1
|
Zhang W, Wu X, Ou S, Xu C, Qi Y, Yang Y. Knowledge mapping of induced membrane technique: a scientometric study from 2004 to 2023. J Orthop Surg Res 2024; 19:600. [PMID: 39342348 PMCID: PMC11438200 DOI: 10.1186/s13018-024-05093-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The induced membrane technique (IMT) is a two-step procedure used for reconstructing segmental bone defects in the limbs. The osteogenic mechanism after bone grafting using IMT remains unclear, and efforts to modify the original techniques are limited to the investigative phase. Therefore, reviewing existing knowledge and identifying hotspots and new trends in IMT is critical. METHODS We retrieved reviews and articles associated with IMT published between 2004 and 2023 from the Web of Science Core Collection (WoSCC). The keywords included induced membrane technique, guided bone regeneration, bone defect reconstruction, bone graft, stem cells, Masquelet technique, management of bone defects, and scaffold. HistCite, VOSviewer, CiteSpace, and R-bibliometrics were used for scientometric analysis. RESULTS A total of 1019 publications from 374 academic journals with 33,995 co-cited references by 2,331 institutions from 65 countries or regions were included. China (n = 235) and the United States (n = 215) were the most productive countries, with Shanghai Jiao Tong University producing the most number of publications (n = 18). Journal Injury [co-citations = 1774; impact factor (IF) 2022 = 2.5] published the most manuscripts, while Masquelet AC and Giannoudis PV published literature with a significant influence on IMT, showing more co-citations (n = 727; n = 355). Two preface hotspots of IMT focused on investigating the microscopic mechanism (such as the membrane supporting graft-to-bone union and the role of inflammatory cells) and developing new techniques to improve IMT (such as bone tissue engineering and new drugs). CONCLUSION This study comprehensively reviewed the literature about IMT published in the last 20 years using qualitative and quantitative methods, providing valuable information for researchers investigating IMT.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Orthopedics, Guangdong Second Provincial General Hospital, No.466 Xingang Zhong Road, Guangzhou, China
| | - Xiaodong Wu
- Department of Orthopedics, Guangdong Second Provincial General Hospital, No.466 Xingang Zhong Road, Guangzhou, China
| | - Shuanji Ou
- Department of Orthopedics, Guangdong Second Provincial General Hospital, No.466 Xingang Zhong Road, Guangzhou, China
| | - Changpeng Xu
- Department of Orthopedics, Guangdong Second Provincial General Hospital, No.466 Xingang Zhong Road, Guangzhou, China
| | - Yong Qi
- Department of Orthopedics, Guangdong Second Provincial General Hospital, No.466 Xingang Zhong Road, Guangzhou, China
| | - Yang Yang
- Department of Orthopedics, Guangdong Second Provincial General Hospital, No.466 Xingang Zhong Road, Guangzhou, China.
| |
Collapse
|
2
|
Yang X, Xu X, Li J, Song M, Sun H, Zhang H, Zhang X, Xu Y, Shi J. Management of infected bone defects of the femoral shaft by Masquelet technique: sequential internal fixation and nail with plate augmentation. BMC Musculoskelet Disord 2024; 25:552. [PMID: 39014409 PMCID: PMC11253414 DOI: 10.1186/s12891-024-07681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND To evaluate the effectiveness of a sequential internal fixation strategy and intramedullary nailing with plate augmentation (IMN/PA) for bone reconstruction in the management of infected femoral shaft defects using the Masquelet technique. METHODS We performed a retrospective descriptive cohort study of 21 patients (mean age, 36.4 years) with infected bone defects of the femoral shaft treated by the Masquelet technique with a minimum follow-up of 18 months after second stage. After aggressive debridement, temporary stabilisation (T1) was achieved by an antibiotic-loaded bone cement spacer and internal fixation with a bone cement-coated locking plate. At second stage (T2), the spacer and the locking plate were removed following re-debridement, and IMN/PA was used as definitive fixation together with bone grafting. We evaluated the following clinical outcomes: infection recurrence, bone union time, complications, and the affected limb's knee joint function. RESULTS The median and quartiles of bone defect length was 7 (4.75-9.5) cm. Four patients required iterative debridement for infection recurrence after T1. The median of interval between T1 and T2 was 10 (9-19) weeks. At a median follow-up of 22 (20-27.5) months, none of the patients experienced recurrence of infection. Bone union was achieved at 7 (6-8.5) months in all patients, with one patient experiencing delayed union at the distal end of bone defect due to screws loosening. At the last follow-up, the median of flexion ROM of the knee joint was 120 (105-120.0)°. CONCLUSIONS For infected femoral shaft bone defects treated by the Masquelet technique, sequential internal fixation and IMN/PA for the reconstruction can provide excellent mechanical stability, which is beneficial for early functional exercise and bone union, and does not increase the rate of infection recurrence.
