exhausted CO2 into C1/C2 products such as formate, methanol, acetate, and ethanol, and a second fermentation process to utilize the CO2-derived C1/C2 chemicals or co-utilize C5/C6 sugars and C1/C2 chemicals for product formation. The potential and challenges of using CO2 as a feedstock for future biomanufacturing of fuels and chemicals are also discussed.
Collapse
Affiliation(s)
- Elif Kurt
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| | - Jiansong Qin
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| | - Alexandria Williams
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| | - Youbo Zhao
- Physical Sciences Inc., 20 New England Business Ctr., Andover, MA 01810, USA;
| | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| |
Collapse
|
7
|
Ch'ng ACW, Konthur Z, Lim TS. Magnetic Nanoparticle-Based Semi-automated Panning for High-Throughput Antibody Selection. Methods Mol Biol 2023; 2702:291-313. [PMID: 37679626 DOI: 10.1007/978-1-0716-3381-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Bio-panning is a common process involved in recombinant antibody selection against defined targets. The biopanning process aims to isolate specific antibodies against an antigen via affinity selection from a phage display library. In general, antigens are immobilized on solid surfaces such as polystyrene plastic, magnetic beads, and nitrocellulose. For high-throughput selection, semi-automated panning selection allows simultaneous panning against multiple target antigens adapting automated particle processing systems such as the KingFisher Flex. The system setup allows for minimal human intervention for pre- and post-panning steps such as antigen immobilization, phage rescue, and amplification. In addition, the platform is also adaptable to perform polyclonal and monoclonal ELISA for the evaluation process. This chapter will detail the protocols involved from the selection stage until the monoclonal ELISA evaluation with important notes attached at the end of this chapter for optimization and troubleshooting purposes.
Collapse
Affiliation(s)
- Angela Chiew Wen Ch'ng
- Institute for Reseach in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Zoltán Konthur
- Department of Analytical Chemistry, Reference Materials, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
| | - Theam Soon Lim
- Institute for Reseach in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia.
| |
Collapse
|
8
|
Sani A, Tajik A, Seiiedi SS, Khadem R, Tootooni H, Taherynejad M, Sabet Eqlidi N, Alavi dana SMM, Deravi N. A review of the anti-diabetic potential of saffron. Nutr Metab Insights 2022; 15:11786388221095223. [PMID: 35911474 PMCID: PMC9335478 DOI: 10.1177/11786388221095223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/30/2022] [Indexed: 11/15/2022] Open
Abstract
Diabetes mellitus is one of the most prevalent metabolic disorders that affect people of all genders, ages, and races. Medicinal herbs have gained attention from researchers and have been widely investigated for their antidiabetic potential. Saffron (Crocus sativus L.) and its main constituents, that is, crocin and crocetin, are natural carotenoid compounds, widely known to possess a wide spectrum of properties and induce pleiotropic anti-inflammatory, anti-oxidative, and neuro-protective effects. An increasing number of experimental, animal and human studies have investigated the effects and mechanism of action of these compounds and their potential therapeutic use in the treatment of diabetes. This narrative review presents the key findings of published clinical studies that examined the effects of saffron and/or its constituents in the context of diabetes mellitus. Moreover, an overview of the proposed underlying mechanisms mediating these effects, the medicinal applications of saffron, and the new findings regarding its effect on diabetes and various cellular and molecular mechanisms of action will be debated.
Collapse
Affiliation(s)
- Anis Sani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Tajik
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seiied Sina Seiiedi
- Student Research Committee, Department of Medicine, Ardabil branch, Islamic Azad University, Ardabil, Iran
| | - Razieh Khadem
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haniye Tootooni
- Student Research Committee, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | | | - Nasim Sabet Eqlidi
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Niloofar Deravi
- Student Research committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Niloofar Deravi, Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran 19839-63113, Iran.
