1
|
Streptomonospora litoralis sp. nov., a halophilic thiopeptides producer isolated from sand collected at Cuxhaven beach. Antonie van Leeuwenhoek 2021; 114:1483-1496. [PMID: 34355285 PMCID: PMC8448680 DOI: 10.1007/s10482-021-01609-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/23/2021] [Indexed: 11/04/2022]
Abstract
Strain M2T was isolated from the beach of Cuxhaven, Wadden Sea, Germany, in course of a program to attain new producers of bioactive natural products. Strain M2T produces litoralimycin and sulfomycin-type thiopeptides. Bioinformatic analysis revealed a potential biosynthetic gene cluster encoding for the M2T thiopeptides. The strain is Gram-stain-positive, rod shaped, non-motile, spore forming, showing a yellow colony color and forms extensively branched substrate mycelium and aerial hyphae. Inferred from the 16S rRNA gene phylogeny strain M2T affiliates with the genus Streptomonospora. It shows 96.6% 16S rRNA gene sequence similarity to the type species Streptomonospora salina DSM 44593 T and forms a distinct branch with Streptomonospora sediminis DSM 45723 T with 97.0% 16S rRNA gene sequence similarity. Genome-based phylogenetic analysis revealed that M2T is closely related to Streptomonospora alba YIM 90003 T with a digital DNA-DNA hybridisation (dDDH) value of 26.6%. The predominant menaquinones of M2T are MK-10(H6), MK-10(H8), and MK-11(H6) (> 10%). Major cellular fatty acids are iso-C16:0, anteiso C17:0 and C18:0 10-methyl. The polar lipid profile consisted of diphosphatidylglycerol phosphatidyl glycerol, phosphatidylinositol, phosphatidylcholine, phosphatidylethanolamine, three glycolipids, two unknown phospholipids, and two unknown lipids. The genome size of type strain M2T is 5,878,427 bp with 72.1 mol % G + C content. Based on the results obtained from phylogenetic and chemotaxonomic studies, strain M2T (= DSM 106425 T = NCCB 100650 T) is considered to represent a novel species within the genus Streptomonospora for which the name Streptomonospora litoralis sp. nov. is proposed.
Collapse
|
2
|
Liu L, Wang S, Zhou S, Sun W, Fu T, Zhang Y, Zhang XH, Yu M. Gramella bathymodioli sp. nov., isolated from a mussel inhabiting a hydrothermal field in the Okinawa Trough. Int J Syst Evol Microbiol 2020; 70:5854-5860. [DOI: 10.1099/ijsem.0.004488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, strictly aerobic, motile by gliding, rod-shaped and non-flagellated marine bacterium strain, designated BOM4T, was isolated from a mussel inhabiting the Tangyin hydrothermal field of the Okinawa Trough. The growth temperature was in the range of 16–40 °C, and the optimum temperature was 37 °C. Optimal growth occurred at pH 7.0 and in the presence of 1 % (w/v) NaCl. The predominant isoprenoid quinone of strain BOM4T was identified as menaquinone-6 (MK-6). The predominant fatty acids (>10 %) were iso-C15 : 0(43.8 %) and iso-C17 : 0 3-OH (17.5 %). The major polar lipids comprised one phosphatidylethanolamine, three unidentified aminolipids and two unidentified lipids. Based on 16S rRNA gene sequence analyses, strain BOM4T was found to be most closely related to
Gramella aestuarii
JCM 17790T (96.7 %), followed by
Gramella flava
JLT2011T (96.1 %),
Gramella sediminilitoris
GHTF-27T (95.6 %) and
Gramella gaetbulicola
RA5-111T (95.5 %) and with lower sequence similarities (93.7- 95.4 %) to other species of the genus
Gramella
. Genome relatedness between strain BOM4T and
G. aestuarii
JCM 17790T was computed using both average nucleotide identity and DNA–DNA hybridization with values of 75.6 and 19.3±2.4 %, respectively. The DNA G+C content of strain BOM4T was 41.4 mol%. On the basis of polyphasic analysis, strain BOM4T was considered to represent a novel species of the genus
Gramella
, for which the name Gramella bathymodioli sp. nov. is proposed. The type strain is BOM4T (=MCCC 1K03735T=JCM 33424T).
