1
|
Dayrit GB, Burigsay NPF, Vera Cruz EM, Santos MD. In silico characterization and homology modeling of Nile tilapia ( Oreochromis niloticus) Hsp70cBi and Hsp70cBc proteins. Heliyon 2024; 10:e32748. [PMID: 39183877 PMCID: PMC11341309 DOI: 10.1016/j.heliyon.2024.e32748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 08/27/2024] Open
Abstract
The molecular chaperone heat shock proteins 70 (Hsp70) play a pivotal role in preserving cellular integrity and managing stress. This study extensively examined two Hsp70 proteins, On-Hsp70cBi, inducible, and On-Hsp70cBc, constitutively expressed, in Nile tilapia (Oreochromis niloticus) utilizing in silico analysis, homology modeling, and functional annotation. Employing the SWISS-MODEL program for homology modeling, the proposed models underwent thorough reliability assessment via ProSA, Verify 3D, PROVE, ERRAT, and Ramachandran plot analyses. Key features of On-Hsp70cBi and On-Hsp70cBc included amino acid lengths (640 and 645) and molecular weights (70,233.48 and 70,773.17 Da). Moreover, theoretical isoelectric points (pI = 5.63 and 5.28), indicated their acidic nature. Counts of negatively and positively charged residues (95 and 86; 95 and 81) revealed neutrality, while instability index (II) values of 35.27 (On-Hsp70cBi) and 38.85 (On-Hsp70cBc) suggested stability. Aliphatic index (AI) values were notably high for both proteins (84.58 and 82.85), indicating stability across a broad temperature range. Domain architecture analysis showed both proteins to contain an MreB/Mbl domain. Protein-protein interaction analysis identified the co-chaperone Stip1 as a primary functional partner. Comparative modeling yielded highly reliable 3D models, showcasing structural similarity to known proteins and predicted binding sites. Additionally, both proteins are primarily localized in the cytoplasm. Functional analysis predicted an AMP-PNP binding site for On-Hsp70cBi and an ATP binding site for On-Hsp70cBc. These findings deepened our understanding of Hsp70cBc and Hsp70cBi in Nile tilapia, underscoring their significance in fish physiology and warranting further investigation, thus advancing our knowledge of these proteins' roles in cellular processes and stress responses, potentially impacting fish health and resilience.
Collapse
Affiliation(s)
- Geraldine B. Dayrit
- The Graduate School, University of Santo Tomas, España Boulevard, Manila, 1015, Philippines
- College of Public Health, University of the Philippines Manila, Ermita, Manila, 1000, Philippines
- ONE ARM, Department of Medical Microbiology, College of Public Health, University of the Philippines Manila, Ermita, Manila, 1000, Philippines
| | - Normela Patricia F. Burigsay
- ONE ARM, Department of Medical Microbiology, College of Public Health, University of the Philippines Manila, Ermita, Manila, 1000, Philippines
| | - Emmanuel M. Vera Cruz
- Freshwater Aquaculture Center, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
| | - Mudjekeewis D. Santos
- The Graduate School, University of Santo Tomas, España Boulevard, Manila, 1015, Philippines
- Freshwater Aquaculture Center, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
- National Fisheries Research and Development Institute, Genetic Fingerprinting Laboratory, 101 Mother Ignacia Ave., South Triangle, Quezon City, 1101, Philippines
| |
Collapse
|
2
|
Ho C, Nazarie WFWM, Lee PC. An In Silico Design of Peptides Targeting the S1/S2 Cleavage Site of the SARS-CoV-2 Spike Protein. Viruses 2023; 15:1930. [PMID: 37766336 PMCID: PMC10536081 DOI: 10.3390/v15091930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
SARS-CoV-2, responsible for the COVID-19 pandemic, invades host cells via its spike protein, which includes critical binding regions, such as the receptor-binding domain (RBD), the S1/S2 cleavage site, the S2 cleavage site, and heptad-repeat (HR) sections. Peptides targeting the RBD and HR1 inhibit binding to host ACE2 receptors and the formation of the fusion core. Other peptides target proteases, such as TMPRSS2 and cathepsin L, to prevent the cleavage of the S protein. However, research has largely ignored peptides targeting the S1/S2 cleavage site. In this study, bioinformatics was used to investigate the binding of the S1/S2 cleavage site to host proteases, including furin, trypsin, TMPRSS2, matriptase, cathepsin B, and cathepsin L. Peptides targeting the S1/S2 site were designed by identifying binding residues. Peptides were docked to the S1/S2 site using HADDOCK (High-Ambiguity-Driven protein-protein DOCKing). Nine peptides with the lowest HADDOCK scores and strong binding affinities were selected, which was followed by molecular dynamics simulations (MDSs) for further investigation. Among these peptides, BR582 and BR599 stand out. They exhibited relatively high interaction energies with the S protein at -1004.769 ± 21.2 kJ/mol and -1040.334 ± 24.1 kJ/mol, respectively. It is noteworthy that the binding of these peptides to the S protein remained stable during the MDSs. In conclusion, this research highlights the potential of peptides targeting the S1/S2 cleavage site as a means to prevent SARS-CoV-2 from entering cells, and contributes to the development of therapeutic interventions against COVID-19.
