1
|
Jiang Z, Wang Z, Zhao Y, Peng M. Unveiling the vital role of soil microorganisms in selenium cycling: a review. Front Microbiol 2024; 15:1448539. [PMID: 39323878 PMCID: PMC11422209 DOI: 10.3389/fmicb.2024.1448539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024] Open
Abstract
Selenium (Se) is a vital trace element integral to numerous biological processes in both plants and animals, with significant impacts on soil health and ecosystem stability. This review explores how soil microorganisms facilitate Se transformations through reduction, oxidation, methylation, and demethylation processes, thereby influencing the bioavailability and ecological functions of Se. The microbial reduction of Se compounds, particularly the conversion of selenate and selenite to elemental Se nanoparticles (SeNPs), enhances Se assimilation by plants and impacts soil productivity. Key microbial taxa, including bacteria such as Pseudomonas and Bacillus, exhibit diverse mechanisms for Se reduction and play a substantial role in the global Se cycle. Understanding these microbial processes is essential for advancing soil management practices and improving ecosystem health. This review underscores the intricate interactions between Se and soil microorganisms, emphasizing their significance in maintaining ecological balance and promoting sustainable agricultural practices.
Collapse
Affiliation(s)
- Zhihui Jiang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, China
| | - Zhiyong Wang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, China
| | - Yong Zhao
- College of Life Science, Baicheng Normal University, Baicheng, China
| | - Mu Peng
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, China
| |
Collapse
|
2
|
Ferreira PFA, Rocha FI, Howe A, Barbosa DR, da Conceição Jesus E, do Amaral Sobrinho NMB, da Silva Coelho I. Chemical attributes, bacterial community, and antibiotic resistance genes are affected by intensive use of soil in agro-ecosystems of the Atlantic Forest, Southeastern Brazil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:123. [PMID: 38483669 DOI: 10.1007/s10653-024-01894-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/29/2024] [Indexed: 03/19/2024]
Abstract
Soil is one of the largest reservoirs of microbial diversity in nature. Although soil management is vital for agricultural purposes, intensive practices can have a significant impact on fertility, microbial community, and resistome. Thus, the aim of this study was to evaluate the effects of an intensive soil management system on the chemical attributes, composition and structure of prevalent bacterial communities, and presence and abundance of antimicrobial resistance genes (ARGs). The chemical characterization, bacterial diversity and relative abundance of ARGs were evaluated in soils from areas of intensive vegetable cultivation and forests. Results indicate that levels of nutrients and heavy metals were higher in soil samples from cultivated areas. Similarly, greater enrichment and diversity of bacterial genera was detected in agricultural areas. Of the 18 target ARGs evaluated, seven were detected in studied soils. The oprD gene exhibited the highest abundance among the studied genes and was the only one that showed a significantly different prevalence between areas. The oprD gene was identified only from soil of the cultivated areas. The blaSFO, erm(36), oprD and van genes, in addition to the pH, showed greater correlation with in soil of cultivated areas, which in turn exhibited higher contents of nutrients. Thus, in addition to changes in chemical attributes and in the microbial community of the soil, intensive agricultural cultivation systems cause a modification of its resistome, reinforcing the importance of the study of antimicrobial resistance in a One Health approach.
Collapse
Affiliation(s)
- Paula Fernanda Alves Ferreira
- Departament of Soil, Institute of Agronomy, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-970, Brazil
| | - Fernando Igne Rocha
- Mokichi Okada Research Center, Korin Agriculture and Environment, Ipeúna, São Paulo, Brazil
| | - Adina Howe
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, USA
| | - Daniele Rodrigues Barbosa
- Departament of Soil, Institute of Agronomy, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-970, Brazil
| | - Ederson da Conceição Jesus
- Embrapa Agrobiology, Brazilian Agricultural Research Corporation, Seropédica, Rio de Janeiro, 23891-000, Brazil
| | | | - Irene da Silva Coelho
- Department of Veterinary Microbiology and Immunology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-970, Brazil.