Collapse
Affiliation(s)
- Lijun Liu
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Shuang Wang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Shun Zhou
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Wen Sun
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Tianyu Fu
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Yulin Zhang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Min Yu
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China
| |
Collapse
|
3
|
Déjean G, Tamura K, Cabrera A, Jain N, Pudlo NA, Pereira G, Viborg AH, Van Petegem F, Martens EC, Brumer H. Synergy between Cell Surface Glycosidases and Glycan-Binding Proteins Dictates the Utilization of Specific Beta(1,3)-Glucans by Human Gut Bacteroides. mBio 2020; 11:e00095-20. [PMID: 32265336 PMCID: PMC7157763 DOI: 10.1128/mbio.00095-20] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/09/2020] [Indexed: 01/06/2023] Open
Abstract
The human gut microbiota (HGM) has far-reaching impacts on human health and nutrition, which are fueled primarily by the metabolism of otherwise indigestible complex carbohydrates commonly known as dietary fiber. However, the molecular basis of the ability of individual taxa of the HGM to address specific dietary glycan structures remains largely unclear. In particular, the utilization of β(1,3)-glucans, which are widespread in the human diet as yeast, seaweed, and plant cell walls, had not previously been resolved. Through a systems-based approach, here we show that the symbiont Bacteroides uniformis deploys a single, exemplar polysaccharide utilization locus (PUL) to access yeast β(1,3)-glucan, brown seaweed β(1,3)-glucan (laminarin), and cereal mixed-linkage β(1,3)/β(1,4)-glucan. Combined biochemical, enzymatic, and structural analysis of PUL-encoded glycoside hydrolases (GHs) and surface glycan-binding proteins (SGBPs) illuminates a concerted molecular system by which B. uniformis recognizes and saccharifies these distinct β-glucans. Strikingly, the functional characterization of homologous β(1,3)-glucan utilization loci (1,3GUL) in other Bacteroides further demonstrated that the ability of individual taxa to utilize β(1,3)-glucan variants and/or β(1,3)/β(1,4)-glucans arises combinatorially from the individual specificities of SGBPs and GHs at the cell surface, which feed corresponding signals to periplasmic hybrid two-component sensors (HTCSs) via TonB-dependent transporters (TBDTs). These data reveal the importance of cooperativity in the adaptive evolution of GH and SGBP cohorts to address individual polysaccharide structures. We anticipate that this fine-grained knowledge of PUL function will inform metabolic network analysis and proactive manipulation of the HGM. Indeed, a survey of 2,441 public human metagenomes revealed the international, yet individual-specific, distribution of each 1,3GUL.IMPORTANCEBacteroidetes are a dominant phylum of the human gut microbiota (HGM) that target otherwise indigestible dietary fiber with an arsenal of polysaccharide utilization loci (PULs), each of which is dedicated to the utilization of a specific complex carbohydrate. Here, we provide novel insight into this paradigm through functional characterization of homologous PULs from three autochthonous Bacteroides species, which target the family of dietary β(1,3)-glucans. Through detailed biochemical and protein structural analysis, we observed an unexpected diversity in the substrate specificity of PUL glycosidases and glycan-binding proteins with regard to β(1,3)-glucan linkage and branching patterns. In combination, these individual enzyme and protein specificities support taxon-specific growth on individual β(1,3)-glucans. This detailed metabolic insight, together with a comprehensive survey of individual 1,3GULs across human populations, further expands the fundamental roadmap of the HGM, with potential application to the future development of microbial intervention therapies.