Collapse
Affiliation(s)
- Chian Ho
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (C.H.); (W.F.W.M.N.)
| | - Wan Fahmi Wan Mohamad Nazarie
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (C.H.); (W.F.W.M.N.)
| | - Ping-Chin Lee
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (C.H.); (W.F.W.M.N.)
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| |
Collapse
|
3
|
Zhan E, Jiang J, Wang Y, Zhang K, Tang T, Chen Y, Jia Z, Wang Q, Zhao C. Shisa reduces the sensitivity of homomeric RDL channel to GABA in the two-spotted spider mite, Tetranychus urticae Koch. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105414. [PMID: 37105623 DOI: 10.1016/j.pestbp.2023.105414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/08/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
The γ-aminobutyric acid receptors (GABARs) mediate fast inhibitory transmission in central nervous system of insects and are important targets of insecticides. An auxiliary subunit, Shisa7, was identified in mammals as a single-passing transmembrane protein. However, the homology gene(s) of Shisa in invertebrates has not been reported to date. In the present study, a homolog Shisa gene was identified from the two-spotted spider mite, Tetranychus urticae Koch. Its open reading frame had 927 base pairs and encoded 308 amino acid residues, which has a typical Shisa domain at 13th-181st amino acid residues. According to the phylogenetic tree, the invertebrate Shisa was categorized apart with those of vertebrate, and TuShisa showed closest relationship with the Shisa9 of velvet mite, Dinothrombium tinctorium (L.). In the electrophysiological assay with two-electrode voltage clamp, the GABA-activated TuRDL channel was functionally formed in the Africa clawed frog Xenopus laevis (Daudin) oocytes (EC50 = 53.34 μM). No GABA-activated current could be observed in TuShisa-expressed oocytes, whereas TuShisa could reduce the sensitivity of TuRDL/TuShisa (mass ratio of 1: 4) channel to GABA. The homology structural models of TuRDL and TuShisa were built by the SWISS-MODEL server, their interaction was predicted using Z-DOCK and three predicted hydrogen bonds and interface residues were analysed by PyMOL. Meanwhile, the key interface residues of TuShisa affected the stability of complex were calculated by Discovery Studio 2019. In conclusion, the TuShisa, as the first reported invertebrate Shisa, was explored and functionally examined as the GABARs auxiliary subunit. Our findings provide a basis for research of invertebrate Shisa.
Collapse
Affiliation(s)
- Enling Zhan
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Jie Jiang
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Ying Wang
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Kexin Zhang
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Tao Tang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, PR China.
| | - Yiqu Chen
- College of Plant Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, PR China.