Collapse
Affiliation(s)
- Xiaoyong Yang
- Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the PLA, 212 Daguan Road, Kunming, 650032, China
| | - Xiaoyan Xu
- Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the PLA, 212 Daguan Road, Kunming, 650032, China
| | - Junyi Li
- Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the PLA, 212 Daguan Road, Kunming, 650032, China
| | - Muguo Song
- Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the PLA, 212 Daguan Road, Kunming, 650032, China
| | - Han Sun
- Department of Radiology, 920th Hospital of the Joint Logistics Support Force of the PLA, 212 Daguan Road, Kunming, 650032, China
| | - Hu Zhang
- Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the PLA, 212 Daguan Road, Kunming, 650032, China
| | - Xijiao Zhang
- Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the PLA, 212 Daguan Road, Kunming, 650032, China
| | - Yongqing Xu
- Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the PLA, 212 Daguan Road, Kunming, 650032, China
| | - Jian Shi
- Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the PLA, 212 Daguan Road, Kunming, 650032, China.
| |
Collapse
|
3
|
Wei J, Chen X, Xu Y, Shi L, Zhang M, Nie M, Liu X. Significance and considerations of establishing standardized critical values for critical size defects in animal models of bone tissue regeneration. Heliyon 2024; 10:e33768. [PMID: 39071581 PMCID: PMC11283167 DOI: 10.1016/j.heliyon.2024.e33768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Establishing animal models with critical size defects (CSDs) is critical for conducting experimental investigations engineering of bone tissue regeneration. Currently, a standardised protocol for establishing an animal CSDs model has not been developed. Furthermore, a consensus has not been reached regarding the critical values of CSDs. Successful establishment of animal models for CSDs is a complex process that requires researchers to meticulously consider a variety of factors such as age, species, bone defect size and anatomic location. The specific numerical values for CSDs in small animal models vary, and a clear definition of the critical value for large animal CSDs models in the literature is still lacking. This review consolidates the advancements in critical bone defects animal models by outlining the research landscape across variables, including animal species, age groups, bone defect sites, and sizes, to offer valuable guidance and a theoretical framework for the establishment of pertinent experimental animal models.
Collapse
Affiliation(s)
- Jian Wei
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Xiao Chen
- Department of Oral Medical Technology, Sichuan College of Traditional Chinese Medicine, Mianyang, 621000, China
- Department of Orthodontics, Mianyang Stomatological Hospital, Mianyang, 621000, China
| | - Yingjiao Xu
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Lijuan Shi
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Menglian Zhang
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Minhai Nie
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Xuqian Liu
- Department of Basic Medicine of Stomatology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| |
Collapse
|
4
|
Achatz G, Franke A, Friemert B, Forstmeier V, Andres T, Wendlandt M, Grunert M, von Lübken F, Bieler D. [Challenge of limb care after violence and war with a special focus on imaging procedures]. UNFALLCHIRURGIE (HEIDELBERG, GERMANY) 2024; 127:515-521. [PMID: 38860994 DOI: 10.1007/s00113-024-01449-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Injury patterns in the area of the extremities following violence and war harbor many special features and require special attention. Destructive and complex defect injuries are often present, which necessitate elaborate and special reconstruction approaches, predominantly as part of a staged and multistaged procedure. RESEARCH QUESTION In this context, special attention must be paid to the diagnostic options as an essential aspect, as a clear diagnosis means that targeted treatment steps can be planned and implemented. MATERIAL AND METHOD The authors' experience in this field from military operations in Afghanistan, Iraq, the Republic of Mali, Kosovo and Georgia, as well as the core content of the Terror and Disaster Surgical Care (TDSC®) course on this topic, have been contextualized and incorporated. In addition, aspects of interdisciplinary cooperation with radiological and, in particular, nuclear medicine disciplines are taken into account in the daily routine. RESULTS AND DISCUSSION Extremity injuries in the context of violence and war are accompanied by complex bone and surrounding soft tissue defects due to the high energy impact. The principles of reconstruction familiar from everyday life can only be transferred one-to-one to a limited extent. The treatment pathways are often very long and complex and the questions of infection and tissue vitality must be answered again and again in stages. Interdisciplinary collaboration with the disciplines specialized in imaging procedures, particularly in the field of nuclear medicine, is one of the key building blocks for a successful treatment pathway.