| |
Collapse
|
3
|
Li CQ, Hu LQ, Liu GP, Wang Y, Li T, Chen SX, Yang XL, Ma LX, Zeng JG. A duplex nested RT-PCR method for monitoring porcine epidemic diarrhea virus and porcine delta-coronavirus. BMC Vet Res 2023; 19:151. [PMID: 37684673 PMCID: PMC10486053 DOI: 10.1186/s12917-023-03708-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Porcine epidemic diarrhea virus (PEDV) and porcine delta-coronavirus (PDCoV) are economically important pathogens that cause diarrhea in sows and acute death of newborn piglets. Moreover, the emerging PDCoV was reported to infect children. The current situation is that vaccine prevention has not met expectations, and emergency containment strategies following outbreaks cannot prevent the damages and losses already incurred. Therefore, a more sensitive detection method, that is both convenient and enables accurate and effective sequencing, that will provide early warning of PEDV and PDCoV is necessary. This will enable active, effective, and comprehensive prevention and control, which will possibly reduce disease occurrences. RESULTS Duplex nested RT-PCR (dnRT-PCR) is an ideal method to achieve early warning and monitoring of PEDV and PDCoV diseases, and to additionally investigate any molecular epidemiological characteristics. In this study, two pairs of primers were designed for each virus based upon the highly conserved N protein sequences of both PEDV and PDCoV strains retrieved from the NCBI Genbank. After optimization of the reaction conditions, the dnRT-PCR assay amplified a 749-bp fragment specific to PEDV and a 344-bp fragment specific to PDCoV. Meanwhile, the specificity and sensitivity of the primers and clinical samples were tested to verify and establish this dnRT-PCR method. The limit of detection (LoD)for both PEDV and PDCoV was 10 copies/µL. The results showed that among 251 samples, 1 sample contained PEDV infection, 19 samples contained a PDCoV infection, and 8 samples were infected with both viruses, following the use of dnRT-PCR. Subsequently, the positive samples were sent for sequencing, and the sequencing results confirmed that they were all positive for the viruses detected using dnRT-PCR, and conventional RT-PCR detection was conducted again after the onset of disease. As these results were consistent with previous results, a detection method for PEDV and PDCoV using dnRT-PCR was successfully established. In conclusion, the dnRT-PCR method established in this study was able to detect both PEDV and PDCoV, concomitantly. CONCLUSIONS The duplex nested RT-PCR method represents a convenient, reliable, specific, sensitive and anti-interference technique for detecting PEDV and PDCoV, and can additionally be used to simultaneously determine the molecular epidemiological background.
Collapse
Affiliation(s)
- Chun Qi Li
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Li Qun Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
- Center for Disease Control and Prevention of Xinzhou Distract, Wuhan, China
| | - Guo Ping Liu
- College of Animal Science, Yangtze University, Jingzhou, China.
| | - Yan Wang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Tong Li
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Shao Xian Chen
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Xiao Lin Yang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Li Xin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China.
| | - Jian Guo Zeng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
4
|
Parashar M, Dhar SK, Kaur J, Chauhan A, Tamang J, Singh GB, Lyudmila A, Perveen K, Khan F, Bukhari NA, Mudgal G, Gururani MA. Two Novel Plant-Growth-Promoting Lelliottia amnigena Isolates from Euphorbia prostrata Aiton Enhance the Overall Productivity of Wheat and Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:3081. [PMID: 37687328 PMCID: PMC10490547 DOI: 10.3390/plants12173081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
Euphorbiaceae is a highly diverse family of plants ranging from trees to ground-dwelling minute plants. Many of these have multi-faceted attributes like ornamental, medicinal, industrial, and food-relevant values. In addition, they have been regarded as keystone resources for investigating plant-specific resilience mechanisms that grant them the dexterity to withstand harsh climates. In the present study, we isolated two co-culturable bacterial endophytes, EP1-AS and EP1-BM, from the stem internodal segments of the prostate spurge, Euphorbia prostrata, a plant member of the succulent family Euphorbiaceae. We characterized them using morphological, biochemical, and molecular techniques which revealed them as novel strains of Enterobacteriaceae, Lelliotia amnigena. Both the isolates significantly were qualified during the assaying of their plant growth promotion potentials. BM formed fast-growing swarms while AS showed growth as rounded colonies over nutrient agar. We validated the PGP effects of AS and BM isolates through in vitro and ex vitro seed-priming treatments with wheat and tomato, both of which resulted in significantly enhanced seed germination and morphometric and physiological plant growth profiles. In extended field trials, both AS and BM could remarkably also exhibit productive yields in wheat grain and tomato fruit harvests. This is probably the first-ever study in the context of PGPB endophytes in Euphorbia prostrata. We discuss our results in the context of promising agribiotechnology translations of the endophyte community associated with the otherwise neglected ground-dwelling spurges of Euphorbiaceae.
Collapse
Affiliation(s)
- Manisha Parashar
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India (S.K.D.); (J.K.); (G.B.S.)
| | - Sanjoy Kumar Dhar
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India (S.K.D.); (J.K.); (G.B.S.)
| | - Jaspreet Kaur
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India (S.K.D.); (J.K.); (G.B.S.)
| | - Arjun Chauhan
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Jeewan Tamang
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India (S.K.D.); (J.K.); (G.B.S.)
| | - Gajendra Bahadur Singh
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India (S.K.D.); (J.K.); (G.B.S.)
| | - Asyakina Lyudmila
- Laboratory for Phytoremediation of Technogenically Disturbed Ecosystems, Kemerovo State University, Krasnaya Street, 6, 65000 Kemerovo, Russia
| | - Kahkashan Perveen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia (N.A.B.)
| | - Faheema Khan
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia (N.A.B.)
| | - Najat A. Bukhari
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia (N.A.B.)
| | - Gaurav Mudgal
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India (S.K.D.); (J.K.); (G.B.S.)
