1
|
Burger NFV, Nicolis VF, Botha AM. Host-specific co-evolution likely driven by diet in Buchnera aphidicola. BMC Genomics 2024; 25:153. [PMID: 38326788 PMCID: PMC10851558 DOI: 10.1186/s12864-024-10045-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Russian wheat aphid (Diuraphis noxia Kurd.) is a severe pest to wheat, and even though resistance varieties are available to curb this pest, they are becoming obsolete with the development of new virulent aphid populations. Unlike many other aphids, D noxia only harbours a single endosymbiont, Buchnera aphidicola. Considering the importance of Buchnera, this study aimed to elucidate commonalities and dissimilarities between various hosts, to better understand its distinctiveness within its symbiotic relationship with D. noxia. To do so, the genome of the D. noxia's Buchnera was assembled and compared to those of other aphid species that feed on diverse host species. RESULTS The overall importance of several features such as gene length and percentage GC content was found to be critical for the maintenance of Buchnera genes when compared to their closest free-living relative, Escherichia coli. Buchnera protein coding genes were found to have percentage GC contents that tended towards a mean of ~ 26% which had strong correlation to their identity to their E. coli homologs. Several SNPs were identified between different aphid populations and multiple isolates of Buchnera were confirmed in single aphids. CONCLUSIONS Establishing the strong correlation of percentage GC content of protein coding genes and gene identity will allow for identifying which genes will be lost in the continually shrinking Buchnera genome. This is also the first report of a parthenogenically reproducing aphid that hosts multiple Buchnera strains in a single aphid, raising questions regarding the benefits of maintaining multiple strains. We also found preliminary evidence for post-transcriptional regulation of Buchnera genes in the form of polyadenylation.
Collapse
Affiliation(s)
- N Francois V Burger
- Department of Genetics, University of Stellenbosch, Stellenbosch, 7601, South Africa
| | - Vittorio F Nicolis
- Department of Genetics, University of Stellenbosch, Stellenbosch, 7601, South Africa
| | - Anna-Maria Botha
- Department of Genetics, University of Stellenbosch, Stellenbosch, 7601, South Africa.
| |
Collapse
|
2
|
Sun Z, Chen Y, Chen Y, Lu Z, Gui F. Tracking Adaptive Pathways of Invasive Insects: Novel Insight from Genomics. Int J Mol Sci 2023; 24:8004. [PMID: 37175710 PMCID: PMC10179030 DOI: 10.3390/ijms24098004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Despite the huge human and economic costs of invasive insects, which are the main group of invasive species, their environmental impacts through various mechanisms remain inadequately explained in databases and much of the invasion biology literature. High-throughput sequencing technology, especially whole-genome sequencing, has been used as a powerful method to study the mechanisms through which insects achieve invasion. In this study, we reviewed whole-genome sequencing-based advances in revealing several important invasion mechanisms of invasive insects, including (1) the rapid genetic variation and evolution of invasive populations, (2) invasion history and dispersal paths, (3) rapid adaptation to different host plant ranges, (4) strong environmental adaptation, (5) the development of insecticide resistance, and (6) the synergistic damage caused by invasive insects and endosymbiotic bacteria. We also discussed prevention and control technologies based on whole-genome sequencing and their prospects.
Collapse
Affiliation(s)
| | | | | | | | - Furong Gui
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
3
|
Byrne S, Schughart M, Carolan JC, Gaffney M, Thorpe P, Malloch G, Wilkinson T, McNamara L. Genome sequence of the English grain aphid, Sitobion avenae and its endosymbiont Buchnera aphidicola. G3 GENES|GENOMES|GENETICS 2022; 12:6456306. [PMID: 34878113 PMCID: PMC9210274 DOI: 10.1093/g3journal/jkab418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022]
Abstract
The English grain aphid, Sitobion avenae, is a major agricultural pest of wheat, barley and oats, and one of the principal vectors of barley yellow dwarf virus leading to significant reductions in grain yield, annually. Emerging resistance to and increasing regulation of insecticides has resulted in limited options for their control. Using PacBio HiFi data, we have produced a high-quality draft assembly of the S. avenae genome; generating a primary assembly with a total assembly size of 475.7 Mb, and an alternate assembly with a total assembly size of 430.8 Mb. Our primary assembly was highly contiguous with only 326 contigs and a contig N50 of 15.95 Mb. Assembly completeness was estimated at 97.7% using BUSCO analysis and 31,007 and 29,037 protein-coding genes were predicted from the primary and alternate assemblies, respectively. This assembly, which is to our knowledge the first for an insecticide resistant clonal lineage of English grain aphid, will provide novel insight into the molecular and mechanistic determinants of resistance and will facilitate future research into mechanisms of viral transmission and aphid behavior.