| |
Collapse
|
9
|
Stark C, Münßinger S, Rosenau F, Eikmanns BJ, Schwentner A. The Potential of Sequential Fermentations in Converting C1 Substrates to Higher-Value Products. Front Microbiol 2022; 13:907577. [PMID: 35722332 PMCID: PMC9204031 DOI: 10.3389/fmicb.2022.907577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Today production of (bulk) chemicals and fuels almost exclusively relies on petroleum-based sources, which are connected to greenhouse gas release, fueling climate change. This increases the urgence to develop alternative bio-based technologies and processes. Gaseous and liquid C1 compounds are available at low cost and often occur as waste streams. Acetogenic bacteria can directly use C1 compounds like CO, CO2, formate or methanol anaerobically, converting them into acetate and ethanol for higher-value biotechnological products. However, these microorganisms possess strict energetic limitations, which in turn pose limitations to their potential for biotechnological applications. Moreover, efficient genetic tools for strain improvement are often missing. However, focusing on the metabolic abilities acetogens provide, they can prodigiously ease these technological disadvantages. Producing acetate and ethanol from C1 compounds can fuel via bio-based intermediates conversion into more energy-demanding, higher-value products, by deploying aerobic organisms that are able to grow with acetate/ethanol as carbon and energy source. Promising new approaches have become available combining these two fermentation steps in sequential approaches, either as separate fermentations or as integrated two-stage fermentation processes. This review aims at introducing, comparing, and evaluating the published approaches of sequential C1 fermentations, delivering a list of promising organisms for the individual fermentation steps and giving an overview of the existing broad spectrum of products based on acetate and ethanol. Understanding of these pioneering approaches allows collecting ideas for new products and may open avenues toward making full use of the technological potential of these concepts for establishment of a sustainable biotechnology.
Collapse
Affiliation(s)
- Christina Stark
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Sini Münßinger
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, University of Ulm, Ulm, Germany
| | - Bernhard J. Eikmanns
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
- *Correspondence: Bernhard J. Eikmanns,
| | - Andreas Schwentner
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| |
Collapse
|
10
|
Zhang C, Ottenheim C, Weingarten M, Ji L. Microbial Utilization of Next-Generation Feedstocks for the Biomanufacturing of Value-Added Chemicals and Food Ingredients. Front Bioeng Biotechnol 2022; 10:874612. [PMID: 35480982 PMCID: PMC9035589 DOI: 10.3389/fbioe.2022.874612] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/14/2022] [Indexed: 12/04/2022] Open
Abstract
Global shift to sustainability has driven the exploration of alternative feedstocks beyond sugars for biomanufacturing. Recently, C1 (CO2, CO, methane, formate and methanol) and C2 (acetate and ethanol) substrates are drawing great attention due to their natural abundance and low production cost. The advances in metabolic engineering, synthetic biology and industrial process design have greatly enhanced the efficiency that microbes use these next-generation feedstocks. The metabolic pathways to use C1 and C2 feedstocks have been introduced or enhanced into industrial workhorses, such as Escherichia coli and yeasts, by genetic rewiring and laboratory evolution strategies. Furthermore, microbes are engineered to convert these low-cost feedstocks to various high-value products, ranging from food ingredients to chemicals. This review highlights the recent development in metabolic engineering, the challenges in strain engineering and bioprocess design, and the perspectives of microbial utilization of C1 and C2 feedstocks for the biomanufacturing of value-added products.