Collapse
Affiliation(s)
- Gerhard Achatz
- Klinik für Unfallchirurgie und Orthopädie, Rekonstruktive und Septische Chirurgie, Sporttraumatologie, Bundeswehrkrankenhaus Ulm, Oberer Eselsberg 40, 89081, Ulm, Deutschland.
| | - Axel Franke
- Klinik für Unfallchirurgie und Orthopädie, Rekonstruktive und Septische Chirurgie, Sporttraumatologie, Bundeswehrkrankenhaus Ulm, Oberer Eselsberg 40, 89081, Ulm, Deutschland
| | - Benedikt Friemert
- Bundeswehrkrankenhaus Ulm, Zentrales Klinisches Management, Ulm, Deutschland
| | - Vinzent Forstmeier
- Klinik für Unfallchirurgie und Orthopädie, Rekonstruktive und Septische Chirurgie, Sporttraumatologie, Bundeswehrkrankenhaus Ulm, Oberer Eselsberg 40, 89081, Ulm, Deutschland
| | - Torsten Andres
- Klinik für Unfallchirurgie und Orthopädie, Rekonstruktive und Septische Chirurgie, Sporttraumatologie, Bundeswehrkrankenhaus Ulm, Oberer Eselsberg 40, 89081, Ulm, Deutschland
| | - Meike Wendlandt
- Klinik für Unfallchirurgie und Orthopädie, Rekonstruktive und Septische Chirurgie, Sporttraumatologie, Bundeswehrkrankenhaus Ulm, Oberer Eselsberg 40, 89081, Ulm, Deutschland
| | - Michael Grunert
- Bundeswehrkrankenhaus Ulm, Klinik für Nuklearmedizin, Ulm, Deutschland
| | - Falk von Lübken
- Bundeswehrkrankenhaus Westerstede, Klinik für Orthopädie und Unfallchirurgie, Westerstede, Deutschland
| | - Dan Bieler
- Bundeswehrzentralkrankenhaus Koblenz, Klinik für Unfallchirurgie und Orthopädie, Rekonstruktive Chirurgie, Handchirurgie und Verbrennungsmedizin, Koblenz, Deutschland
| |
Collapse
|
5
|
Qu Z, Yue J, Song N, Li S. Innovations in 3D printed individualized bone prosthesis materials: revolutionizing orthopedic surgery: a review. Int J Surg 2024; 110:01279778-990000000-01706. [PMID: 38905508 PMCID: PMC11486933 DOI: 10.1097/js9.0000000000001842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
The advent of personalized bone prosthesis materials and their integration into orthopedic surgery has made a profound impact, primarily as a result of the incorporation of three-dimensional (3D) printing technology. By leveraging digital models and additive manufacturing techniques, 3D printing enables the creation of customized, high-precision bone implants tailored to address complex anatomical variabilities and challenging bone defects. In this review, we highlight the significant progress in utilizing 3D printed prostheses across a wide range of orthopedic procedures, including pelvis, hip, knee, foot, ankle, spine surgeries, and bone tumor resections. The integration of 3D printing in preoperative planning, surgical navigation, and postoperative rehabilitation not only enhances treatment outcomes but also reduces surgical risks, accelerates recovery, and optimizes cost-effectiveness. Emphasizing the potential for personalized care and improved patient outcomes, this review underscores the pivotal role of 3D printed bone prosthesis materials in advancing orthopedic practice towards precision, efficiency, and patient-centric solutions. The evolving landscape of 3D printing in orthopedic surgery holds promise for revolutionizing treatment approaches, enhancing surgical outcomes, and ultimately improving the quality of care for orthopedic patients.