Collapse
Affiliation(s)
- Stephen Byrne
- Teagasc, Crop Science Department, Carlow R93 XE12, Ireland
| | - Maximilian Schughart
- Teagasc, Crop Science Department, Carlow R93 XE12, Ireland
- School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| | - James C Carolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, W23 F2H6, Ireland
| | | | - Peter Thorpe
- School of Medicine, University of St Andrews, North Haugh, KY16 9TF St Andrews, UK
| | - Gaynor Malloch
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Tom Wilkinson
- School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| | | |
Collapse
|
4
|
Botha AM. Fast developing Russian wheat aphid biotypes remains an unsolved enigma. CURRENT OPINION IN INSECT SCIENCE 2021; 45:42-52. [PMID: 33359167 DOI: 10.1016/j.cois.2020.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Diuraphis noxia, commonly known as the Russian wheat aphid, is an economically important cereal pest species, highly invasive and reproduces mostly asexually. Remarkably, many new virulent populations continue to develop, despite the lack of genetic diversity in the aphid. Russian wheat aphid is a phloem feeder and is therefore engaged in a continuous arms battle with its cereal host, with the acquisition of virulence central to the breakdown of host resistance. In the review, most attention is given to recent topics about mechanisms and strategies whereby the aphid acquires virulence against its host, with special reference given to the role of noncoding RNA elements, bacteria, and the epigenetic pathway in possibly directing virulence.
Collapse
Affiliation(s)
- Anna-Maria Botha
- Genetics Department, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7601, South Africa.
| |
Collapse
|
5
|
Dommel M, Oh J, Huguet-Tapia JC, Guy E, Boulain H, Sugio A, Murugan M, Legeai F, Heck M, Smith CM, White FF. Big Genes, Small Effectors: Pea Aphid Cassette Effector Families Composed From Miniature Exons. FRONTIERS IN PLANT SCIENCE 2020; 11:1230. [PMID: 33013944 PMCID: PMC7495047 DOI: 10.3389/fpls.2020.01230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/27/2020] [Indexed: 05/25/2023]
Abstract
Aphids secrete proteins from their stylets that evidence indicates function similar to pathogen effectors for virulence. Here, we describe two small candidate effector gene families of the pea aphid, Acyrthosiphon pisum, that share highly conserved secretory signal peptide coding regions and divergent non-secretory coding sequences derived from miniature exons. The KQY candidate effector family contains eleven members with additional isoforms, generated by alternative splicing. Pairwise comparisons indicate possible four unique KQY families based on coding regions without the secretory signal region. KQY1a, a representative of the family, is encoded by a 968 bp mRNA and a gene that spans 45.7 kbp of the genome. The locus consists of 37 exons, 33 of which are 15 bp or smaller. Additional KQY members, as well as members of the KHI family, share similar features. Differential expression analyses indicate that the genes are expressed preferentially in salivary glands. Proteomic analysis on salivary glands and saliva revealed 11 KQY members in salivary proteins, and KQY1a was detected in an artificial diet solution after aphid feeding. A single KQY locus and two KHI loci were identified in Myzus persicae, the peach aphid. Of the genes that can be anchored to chromosomes, loci are mostly scattered throughout the genome, except a two-gene region (KQY4/KQY6). We propose that the KQY family expanded in A. pisum through combinatorial assemblies of a common secretory signal cassette and novel coding regions, followed by classical gene duplication and divergence.