Collapse
Affiliation(s)
- Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- *Correspondence: Congqiang Zhang, ,
| | - Christoph Ottenheim
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Melanie Weingarten
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - LiangHui Ji
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| |
Collapse
|
11
|
Cometabolism of Ethanol in Azospirillum brasilense Sp7 Is Mediated by Fructose and Glycerol and Regulated Negatively by an Alternative Sigma Factor RpoH2. J Bacteriol 2021; 203:e0026921. [PMID: 34570625 DOI: 10.1128/jb.00269-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Azospirillum brasilense is a plant growth-promoting rhizobacterium that is not known to utilize ethanol as a sole source of carbon for growth. This study shows that A. brasilense can cometabolize ethanol in medium containing fructose or glycerol as a carbon source and contribute to its growth. In minimal medium containing fructose or glycerol as a carbon source, supplementation of ethanol caused enhanced production of an alcohol dehydrogenase (ExaA) and an aldehyde dehydrogenase (AldA) in A. brasilense. However, this was not the case when malate was used as a carbon source. Inactivation of aldA in A. brasilense resulted in the loss of the AldA protein and its ethanol utilizing ability in fructose- or glycerol-supplemented medium. Furthermore, ethanol inhibited the growth of the aldA::Km mutant. The exaA::Km mutant also lost its ability to utilize ethanol in fructose-supplemented medium. However, in glycerol-supplemented medium, A. brasilense utilized ethanol due to the synthesis of a new paralog of alcohol dehydrogenase (ExaA1). The expression of exaA1 was induced by glycerol but not by fructose. Unlike exaA, expression of aldA and exaA1 were not dependent on σ54. Instead, they were negatively regulated by the RpoH2 sigma factor. Inactivation of rpoH2 in A. brasilense conferred the ability to use ethanol as a carbon source without or with malate, overcoming catabolite repression caused by malate. This is the first study showing the role of glycerol and fructose in facilitating cometabolism of ethanol by inducing the expression of ethanol-oxidizing enzymes and the role of RpoH2 in repressing them. IMPORTANCE This study unraveled a hidden ability of Azospirillum brasilense to utilize ethanol as a secondary source of carbon when fructose or glycerol were used as a primary growth substrate. It opens the possibility of studying the regulation of expression of the ethanol oxidation pathway for generating high yielding strains that can efficiently utilize ethanol. Such strains would be useful for economical production of secondary metabolites by A. brasilense in fermenters. The ability of A. brasilense to utilize ethanol might be beneficial to the host plant under the submerged growth conditions.
Collapse
|
12
|
Challenges and opportunities in biological funneling of heterogeneous and toxic substrates beyond lignin. Curr Opin Biotechnol 2021; 73:1-13. [PMID: 34242853 DOI: 10.1016/j.copbio.2021.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022]
Abstract
Significant developments in the understanding and manipulation of microbial metabolism have enabled the use of engineered biological systems toward a more sustainable energy and materials economy. While developments in metabolic engineering have primarily focused on the conversion of carbohydrates, substantial opportunities exist for using these same principles to extract value from more heterogeneous and toxic waste streams, such as those derived from lignin, biomass pyrolysis, or industrial waste. Funneling heterogeneous substrates from these streams toward valuable products, termed biological funneling, presents new challenges in balancing multiple catabolic pathways competing for shared cellular resources and engineering against perturbation from toxic substrates. Solutions to many of these challenges have been explored within the field of lignin valorization. This perspective aims to extend beyond lignin to highlight the challenges and discuss opportunities for use of biological systems to upgrade previously inaccessible waste streams.
Collapse
|
13
|
Robotics for enzyme technology: innovations and technological perspectives. Appl Microbiol Biotechnol 2021; 105:4089-4097. [PMID: 33970318 DOI: 10.1007/s00253-021-11302-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/09/2021] [Accepted: 04/17/2021] [Indexed: 10/21/2022]
Abstract
The use of robotics in the life science sector has created a considerable and significant impact on a wide range of research areas, including enzyme technology due to their immense applications in enzyme and microbial engineering as an indispensable tool in high-throughput screening applications. Scientists are experiencing the advanced applications of various biological robots (nanobots), fabricated based on bottom-up or top-down approaches for making nanotechnology scaffolds. Nanobots and enzyme-powered nanomotors are particularly attractive because they are self-propelled vehicles, which consume biocompatible fuels. These smart nanostructures are widely used as drug delivery systems for the efficient treatment of various diseases. This review gives insights into the escalating necessity of robotics and nanobots and their ever-widening applications in enzyme technology, including biofuel production and biomedical applications. It also offers brief insights into high-throughput robotic platforms that are currently being used in enzyme screening applications for monitoring and control of microbial growth conditions. KEY POINTS: • Robotics and their applications in biotechnology are highlighted. • Robotics for high-throughput enzyme screening and microbial engineering are described. • Nanobots and enzyme-powered nanomotors as controllable drug delivery systems are reviewed.