Collapse
Affiliation(s)
- Guillaume Déjean
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kazune Tamura
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adriana Cabrera
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Namrata Jain
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicholas A Pudlo
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gabriel Pereira
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alexander Holm Viborg
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Koch H, Freese HM, Hahnke RL, Simon M, Wietz M. Adaptations of Alteromonas sp. 76-1 to Polysaccharide Degradation: A CAZyme Plasmid for Ulvan Degradation and Two Alginolytic Systems. Front Microbiol 2019; 10:504. [PMID: 30936857 PMCID: PMC6431674 DOI: 10.3389/fmicb.2019.00504] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/27/2019] [Indexed: 11/16/2022] Open
Abstract
Studying the physiology and genomics of cultured hydrolytic bacteria is a valuable approach to decipher the biogeochemical cycling of marine polysaccharides, major nutrients derived from phytoplankton and macroalgae. We herein describe the profound potential of Alteromonas sp. 76-1, isolated from alginate-enriched seawater at the Patagonian continental shelf, to degrade the algal polysaccharides alginate and ulvan. Phylogenetic analyses indicated that strain 76-1 might represent a novel species, distinguished from its closest relative (Alteromonas naphthalenivorans) by adaptations to their contrasting habitats (productive open ocean vs. coastal sediments). Ecological distinction of 76-1 was particularly manifested in the abundance of carbohydrate-active enzymes (CAZymes), consistent with its isolation from alginate-enriched seawater and elevated abundance of a related OTU in the original microcosm. Strain 76-1 encodes multiple alginate lyases from families PL6, PL7, PL17, and PL18 largely contained in two polysaccharide utilization loci (PUL), which may facilitate the utilization of different alginate structures in nature. Notably, ulvan degradation relates to a 126 Kb plasmid dedicated to polysaccharide utilization, encoding several PL24 and PL25 ulvan lyases and monomer-processing genes. This extensive and versatile CAZyme repertoire allowed substantial growth on polysaccharides, showing comparable doubling times with alginate (2 h) and ulvan (3 h) in relation to glucose (3 h). The finding of homologous ulvanolytic systems in distantly related Alteromonas spp. suggests CAZyme plasmids as effective vehicles for PUL transfer that mediate niche gain. Overall, the demonstrated CAZyme repertoire substantiates the role of Alteromonas in marine polysaccharide degradation and how PUL exchange influences the ecophysiology of this ubiquitous marine taxon.
Collapse
Affiliation(s)
- Hanna Koch
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Heike M. Freese
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Richard L. Hahnke
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Matthias Wietz
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
5
|
Lee J, Li C, Surayot U, Yelithao K, Lee S, Park W, Tabarsa M, You S. Molecular structures, chemical properties and biological activities of polysaccharide from Smilax glabra rhizome. Int J Biol Macromol 2018; 120:1726-1733. [DOI: 10.1016/j.ijbiomac.2018.09.138] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/29/2018] [Accepted: 09/22/2018] [Indexed: 10/28/2022]
|
6
|
Adaptive mechanisms that provide competitive advantages to marine bacteroidetes during microalgal blooms. ISME JOURNAL 2018; 12:2894-2906. [PMID: 30061707 PMCID: PMC6246565 DOI: 10.1038/s41396-018-0243-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/22/2018] [Accepted: 06/30/2018] [Indexed: 01/15/2023]
Abstract
Polysaccharide degradation by heterotrophic microbes is a key process within Earth's carbon cycle. Here, we use environmental proteomics and metagenomics in combination with cultivation experiments and biochemical characterizations to investigate the molecular details of in situ polysaccharide degradation mechanisms during microalgal blooms. For this, we use laminarin as a model polysaccharide. Laminarin is a ubiquitous marine storage polymer of marine microalgae and is particularly abundant during phytoplankton blooms. In this study, we show that highly specialized bacterial strains of the Bacteroidetes phylum repeatedly reached high abundances during North Sea algal blooms and dominated laminarin turnover. These genomically streamlined bacteria of the genus Formosa have an expanded set of laminarin hydrolases and transporters that belonged to the most abundant proteins in the environmental samples. In vitro experiments with cultured isolates allowed us to determine the functions of in situ expressed key enzymes and to confirm their role in laminarin utilization. It is shown that laminarin consumption of Formosa spp. is paralleled by enhanced uptake of diatom-derived peptides. This study reveals that genome reduction, enzyme fusions, transporters, and enzyme expansion as well as a tight coupling of carbon and nitrogen metabolism provide the tools, which make Formosa spp. so competitive during microalgal blooms.