Collapse
Affiliation(s)
- Zhigang Qu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun
| | - Jiaji Yue
- Department of Orthopedics, Shenzhen Second People’s Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong
| | - Ning Song
- Operating Theatre, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine With Engineering, Shenyang, Liaoning
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning Province, China
| |
Collapse
|
6
|
Mathieu L, Durand M, de L'escalopier N, Bertani A, Rongieras F, Collombet JM. Challenges and solutions for reconstruction of combat extremity injuries encountered during high-intensity warfare. Eur J Trauma Emerg Surg 2024; 50:1183-1184. [PMID: 38236390 DOI: 10.1007/s00068-023-02419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024]
Affiliation(s)
- Laurent Mathieu
- Department of Hand and Upper Extremity Surgery, Edouard Herriot Hospital, 5 Place d'Arsonval, 69003, Lyon, France.
- Department of Orthopedic, Trauma and Reconstructive Surgery, Percy Military Hospital, 101 Avenue Henri Barbusse, 92140, Clamart, France.
- Department of Surgery, French Military Health Service Academy, Ecole du Val-de-Grâce, 1 Place Alphonse Laveran, 75005, Paris, France.
- Military Biomedical Research Institute (IRBA), 1 Place Général Valérie André, 91220, Brétigny-Sur-Orge, France.
| | - Marjorie Durand
- Military Biomedical Research Institute (IRBA), 1 Place Général Valérie André, 91220, Brétigny-Sur-Orge, France
| | - Nicolas de L'escalopier
- Department of Orthopedic, Trauma and Reconstructive Surgery, Percy Military Hospital, 101 Avenue Henri Barbusse, 92140, Clamart, France
| | - Antoine Bertani
- Department of Surgery, French Military Health Service Academy, Ecole du Val-de-Grâce, 1 Place Alphonse Laveran, 75005, Paris, France
- Department of Lower Extremity Surgery, Edouard Herriot Hospital, 5 Place d'Arsonval, 69003, Lyon, France
| | - Frédéric Rongieras
- Department of Surgery, French Military Health Service Academy, Ecole du Val-de-Grâce, 1 Place Alphonse Laveran, 75005, Paris, France
- Department of Lower Extremity Surgery, Edouard Herriot Hospital, 5 Place d'Arsonval, 69003, Lyon, France
| | - Jean-Marc Collombet
- Military Biomedical Research Institute (IRBA), 1 Place Général Valérie André, 91220, Brétigny-Sur-Orge, France
| |
Collapse
|
7
|
Wang B, Ye X, Chen G, Zhang Y, Zeng Z, Liu C, Tan Z, Jie X. Fabrication and properties of PLA/β-TCP scaffolds using liquid crystal display (LCD) photocuring 3D printing for bone tissue engineering. Front Bioeng Biotechnol 2024; 12:1273541. [PMID: 38440328 PMCID: PMC10910430 DOI: 10.3389/fbioe.2024.1273541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/08/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction: Bone defects remain a thorny challenge that clinicians have to face. At present, scaffolds prepared by 3D printing are increasingly used in the field of bone tissue repair. Polylactic acid (PLA) has good thermoplasticity, processability, biocompatibility, and biodegradability, but the PLA is brittle and has poor osteogenic performance. Beta-tricalcium phosphate (β-TCP) has good mechanical properties and osteogenic induction properties, which can make up for the drawbacks of PLA. Methods: In this study, photocurable biodegradable polylactic acid (bio-PLA) was utilized as the raw material to prepare PLA/β-TCP slurries with varying β-TCP contents (β-TCP dosage at 0%, 10%, 20%, 30%, 35% of the PLA dosage, respectively). The PLA/β-TCP scaffolds were fabricated using liquid crystal display (LCD) light-curing 3D printing technology. The characterization of the scaffolds was assessed, and the biological activity of the scaffold with the optimal compressive strength was evaluated. The biocompatibility of the scaffold was assessed through CCK-8 assays, hemocompatibility assay and live-dead staining experiments. The osteogenic differentiation capacity of the scaffold on MC3T3-E1 cells was evaluated through alizarin red staining, alkaline phosphatase (ALP) detection, immunofluorescence experiments, and RT-qPCR assays. Results: The prepared scaffold possesses a three-dimensional network structure, and with an increase in the quantity of β-TCP, more β-TCP particles adhere to the scaffold surface. The compressive strength of PLA/β-TCP scaffolds exhibits a trend of initial increase followed by decrease with an increasing amount of