| | - Zhongqiang Jia
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Qiuxia Wang
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Chunqing Zhao
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
4
|
Pedroso A, Herrera Belén L, Beltrán JF, Castillo RL, Pessoa A, Pedroso E, Farías JG. In Silico Design of a Chimeric Humanized L-asparaginase. Int J Mol Sci 2023; 24:ijms24087550. [PMID: 37108713 PMCID: PMC10144303 DOI: 10.3390/ijms24087550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer among children worldwide, characterized by an overproduction of undifferentiated lymphoblasts in the bone marrow. The treatment of choice for this disease is the enzyme L-asparaginase (ASNase) from bacterial sources. ASNase hydrolyzes circulating L-asparagine in plasma, leading to starvation of leukemic cells. The ASNase formulations of E. coli and E. chrysanthemi present notorious adverse effects, especially the immunogenicity they generate, which undermine both their effectiveness as drugs and patient safety. In this study, we developed a humanized chimeric enzyme from E. coli L-asparaginase which would reduce the immunological problems associated with current L-asparaginase therapy. For these, the immunogenic epitopes of E. coli L-asparaginase (PDB: 3ECA) were determined and replaced with those of the less immunogenic Homo sapiens asparaginase (PDB:4O0H). The structures were modeled using the Pymol software and the chimeric enzyme was modeled using the SWISS-MODEL service. A humanized chimeric enzyme with four subunits similar to the template structure was obtained, and the presence of asparaginase enzymatic activity was predicted by protein-ligand docking.
Collapse
Affiliation(s)
- Alejandro Pedroso
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Lisandra Herrera Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Avenida Carlos Schorr 255, Talca 3460000, Chile
| | - Jorge F Beltrán
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Rodrigo L Castillo
- Department of Internal Medicine, East Division, Faculty of Medicine, University of Chile, Santiago 7500922, Chile
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Enrique Pedroso
- Department of Family Medicine, Faculty of Medicine, University of Medical Sciences Matanzas, Matanzas 42300, Cuba
| | - Jorge G Farías
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
5
|
Nene T, Yadav M, Yadav HS. Plant catalase in silico characterization and phylogenetic analysis with structural modeling. J Genet Eng Biotechnol 2022; 20:125. [PMID: 35984536 PMCID: PMC9391562 DOI: 10.1186/s43141-022-00404-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/11/2022] [Indexed: 12/03/2022]
Abstract
Background Catalase (EC 1.11.1.6) is a heme-containing tetrameric enzyme that plays a critical role in signaling and hydrogen peroxide metabolism. It was the first enzyme to be crystallized and isolated. Catalase is a well-known industrial enzyme used in diagnostic and analytical methods in the form of biomarkers and biosensors, as well as in the textile, paper, food, and pharmaceutical industries. In silico analysis of CAT genes and proteins has gained increased interest, emphasizing the development of biomarkers and drug designs. The present work aims to understand the catalase evolutionary relationship of plant species and analyze its physicochemical characteristics, homology, phylogenetic tree construction, secondary structure prediction, and 3D modeling of protein sequences and its validation using a variety of conventional computational methods to assist researchers in better understanding the structure of proteins. Results Around 65 plant catalase sequences were computationally evaluated and subjected to bioinformatics assessment for physicochemical characterization, multiple sequence alignment, phylogenetic construction, motif and domain identification, and secondary and tertiary structure prediction. The phylogenetic tree revealed six unique clusters where diversity of plant catalases was found to be the largest for Oryza sativa. The thermostability and hydrophilic nature of these proteins were primarily observed, as evidenced by a relatively high aliphatic index and negative GRAVY value. The distribution of 5 sequence motifs was uniformly distributed with a width length of 50 with the best possible amino residue sequences that resemble the plant catalase PLN02609 superfamily. Using SOPMA, the predicted secondary structure of the protein sequences revealed the predominance of the random coil. The predicted 3D CAT model from Arabidopsis thaliana was a homotetramer, thermostable protein with 59-KDa weight, and its structural validation was confirmed by PROCHECK, ERRAT, Verify3D, and Ramachandran plot. The functional relationships of our query sequence revealed the glutathione reductase as the closest interacting protein of query protein. Conclusions This theoretical plant catalases in silico analysis provide insight into its physiochemical characteristics and functional and structural understanding and its evolutionary behavior and exploring protein structure-function relationships when crystal structures are unavailable.