Collapse
|
7
|
Li AZ, Han XB, Lin LZ, Zhang MX, Zhu HH. Gramella antarctica sp. nov., isolated from marine surface sediment. Int J Syst Evol Microbiol 2017; 68:358-363. [PMID: 29205131 DOI: 10.1099/ijsem.0.002513] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, aerobic, yellow-coloured, motile by gliding, rod-shaped bacterial strain, designated R17H11T, was isolated from surface sediment collected from the Ross Sea, Antarctica. Growth optimally occurred at 25-30 °C, at pH 7.0-7.5 and in the presence of 3 % NaCl (w/v). Phylogenetic trees based on 16S rRNA gene sequences indicated that strain R17H11T clustered together with Gramella flava JLT2011T and fell within the genus Gramella. Strain R17H11T shared the highest 16S rRNA gene similarities (96.1 and 96.0 %) with the type strains of Gramella forsetii and G. flava, and 92.6-95.5 % similarities with those of other known Gramella species. Strain R17H11T contained menaquinone-6 as the only isoprenoid quinone. The major fatty acids (>5 %) were summed feature 3 (17.5 %, comprising C16 : 1ω7c and/or C16 : 1ω6c), iso-C15 : 0 (14.0 %), summed feature 9 (11.8 %, comprising 10-methyl C16 : 0 and/or iso-C17 : 1ω9c), iso-C17 : 0 3-OH (11.8 %), iso-C16 : 0 (7.4 %), C17 : 1ω6c (6.9 %) and anteiso-C15 : 0 (5.1 %). The major polar lipids were phosphatidylethanolamine, four unidentified lipids, an unidentified aminolipid, an unidentified aminophospholipid and an unidentified glycolipid. The DNA G+C content of strain R17H11T was 38.6 mol%. On the basis of the phylogenetic, physiological and chemotaxonomic characteristics, strain R17H11T represents a novel species in the genus Gramella, for which the name Gramellaantarctica sp. nov. is proposed. The type strain of the novel species is R17H11T (=GDMCC 1.1208T=KCTC 52925T).
Collapse
Affiliation(s)
- An-Zhang Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Xi-Bin Han
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, PR China
| | - Long-Zhen Lin
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Ming-Xia Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Hong-Hui Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| |
Collapse
|
8
|
Foran E, Buravenkov V, Kopel M, Mizrahi N, Shoshani S, Helbert W, Banin E. Functional characterization of a novel “ulvan utilization loci” found in Alteromonas sp. LOR genome. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.04.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Panschin I, Becher M, Verbarg S, Spröer C, Rohde M, Schüler M, Amann RI, Harder J, Tindall BJ, Hahnke RL. Description of Gramella forsetii sp. nov., a marine Flavobacteriaceae isolated from North Sea water, and emended description of Gramella gaetbulicola Cho et al. 2011. Int J Syst Evol Microbiol 2017; 67:697-703. [PMID: 27902319 DOI: 10.1099/ijsem.0.001700] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain KT0803T was isolated from coastal eutrophic surface waters of Helgoland Roads near the island of Helgoland, North Sea, Germany. The taxonomic position of the strain, previously known as 'Gramella forsetii' KT0803, was investigated by using a polyphasic approach. The strain was Gram-stain-negative, chemo-organotrophic, heterotrophic, strictly aerobic, oxidase- and catalase-positive, rod-shaped, motile by gliding and had orange-yellow carotenoid pigments, but was negative for flexirubin-type pigments. It grew optimally at 22-25 °C, at pH 7.5 and at a salinity between 2-3 %. Strain KT0803T hydrolysed the polysaccharides laminarin, alginate, pachyman and starch. The respiratory quinone was MK-6. Polar lipids comprised phosphatidylethanolamine, six unidentified lipids and two unidentified aminolipids. The predominant fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH, C16 : 1ω7c and iso-C17 : 1ω7c, with smaller amounts of iso-C15 : 0 2-OH, C15 : 0, anteiso-C15 : 0 and C17 : 1ω6c. The G+C content of the genomic DNA was 36.6 mol%. The 16S rRNA gene sequence identities were 98.6 % with Gramella echinicola DSM 19838T, 98.3 % with Gramella gaetbulicola DSM 23082T, 98.1 % with Gramella aestuariivivens BG-MY13T and Gramella aquimixticola HJM-19T, 98.0 % with Gramella lutea YJ019T, 97.9 % with Gramella portivictoriae DSM 23547T and 96.9 % with Gramella marina KMM 6048T. The DNA-DNA relatedness values were <35 % between strain KT0803T and type strains with >98.2 % 16S rRNA gene sequence identity. Based on the chemotaxonomic, phenotypic and genomic characteristics, strain KT0803T has been assigned to the genus Gramella, as Gramella forsetii sp. nov. The type strain is KT0803T (=DSM 17595T=CGMCC 1.15422T). An emended description of Gramella gaetbulicolaCho et al. 2011 is also proposed.
Collapse
Affiliation(s)
- Irina Panschin
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Mareike Becher
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Susanne Verbarg
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Manfred Rohde
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Margarete Schüler
- Cell Biology and Electron Microscopy, University of Bayreuth, Bayreuth, Germany
| | - Rudolf I Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Jens Harder
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Brian J Tindall
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Richard L Hahnke
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
10
|
Tang K, Lin Y, Han Y, Jiao N. Characterization of Potential Polysaccharide Utilization Systems in the Marine Bacteroidetes Gramella Flava JLT2011 Using a Multi-Omics Approach. Front Microbiol 2017; 8:220. [PMID: 28261179 PMCID: PMC5306329 DOI: 10.3389/fmicb.2017.00220] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/31/2017] [Indexed: 01/26/2023] Open
Abstract
Members of phylum Bacteroidetes are distributed across diverse marine niches and Flavobacteria is often the predominant bacterial class decomposing algae-derived polysaccharides. Here, we report the complete genome of Gramella flava JLT2011 (Flavobacteria) isolated from surface water of the southeastern Pacific. A remarkable genomic feature is that the number of glycoside hydrolase (GH) genes in the genome of G. flava JLT2011 is more than 2-fold higher than that of other Gramella species. The functional profiles of the GHs suggest extensive variation in Gramella species. Growth experiments revealed that G. flava JLT2011 has the ability to utilize a wide range of polysaccharides for growth such as xylan and homogalacturonan in pectin. Nearly half of all GH genes were located on the multi-gene polysaccharide utilization loci (PUL) or PUL-like systems in G. flava JLT2011. This species was also found to harbor the two xylan PULs and a pectin PUL, respectively. Gene expression data indicated that more GHs and sugar-specific outer-membrane susC-susD systems were found in the presence of xylan than in the presence of pectin, suggesting a different strategy for heteropolymeric xylan and homoglacturonan utilization. Multi-omics data (transcriptomics, proteomics, and metabolomics) indicated that xylan PULs and pectin PUL are respectively involved in the catabolism of their corresponding polysaccharides. This work presents a comparison of polysaccharide decomposition within a genus and expands current knowledge on the diversity and function of PULs in marine Bacteroidetes, thereby deepening our understanding of their ecological role in polysaccharide remineralization in the marine system.