β-TCP, reaching a maximum value of 52.1 MPa at a 10% β-TCP content. Degradation rate curve results indicate that with the passage of time, the degradation rate of the scaffold gradually increases, and the pH of the scaffold during degradation shows an alkaline tendency. Additionally, Live/dead staining and blood compatibility experiments suggest that the prepared PLA/β-TCP scaffold demonstrates excellent biocompatibility. CCK-8 experiments indicate that the PLA/β-TCP group promotes cell proliferation, and the prepared PLA/β-TCP scaffold exhibits a significant ability to enhance the osteogenic differentiation of MC3T3-E1 cells in vitro. Discussion: 3D printed LCD photocuring PLA/β-TCP scaffolds could improve surface bioactivity and lead to better osteogenesis, which may provide a unique strategy for developing bioactive implants in orthopedic applications.
Collapse
Affiliation(s)
- Boqun Wang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, China
- School of Intelligent Manufacturing, Dongguan Polytechnic, Dongguan, Guangdong, China
| | - Xiangling Ye
- Dongguan Hospital, Guangzhou University of Chinese Medicine, Dongguan, Guangdong, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Guocai Chen
- Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yongqiang Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhikui Zeng
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Cansen Liu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Zhichao Tan
- Dongguan Hospital, Guangzhou University of Chinese Medicine, Dongguan, Guangdong, China
| | - Xiaohua Jie
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Wu P, Shen L, Liu HF, Zou XH, Zhao J, Huang Y, Zhu YF, Li ZY, Xu C, Luo LH, Luo ZQ, Wu MH, Cai L, Li XK, Wang ZG. The marriage of immunomodulatory, angiogenic, and osteogenic capabilities in a piezoelectric hydrogel tissue engineering scaffold for military medicine. Mil Med Res 2023; 10:35. [PMID: 37525300 PMCID: PMC10388535 DOI: 10.1186/s40779-023-00469-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Most bone-related injuries to grassroots troops are caused by training or accidental injuries. To establish preventive measures to reduce all kinds of trauma and improve the combat effectiveness of grassroots troops, it is imperative to develop new strategies and scaffolds to promote bone regeneration. METHODS In this study, a porous piezoelectric hydrogel bone scaffold was fabricated by incorporating polydopamine (PDA)-modified ceramic hydroxyapatite (PDA-hydroxyapatite, PHA) and PDA-modified barium titanate (PDA-BaTiO3, PBT) nanoparticles into a chitosan/gelatin (Cs/Gel) matrix. The physical and chemical properties of the Cs/Gel/PHA scaffold with 0-10 wt% PBT were analyzed. Cell and animal experiments were performed to characterize the immunomodulatory, angiogenic, and osteogenic capabilities of the piezoelectric hydrogel scaffold in vitro and in vivo. RESULTS The incorporation of BaTiO3 into the scaffold improved its mechanical properties and increased self-generated electricity. Due to their endogenous piezoelectric stimulation and bioactive constituents, the as-prepared Cs/Gel/PHA/PBT hydrogels exhibited cytocompatibility as well as immunomodulatory, angiogenic, and osteogenic capabilities; they not only effectively induced macrophage polarization to M2 phenotype but also promoted the migration, tube formation, and angiogenic differentiation of human umbilical vein endothelial cells (HUVECs) and facilitated the migration, osteo-differentiation, and extracellular matrix (ECM) mineralization of MC3T3-E1 cells. The in vivo evaluations showed that these piezoelectric hydrogels with versatile capabilities significantly facilitated new bone formation in a rat large-sized cranial injury model. The underlying molecular mechanism can be partly attributed to the immunomodulation of the Cs/Gel/PHA/PBT hydrogels as shown via transcriptome sequencing analysis, and the PI3K/Akt signaling axis plays an important role in regulating macrophage M2 polarization. CONCLUSION The piezoelectric Cs/Gel/PHA/PBT hydrogels developed here with favorable immunomodulation, angiogenesis, and osteogenesis functions may be used as a substitute in periosteum injuries, thereby offering the novel strategy of applying piezoelectric stimulation in bone tissue engineering for the enhancement of combat effectiveness in grassroots troops.