Collapse
Affiliation(s)
- Matthew Dommel
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Jonghee Oh
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | | | - Endrick Guy
- INRAE, UMR Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Hélène Boulain
- INRAE, UMR Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Akiko Sugio
- INRAE, UMR Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Marimuthu Murugan
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Fabrice Legeai
- INRAE, UMR Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Michelle Heck
- USDA-ARS, Cornell University, Ithaca, NY, United States
| | - C. Michael Smith
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Frank F. White
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
6
|
Zogli P, Pingault L, Grover S, Louis J. Ento(o)mics: the intersection of 'omic' approaches to decipher plant defense against sap-sucking insect pests. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:153-161. [PMID: 32721874 DOI: 10.1016/j.pbi.2020.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/15/2020] [Accepted: 06/07/2020] [Indexed: 05/27/2023]
Abstract
Plants are constantly challenged by insect pests that can dramatically decrease yields. Insects with piercing-sucking mouthparts, for example, aphids, whiteflies, and leaf hoppers, seemingly cause less physical damage to tissues, however, they feed on the plant's sap by piercing plant tissue and extracting plant fluids, thereby transmitting several plant-pathogenic viruses as well. As a counter-defense, plants activate an array of dynamic defense machineries against insect pests including the rapid reprogramming of the host cell processes. For a holistic understanding of plant-sap-sucking insect interactions, there is a need to call for techniques with the capacity to concomitantly capture these dynamic changes. Recent progress with various 'omic' technologies possess this capacity. In this review, we will provide a concise summary of application of 'omic' technologies and their utilization in plant and sap-sucking insect interaction studies. Finally, we will provide a perspective on the integration of 'omics' data in uncovering novel plant defense mechanisms against sap-sucking insect pests.
Collapse
Affiliation(s)
- Prince Zogli
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Lise Pingault
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Sajjan Grover
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
7
|
du Preez PH, Breeds K, Burger NFV, Swiegers HW, Truter JC, Botha AM. DNA Methylation and Demethylation Are Regulated by Functional DNA Methyltransferases and DnTET Enzymes in Diuraphis noxia. Front Genet 2020; 11:452. [PMID: 32655611 PMCID: PMC7324797 DOI: 10.3389/fgene.2020.00452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/14/2020] [Indexed: 12/31/2022] Open
Abstract
Aphids are economically important insect pests of crops worldwide. Despite resistant varieties being available, resistance is continuously challenged and eventually broken down, posing a threat to food security. In the current study, the epigenome of two related Russian wheat aphid (Diuraphis noxia, Kurdjumov) biotypes (i.e., SA1 and SAM) that differ in virulence was investigated to elucidate its role in virulence in this species. Whole genome bisulfite sequencing covered a total of 6,846,597,083 cytosine bases for SA1 and 7,397,965,699 cytosine bases for SAM, respectively, of which a total of 70,861,462 bases (SA1) and 74, 073,939 bases (SAM) were methylated, representing 1.126 ± 0.321% (SA1) and 1.105 ± 0.295% (SAM) methylation in their genomes. The sequence reads were analyzed for contexts of DNA methylation and the results revealed that RWA has methylation in all contexts (CpG, CHG and CHH), with the majority of methylation within the CpG context (± 5.19%), while the other contexts show much lower levels of methylation (CHG - ± 0.27%; CHH - ± 0.34%). The top strand was slightly (0.02%) more methylated than the bottom strand. Of the 35,493 genes that mapped, we also analyzed the contexts of methylation of each of these and found that the CpG methylation was much higher in genic regions than in intergenic regions. The CHG and CHH levels did not differ between genic and intergenic regions. The exonic regions of genes were more methylated (±0.56%) than the intronic regions. We also measured the 5mC and 5hmC levels between the aphid biotypes, and found little difference in 5mC levels between the biotypes, but much higher levels of 5hmC in the virulent SAM. RWA had two homologs of each of the DNA methyltransferases 1 (DNMT1a and DNMT1b) and DNMT3s (DNMT3a and DNMT3b), but only a single DNMT2, with only the expression of DNMT3 that differed significantly between the two RWA biotypes. RWA has a single ortholog of Ten eleven translocase (DnTET) in the genome. Feeding studies show that the more virulent RWA biotype SAM upregulate DnDNMT3 and DnTET in response to wheat expressing antibiosis and antixenosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna-Maria Botha
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
8
|
Botha A, Kunert KJ, Maling’a J, Foyer CH. Defining biotechnological solutions for insect control in sub‐Saharan Africa. Food Energy Secur 2020. [DOI: 10.1002/fes3.191] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Anna‐Maria Botha
- Department of Genetics Stellenbosch University Stellenbosch South Africa
| | - Karl J. Kunert
- Department of Plant Sciences FABI University of Pretoria Pretoria South Africa
| | - Joyce Maling’a
- Kenya Agriculture and Livestock Organization (KALRO) Food Crops Research Institute Kitale Kenya
| | - Christine H. Foyer
- School of Biosciences College of Life and Environmental Sciences University of Birmingham, Edgbaston Birmingham UK
| |
Collapse
|
9
|
Sibisi P, Venter E. Wheat Argonaute 5 Functions in Aphid-Plant Interaction. FRONTIERS IN PLANT SCIENCE 2020; 11:641. [PMID: 32528501 PMCID: PMC7266077 DOI: 10.3389/fpls.2020.00641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/24/2020] [Indexed: 05/21/2023]
Abstract