Collapse
|
14
|
Altaf R, Nadeem H, Babar MM, Ilyas U, Muhammad SA. Genome-scale meta-analysis of breast cancer datasets identifies promising targets for drug development. JOURNAL OF BIOLOGICAL RESEARCH (THESSALONIKE, GREECE) 2021; 28:5. [PMID: 33593445 PMCID: PMC7885587 DOI: 10.1186/s40709-021-00136-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/05/2021] [Indexed: 01/19/2023]
Abstract
Background Because of the highly heterogeneous nature of breast cancer, each subtype differs in response to several treatment regimens. This has limited the therapeutic options for metastatic breast cancer disease requiring exploration of diverse therapeutic models to target tumor specific biomarkers. Methods Differentially expressed breast cancer genes identified through extensive data mapping were studied for their interaction with other target proteins involved in breast cancer progression. The molecular mechanisms by which these signature genes are involved in breast cancer metastasis were also studied through pathway analysis. The potential drug targets for these genes were also identified. Results From 50 DEGs, 20 genes were identified based on fold change and p-value and the data curation of these genes helped in shortlisting 8 potential gene signatures that can be used as potential candidates for breast cancer. Their network and pathway analysis clarified the role of these genes in breast cancer and their interaction with other signaling pathways involved in the progression of disease metastasis. The miRNA targets identified through miRDB predictor provided potential miRNA targets for these genes that can be involved in breast cancer progression. Several FDA approved drug targets were identified for the signature genes easing the therapeutic options for breast cancer treatment. Conclusion The study provides a more clarified role of signature genes, their interaction with other genes as well as signaling pathways. The miRNA prediction and the potential drugs identified will aid in assessing the role of these targets in breast cancer.
Collapse
Affiliation(s)
- Reem Altaf
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan.
| | - Humaira Nadeem
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Mustafeez Mujtaba Babar
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-E-Millat University, Islamabad, 44000, Pakistan
| | - Umair Ilyas
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Syed Aun Muhammad
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, 66000, Pakistan
| |
Collapse
|
15
|
Zhou JJ, Shen JT, Wang XL, Sun YQ, Xiu ZL. Metabolism, morphology and transcriptome analysis of oscillatory behavior of Clostridium butyricum during long-term continuous fermentation for 1,3-propanediol production. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:191. [PMID: 33292405 PMCID: PMC7690194 DOI: 10.1186/s13068-020-01831-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/16/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Oscillation is a special cell behavior in microorganisms during continuous fermentation, which poses threats to the output stability for industrial productions of biofuels and biochemicals. In previous study, a spontaneous oscillatory behavior was observed in Clostridium butyricum-intensive microbial consortium in continuous fermentation for 1,3-propanediol (1,3-PDO) production from glycerol, which led to the discovery of oscillation in species C. butyricum. RESULTS Spontaneous oscillations by C. butyricum tended to occur under glycerol-limited conditions at low dilution rates. At a glycerol feed concentration of 88 g/L and a dilution rate of 0.048 h-1, the oscillatory behavior of C. butyricum was observed after continuous operation for 146 h and was sustained for over 450 h with an average oscillation period of 51 h. During oscillations, microbial glycerol metabolism exhibited dramatic periodic changes, in which productions of lactate, formate and hydrogen significantly lagged behind that of other products including biomass, 1,3-PDO and butyrate. Analysis of extracellular oxidation-reduction potential and intracellular ratio of NAD+/NADH indicated that microbial cells experienced distinct redox changes during oscillations, from oxidized to reduced state with decreasing of growth rate. Meanwhile, C. butyricum S3 exhibited periodic morphological changes during oscillations, with aggregates, elongated shape, spores or cell debris at the trough of biomass production. Transcriptome analysis indicated that expression levels of multiple genes were up-regulated when microbial cells were undergoing stress, including that for pyruvate metabolism, conversion of acetyl-CoA to acetaldehyde as well as stress response. CONCLUSION This study for the first time systematically investigated the oscillatory behavior of C. butyricum in aspect of occurrence condition, metabolism, morphology and transcriptome. Based on the experimental results, two hypotheses were put forward to explain the oscillatory behavior: disorder of pyruvate metabolism, and excessive accumulation of acetaldehyde.