Collapse
Affiliation(s)
- Takio Nene
- Department of Chemistry, North Eastern Regional Institute of Science and Technology, Itanagar, India.
| | - Meera Yadav
- Department of Chemistry, North Eastern Regional Institute of Science and Technology, Itanagar, India.
| | - Hardeo Singh Yadav
- Department of Chemistry, North Eastern Regional Institute of Science and Technology, Itanagar, India
| |
Collapse
|
6
|
Baloji G, Jagtap S, Talakayala A, Kolli M, Lingfa L, Garladinne M, Ankanagari S. Insights from the protein sequence and structure analysis of PgHsc70 and OsHsp70 genes. Bioinformation 2022; 18:88-102. [PMID: 36420430 PMCID: PMC9649495 DOI: 10.6026/97320630018088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/02/2022] [Accepted: 01/02/2022] [Indexed: 09/19/2023] Open
Abstract
Heat shock proteins are induced in a wide range of abiotic and biotic stresses. They are well known for cellular chaperone activities and play an important role in protecting plants through regulation of homeostasis and survival. A comprehensive characterization and comparative analysis of the Hsp70 family members within the closely related plant species helps in better interpretation of these proteins' contribution to cell function and response to specific environmental stresses. Therefore, it is of interest to glean insights from the protein sequence analysis of PgHsc 70 and OsHsp70 genes. Thus, we document data from the sequence and structure analysis of PgHsc 70 and OsHsp 70 gene a.
Collapse
Affiliation(s)
- Gugulothu Baloji
- Department of Genetics, Osmania University, Hyderabad - 50007 (T.S) India
| | - Sandhya Jagtap
- Department of Genetics, Osmania University, Hyderabad - 50007 (T.S) India
| | - Ashwini Talakayala
- Department of Genetics, Osmania University, Hyderabad - 50007 (T.S) India
| | - Meghana Kolli
- Department of Genetics, Osmania University, Hyderabad - 50007 (T.S) India
| | - Lali Lingfa
- Department of Genetics, Osmania University, Hyderabad - 50007 (T.S) India
| | - Mallikarjuna Garladinne
- Plant Molecular Biology Laboratory, Agri Biotech Foundation, Rajendra Nagar, Hyderabad (T.S) 500 030, India
| | | |
Collapse
|
7
|
Orzoł A, Piotrowicz-Cieślak AI. Levofloxacin is phytotoxic and modifies the protein profile of lupin seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:22226-22240. [PMID: 28795319 PMCID: PMC5629236 DOI: 10.1007/s11356-017-9845-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
The toxicity of levofloxacin to yellow lupin plants was evaluated in this study. Recommended indexes of plant (roots and shoots) growth were determined and new indexes were proposed which better characterise the phytotoxicity of levofloxacin. These were, in particular, the activity of antioxidative enzymes, the content of free radicals, as well as the root protein content and the root protein profile. The results showed that levofloxacin considerably affected EC50, measured as the activity of catalase in roots, and leaves (1.05 and 0.069 mM, respectively). The activity of peroxidase in the roots and the dry weight of seedlings were the least sensitive parameters (EC50 was 1.8 and 1.76 mM, respectively). Units of toxicity clearly showed that the activity of catalase is a better measure of toxicity for low concentrations of the drug, and it is a better index of plant physiological state than the morphological parameters of seedlings. Moreover, levofloxacin changed the location of free radicals and the protein profile in plants. The changes in location of reactive oxygen species in roots were an important symptom of the drug toxicity to lupin seedlings. Our results have shown that the toxicity of levofloxacin was manifested mainly by changes in the protein profile. The content of the glyceraldehyde-3-phosphate dehydrogenase, 14-3-3-like protein A, expansin-B3-like precursor, fructose-bisphosphate aldolase, lipoxygenase, nucleotide-binding subunit of vacuolar ATPase and pyruvate dehydrogenase were found to decrease. On the other hand, plant exposure to levofloxacin resulted in an increase in the content of enolase, protein LlR18A, class III chitinase, ascorbate peroxidase, aspartate aminotransferase, alcohol dehydrogenase 1, leghemoglobin reductase-like 17 and heat shock cognate protein 80-like.
Collapse
Affiliation(s)
- Aleksandra Orzoł
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718, Olsztyn, Poland
| | - Agnieszka I Piotrowicz-Cieślak
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718, Olsztyn, Poland.
| |
Collapse
|
8
|
L. S, Vasu P. In silico designing of therapeutic protein enriched with branched-chain amino acids for the dietary treatment of chronic liver disease. J Mol Graph Model 2017; 76:192-204. [DOI: 10.1016/j.jmgm.2017.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 02/07/2023]
|