Collapse
Affiliation(s)
- Ping Wu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Lin Shen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Hui-Fan Liu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xiang-Hui Zou
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Juan Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Yu Huang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Yu-Fan Zhu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhao-Yu Li
- Department of Overseas Education College, Jimei University, Xiamen, 361021, Fujian, China
| | - Chao Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Li-Hua Luo
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zhi-Qiang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Min-Hao Wu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Lin Cai
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Xiao-Kun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Zhou-Guang Wang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
9
|
Huang XH, Zheng LQ, Dai YX, Hu SN, Ning WC, Li SM, Fan YG, Lin ZL, Huang SH. Combined computational analysis and cytology show limited depth osteogenic effect on bone defects in negative pressure wound therapy. Front Bioeng Biotechnol 2023; 11:1056707. [PMID: 36873351 PMCID: PMC9978480 DOI: 10.3389/fbioe.2023.1056707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Background: The treatment of bone defects remains a clinical challenge. The effect of negative pressure wound therapy (NPWT) on osteogenesis in bone defects has been recognized; however, bone marrow fluid dynamics under negative pressure (NP) remain unknown. In this study, we aimed to examine the marrow fluid mechanics within trabeculae by computational fluid dynamics (CFD), and to verify osteogenic gene expression, osteogenic differentiation to investigate the osteogenic depth under NP. Methods: The human femoral head is scanned using micro-CT to segment the volume of interest (VOI) trabeculae. The VOI trabeculae CFD model simulating the bone marrow cavity is developed by combining the Hypermesh and ANSYS software. The effect of trabecular anisotropy is investigated, and bone regeneration effects are simulated under NP scales of -80, -120, -160, and -200 mmHg. The working distance (WD) is proposed to describe the suction depth of the NP. Finally, gene sequence analysis, cytological experiments including bone mesenchymal stem cells (BMSCs) proliferation and osteogenic differentiation are conducted after the BMSCs are cultured under the same NP scale. Results: The pressure, shear stress on trabeculae, and marrow fluid velocity decrease exponentially with an increase in WD. The hydromechanics of fluid at any WD inside the marrow cavity can be theoretically quantified. The NP scale significantly affects the fluid properties, especially those fluid close to the NP source; however, the effect of the NP scale become marginal as WD deepens. Anisotropy of trabecular structure coupled with the anisotropic hydrodynamic behavior of bone marrow; An NP of -120 mmHg demonstrates the majority of bone formation-related genes, as well as the most effective proliferation and osteogenic differentiation of BMSCs compared to the other NP scales. Conclusion: An NP of -120 mmHg may have the optimal activated ability to promote osteogenesis, but the effective WD may be limited to a certain depth. These findings help improve the understanding of fluid mechanisms behind NPWT in treating bone defects.
Collapse
Affiliation(s)
- Xiu-Hong Huang
- School of Stomatology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Li-Qin Zheng
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue-Xing Dai
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shao-Nan Hu
- School of Stomatology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Wan-Chen Ning
- School of Stomatology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Si-Min Li
- School of Stomatology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yue-Guang Fan
- Department of Joint Surgery, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zi-Ling Lin
- Department of Orthopedic Trauma, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shao-Hong Huang
- School of Stomatology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|