Aphids feeding on plants experience similar responses to pathogens due to the prolonged and intimate contact with the plant. Diuraphis noxia is an economically important aphid pest on wheat that exhibits such an interaction. Studies on small RNA (sRNA) that regulate genes imparting resistance to wheat against D. noxia have predicted an Argonaute 5 (TaAGO5) gene as possible role player in the resistance response. Functional characterization revealed that TaAGO5 is crucial in regulating the response to infestation by D. noxia. Knockdown of TaAGO5 by 22% in D. noxia resistant wheat resulted in a completely susceptible phenotype. The fecundity and stress levels of D. noxia feeding on these silenced plants were similar to aphids feeding on the susceptible controls. Thus, TaAGO5 is crucial in the defense response by wheat plants during aphid feeding and this is similar to Nicotiana benthaminia plants experiencing arthropod herbivory. Additionally, TaAGO5 was differentially regulated by the Barley mosaic virus (BMV) used in the functional characterization. This provides evidence that TaAGO5 could play a role during virus infection of wheat. The role of AGO5 proteins in plant responses to arthropod herbivory and virus infection is known for dicotyledonous plants. Here, we present data that indicate that this role of TaAGO5 is conserved in wheat and possibly for monocotyledonous plants. These observations extend our knowledge on the roles of AGO proteins in plant resistance.
Collapse
|
10
|
Jiang X, Zhang Q, Qin Y, Yin H, Zhang S, Li Q, Zhang Y, Fan J, Chen J. A chromosome-level draft genome of the grain aphid Sitobion miscanthi. Gigascience 2019; 8:giz101. [PMID: 31430367 PMCID: PMC6701489 DOI: 10.1093/gigascience/giz101] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/24/2019] [Accepted: 07/30/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Sitobion miscanthi is an ideal model for studying host plant specificity, parthenogenesis-based phenotypic plasticity, and interactions between insects and other species of various trophic levels, such as viruses, bacteria, plants, and natural enemies. However, the genome information for this species has not yet to be sequenced and published. Here, we analyzed the entire genome of a parthenogenetic female aphid colony using Pacific Biosciences long-read sequencing and Hi-C data to generate chromosome-length scaffolds and a highly contiguous genome assembly. RESULTS The final draft genome assembly from 33.88 Gb of raw data was ∼397.90 Mb in size, with a 2.05 Mb contig N50. Nine chromosomes were further assembled based on Hi-C data to a 377.19 Mb final size with a 36.26 Mb scaffold N50. The identified repeat sequences accounted for 26.41% of the genome, and 16,006 protein-coding genes were annotated. According to the phylogenetic analysis, S. miscanthi is closely related to Acyrthosiphon pisum, with S. miscanthi diverging from their common ancestor ∼25.0-44.9 million years ago. CONCLUSIONS We generated a high-quality draft of the S. miscanthi genome. This genome assembly should help promote research on the lifestyle and feeding specificity of aphids and their interactions with each other and species at other trophic levels. It can serve as a resource for accelerating genome-assisted improvements in insecticide-resistant management and environmentally safe aphid management.
Collapse
Affiliation(s)
- Xin Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Qian Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yaoguo Qin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Hang Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Siyu Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Qian Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Jia Fan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| |
Collapse
|
11
|
Schmidt TL, van Rooyen AR, Chung J, Endersby‐Harshman NM, Griffin PC, Sly A, Hoffmann AA, Weeks AR. Tracking genetic invasions: Genome-wide single nucleotide polymorphisms reveal the source of pyrethroid-resistant Aedes aegypti (yellow fever mosquito) incursions at international ports. Evol Appl 2019; 12:1136-1146. [PMID: 31297145 PMCID: PMC6597869 DOI: 10.1111/eva.12787] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 01/06/2023] Open
Abstract
Biological invasions are increasing globally in number and extent despite efforts to restrict their spread. Knowledge of incursion pathways is necessary to prevent new invasions and to design effective biosecurity protocols at source and recipient locations. This study uses genome-wide single nucleotide polymorphisms (SNPs) to determine the origin of 115 incursive Aedes aegypti(yellow fever mosquito) detected at international ports in Australia and New Zealand. We also genotyped mosquitoes at three point mutations in the voltage-sensitive sodium channel (Vssc) gene: V1016G, F1534C and S989P. These mutations confer knockdown resistance to synthetic pyrethroid insecticides, widely used for controlling invertebrate pests. We first delineated reference populations using Ae. aegypti sampled from 15 locations in Asia, South America, Australia and the Pacific Islands. Incursives were assigned to these populations using discriminant analysis of principal components (DAPC) and an assignment test with a support vector machine predictive model. Bali, Indonesia, was the most common origin of Ae. aegypti detected in Australia, while Ae. aegypti detected in New Zealand originated from Pacific Islands such as Fiji. Most incursives had the same allelic genotype across the three Vsscgene point mutations, which confers strong resistance to synthetic pyrethroids, the only insecticide class used in current, widely implemented aircraft disinsection protocols endorsed by the World Health Organization (WHO). Additionally, all internationally assigned Ae. aegypti had Vssc point mutations linked to pyrethroid resistance that are not found in Australian populations. These findings demonstrate that protocols for preventing introductions of invertebrates must consider insecticide resistance, and highlight the usefulness of genomic data sets for managing global biosecurity objectives.