Collapse
Affiliation(s)
- Jin-Jie Zhou
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, People's Republic of China
| | - Jun-Tao Shen
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, People's Republic of China
| | - Xiao-Li Wang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, People's Republic of China
| | - Ya-Qin Sun
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, People's Republic of China
| | - Zhi-Long Xiu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, People's Republic of China.
| |
Collapse
|
16
|
Liang H, Ma X, Ning W, Liu Y, Sinskey AJ, Stephanopoulos G, Zhou K. Constructing an ethanol utilization pathway in Escherichia coli to produce acetyl-CoA derived compounds. Metab Eng 2020; 65:223-231. [PMID: 33248272 DOI: 10.1016/j.ymben.2020.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/30/2020] [Accepted: 11/15/2020] [Indexed: 01/05/2023]
Abstract
Engineering microbes to utilize non-conventional substrates could create short and efficient pathways to convert substrate into product. In this study, we designed and constructed a two-step heterologous ethanol utilization pathway (EUP) in Escherichia coli by using acetaldehyde dehydrogenase (encoded by ada) from Dickeya zeae and alcohol dehydrogenase (encoded by adh2) from Saccharomyces cerevisiae. This EUP can convert ethanol into acetyl-CoA without ATP consumption, and generate two molecules of NADH per molecule of ethanol. We optimized the expression of these two genes and found that ethanol consumption could be improved by expressing them in a specific order (ada-adh2) with a constitutive promoter (PgyrA). The engineered E. coli strain with EUP consumed approximately 8 g/L of ethanol in 96 h when it was used as sole carbon source. Subsequently, we combined EUP with the biosynthesis of polyhydroxybutyrate (PHB), a biodegradable polymer derived from acetyl-CoA. The engineered E. coli strain carrying EUP and PHB biosynthetic pathway produced 1.1 g/L of PHB from 10 g/L of ethanol and 1 g/L of aspartate family amino acids in 96 h. We also engineered a E. coli strain to produce 24 mg/L of prenol in an ethanol-containing medium, supporting the feasibility of converting ethanol into different classes of acetyl-CoA derived compounds.
Collapse
Affiliation(s)
- Hong Liang
- Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP), Singapore-MIT Alliance for Research and Technology, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Xiaoqiang Ma
- Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP), Singapore-MIT Alliance for Research and Technology, Singapore
| | - Wenbo Ning
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Yurou Liu
- Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP), Singapore-MIT Alliance for Research and Technology, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Anthony J Sinskey
- Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP), Singapore-MIT Alliance for Research and Technology, Singapore; Department of Biology, Massachusetts Institute of Technology, United States
| | - Gregory Stephanopoulos
- Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP), Singapore-MIT Alliance for Research and Technology, Singapore; Department of Chemical Engineering, Massachusetts Institute of Technology, United States.
| | - Kang Zhou
- Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP), Singapore-MIT Alliance for Research and Technology, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.
| |
Collapse
|
17
|
Zhang J, Zhang X, Mao Y, Jin B, Guo Y, Wang Z, Chen T. Substrate profiling and tolerance testing of Halomonas TD01 suggest its potential application in sustainable manufacturing of chemicals. J Biotechnol 2020; 316:1-5. [PMID: 32311394 DOI: 10.1016/j.jbiotec.2020.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 01/19/2023]
Abstract
Halomonas TD01, which can grow under non-sterile and continuous processes at high pH and high salt concentrations, is a robust platform for PHA production from glucose. For extending other low-cost sustainable substrates and increasing the potential application in other value-added products, a better understanding of substrates utilization and chemicals tolerance is necessary. In this study, the substrate profiling of TD01 was analyzed via Biolog. Phenotype microarray results demonstrated that TD01 has a wide-ranging substrate spectrum and can utilize 140 of the 190 test compounds. Some cheap, abundant carbon sources, such as sodium acetate, glycerol, ethanol and lactate can well support the growth of TD01 in shake-flask, and are therefore suggested to be its alternative low-cost substrates for chemicals production in future. Furthermore, the tolerance of TD01 to various chemicals was tested. The results showed that the tolerability of TD01 to high concentrations of organic acid salts is prominent. When adding 75 g/L sodium acetate, 100 g/L succinic acid and 100 g/L itaconic acid in the medium, the growth rate reduced 56.14%, 52.63% and 47.37%, respectively. All these results highlight TD01 as a promising, next generation industrial workhorse in chemicals biomanufacturing from cheap organic acid salts.
Collapse
Affiliation(s)
- Jing Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xin Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yufeng Mao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Biao Jin
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yanmei Guo
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|