Collapse
Affiliation(s)
- Kai Tang
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University Xiamen, China
| | - Yingfan Lin
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University Xiamen, China
| | - Yu Han
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University Xiamen, China
| | - Nianzhi Jiao
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University Xiamen, China
| |
Collapse
|
11
|
Oren A, Garrity GM. Notification of changes in taxonomic opinion previously published outside the IJSEM. Int J Syst Evol Microbiol 2017; 67:7-8. [PMID: 28218571 DOI: 10.1099/ijsem.0.001710] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|
12
|
Hahnke RL, Meier-Kolthoff JP, García-López M, Mukherjee S, Huntemann M, Ivanova NN, Woyke T, Kyrpides NC, Klenk HP, Göker M. Genome-Based Taxonomic Classification of Bacteroidetes. Front Microbiol 2016; 7:2003. [PMID: 28066339 PMCID: PMC5167729 DOI: 10.3389/fmicb.2016.02003] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 11/30/2016] [Indexed: 01/15/2023] Open
Abstract
The bacterial phylum Bacteroidetes, characterized by a distinct gliding motility, occurs in a broad variety of ecosystems, habitats, life styles, and physiologies. Accordingly, taxonomic classification of the phylum, based on a limited number of features, proved difficult and controversial in the past, for example, when decisions were based on unresolved phylogenetic trees of the 16S rRNA gene sequence. Here we use a large collection of type-strain genomes from Bacteroidetes and closely related phyla for assessing their taxonomy based on the principles of phylogenetic classification and trees inferred from genome-scale data. No significant conflict between 16S rRNA gene and whole-genome phylogenetic analysis is found, whereas many but not all of the involved taxa are supported as monophyletic groups, particularly in the genome-scale trees. Phenotypic and phylogenomic features support the separation of Balneolaceae as new phylum Balneolaeota from Rhodothermaeota and of Saprospiraceae as new class Saprospiria from Chitinophagia. Epilithonimonas is nested within the older genus Chryseobacterium and without significant phenotypic differences; thus merging the two genera is proposed. Similarly, Vitellibacter is proposed to be included in Aequorivita. Flexibacter is confirmed as being heterogeneous and dissected, yielding six distinct genera. Hallella seregens is a later heterotypic synonym of Prevotella dentalis. Compared to values directly calculated from genome sequences, the G+C content mentioned in many species descriptions is too imprecise; moreover, corrected G+C content values have a significantly better fit to the phylogeny. Corresponding emendations of species descriptions are provided where necessary. Whereas most observed conflict with the current classification of Bacteroidetes is already visible in 16S rRNA gene trees, as expected whole-genome phylogenies are much better resolved.
Collapse
Affiliation(s)
- Richard L. Hahnke
- Department of Microorganisms, Leibniz Institute DSMZ–German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Jan P. Meier-Kolthoff
- Department of Microorganisms, Leibniz Institute DSMZ–German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Marina García-López
- Department of Microorganisms, Leibniz Institute DSMZ–German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Supratim Mukherjee
- Department of Energy Joint Genome Institute (DOE JGI)Walnut Creek, CA, USA
| | - Marcel Huntemann
- Department of Energy Joint Genome Institute (DOE JGI)Walnut Creek, CA, USA
| | - Natalia N. Ivanova
- Department of Energy Joint Genome Institute (DOE JGI)Walnut Creek, CA, USA
| | - Tanja Woyke
- Department of Energy Joint Genome Institute (DOE JGI)Walnut Creek, CA, USA
| | - Nikos C. Kyrpides
- Department of Energy Joint Genome Institute (DOE JGI)Walnut Creek, CA, USA
- Department of Biological Sciences, Faculty of Science, King Abdulaziz UniversityJeddah, Saudi Arabia
| | | | - Markus Göker
- Department of Microorganisms, Leibniz Institute DSMZ–German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| |
Collapse
|