Collapse
Affiliation(s)
- Thomas L. Schmidt
- Bio21 Institute, School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
| | | | - Jessica Chung
- Bio21 Institute, School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
- Melbourne BioinformaticsThe University of MelbourneParkvilleVictoriaAustralia
| | | | - Philippa C. Griffin
- Bio21 Institute, School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Angus Sly
- Department of Agriculture and Water ResourcesBrisbane AirportQueenslandAustralia
| | - Ary A. Hoffmann
- Bio21 Institute, School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Andrew R. Weeks
- Bio21 Institute, School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
- cesar Pty LtdParkvilleVictoriaAustralia
| |
Collapse
|
12
|
Chen W, Shakir S, Bigham M, Richter A, Fei Z, Jander G. Genome sequence of the corn leaf aphid (Rhopalosiphum maidis Fitch). Gigascience 2019; 8:giz033. [PMID: 30953568 PMCID: PMC6451198 DOI: 10.1093/gigascience/giz033] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/14/2019] [Accepted: 03/08/2019] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The corn leaf aphid (Rhopalosiphum maidis Fitch) is the most economically damaging aphid pest on maize (Zea mays), one of the world's most important grain crops. In addition to causing direct damage by removing photoassimilates, R. maidis transmits several destructive maize viruses, including maize yellow dwarf virus, barley yellow dwarf virus, sugarcane mosaic virus, and cucumber mosaic virus. FINDINGS The genome of a parthenogenetically reproducing R. maidis clone was assembled with a combination of Pacific Biosciences (207-fold coverage) and Illumina (83-fold coverage) sequencing. The 689 assembled contigs, which have an N50 size of 9.0 megabases (Mb) and a low level of heterozygosity, were clustered using Phase Genomics Hi-C interaction maps. Consistent with the commonly observed 2n = 8 karyotype of R. maidis, most of the contigs (473 spanning 321 Mb) were successfully oriented into 4 scaffolds. The genome assembly captured the full length of 95.8% of the core eukaryotic genes, indicating that it is highly complete. Repetitive sequences accounted for 21.2% of the assembly, and a total of 17,629 protein-coding genes were predicted with integrated evidence from ab initio and homology-based gene predictions and transcriptome sequences generated with both Pacific Biosciences and Illumina. An analysis of likely horizontally transferred genes identified 2 from bacteria, 7 from fungi, 2 from protozoa, and 9 from algae. Repeat elements, transposons, and genes encoding likely detoxification enzymes (cytochrome P450s, glutathione S-transferases, carboxylesterases, uridine diphosphate-glucosyltransferases, and ABC transporters) were identified in the genome sequence. Other than Buchnera aphidicola (642,929 base pairs, 602 genes), no endosymbiont bacteria were found in R. maidis. CONCLUSIONS A high-quality R. maidis genome was assembled at the chromosome level. This genome sequence will enable further research related to ecological interactions, virus transmission, pesticide resistance, and other aspects of R. maidis biology. It also serves as a valuable resource for comparative investigation of other aphid species.
Collapse
Affiliation(s)
- Wenbo Chen
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA
| | - Sara Shakir
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA
| | - Mahdiyeh Bigham
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA
| | - Annett Richter
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA
- US Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, 538 Tower Rd, Ithaca, NY 14853, USA
| | - Georg Jander
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA
| |
Collapse
|