| | - Mayank Anand Gururani
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
5
|
Zhu S, Yang B, Wang Z, Liu Y. Augmented dissemination of antibiotic resistance elicited by non-antibiotic factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115124. [PMID: 37327521 DOI: 10.1016/j.ecoenv.2023.115124] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
The emergence and rapid spread of antibiotic resistance seriously compromise the clinical efficacy of current antibiotic therapies, representing a serious public health threat worldwide. Generally, drug-susceptible bacteria can acquire antibiotic resistance through genetic mutation or gene transfer, among which horizontal gene transfer (HGT) plays a dominant role. It is widely acknowledged that the sub-inhibitory concentrations of antibiotics are the key drivers in promoting the transmission of antibiotic resistance. However, accumulating evidence in recent years has shown that in addition to antibiotics, non-antibiotics can also accelerate the horizontal transfer of antibiotic resistance genes (ARGs). Nevertheless, the roles and potential mechanisms of non-antibiotic factors in the transmission of ARGs remain largely underestimated. In this review, we depict the four pathways of HGT and their differences, including conjugation, transformation, transduction and vesiduction. We summarize non-antibiotic factors accounting for the enhanced horizontal transfer of ARGs and their underlying molecular mechanisms. Finally, we discuss the limitations and implications of current studies.
Collapse
Affiliation(s)
- Shuyao Zhu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bingqing Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
6
|
Zhang S, Li T, Hu J, Li K, Liu D, Li H, Wang F, Chen D, Zhang Z, Fan Q, Cui X, Che R. Reforestation substantially changed the soil antibiotic resistome and its relationships with metal resistance genes, mobile genetic elements, and pathogens. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118037. [PMID: 37178462 DOI: 10.1016/j.jenvman.2023.118037] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Revealing the effects of reforestation on soil antibiotic resistome is essential for assessing ecosystem health, yet related studies remain scarce. Here, to determine the responses of the soil antibiotic resistome to reforestation, 30 pairs of cropland and forest soil samples were collected from southwestern China, a region with high environmental heterogeneity. All the forests had been derived from croplands more than one decade ago. The diversity and abundance of soil antibiotic resistance genes (ARGs), metal resistance genes (MRGs), mobile genetic elements (MGEs), and pathogens were determined by metagenomic sequencing and real-time PCR. The results showed that reforestation significantly increased soil microbial abundance and the contents of Cu, total carbon, total nitrogen, total organic carbon, and ammonium nitrogen. Nevertheless, it decreased the contents of soil Zn, Ba, nitrate nitrogen, and available phosphorus. The main soil ARGs identified in this region were vancomycin, multidrug, and bacitracin resistance genes. Reforestation significantly increased the soil ARG abundance by 62.58%, while it decreased the ARG richness by 16.50%. Reforestation exerted no significant effects on the abundance of heavy metal resistance genes and pathogens, but it doubled the abundance of MGEs. Additionally, reforestation substantially decreased the co-occurrence frequencies of ARGs with MRGs and pathogens. In contrast, the correlation between ARGs and MGEs was greatly enhanced by reforestation. Similarly, the correlations between soil ARG abundance and environmental factors were also strengthened by reforestation. These findings suggest that reforestation can substantially affect the soil antibiotic resistome and exerts overall positive effects on soil health by decreasing ARG richness, providing critical information for assessing the effects of "grain for green" project on soil health.
Collapse
Affiliation(s)
- Song Zhang
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming, 650500, China; State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Ting Li
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming, 650500, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinming Hu
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming, 650500, China
| | - Kexin Li
- Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Dong Liu
- School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Haixia Li
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Fang Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Danhong Chen
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming, 650500, China
| | - Zejin Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuping Fan
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming, 650500, China
| | - Xiaoyong Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rongxiao Che
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming, 650500, China.
| |
Collapse
|
7
|
Sun Y, Guo J, Wei F, Chen X, Li M, Li C, Xia S, Zhang G, You W, Cong X, Yu T, Wang S. Microbial functional communities and the antibiotic resistome profile in a high-selenium ecosystem. CHEMOSPHERE 2023; 311:136858. [PMID: 36252903 DOI: 10.1016/j.chemosphere.2022.136858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Enshi City, in the Hubei Province of China, is known as the world capital of selenium with the most abundant selenium resource. An important selenium hyperaccumulator plant, Cardamine violifolia, was found to naturally grow in this high-selenium ecosystem. However, relatively little is known about the impact of the selenium levels on microbial community and functional shifts in C. violifolia rhizosphere. Here, we tested the hypothesis that underground microbial diversity and function vary along a selenium gradient, including antibiotic resistance genes (ARGs). Comprehensive metagenomic analyses, such as taxonomic investigation, functional detection, and ARG annotation, showed that selenium, mercury, cadmium, lead, arsenic, and available phosphorus and potassium were correlated with microbial diversity and function. Thaumarchaeota was exclusively dominant in the highest selenium concentration of mine outcrop, and Rhodanobacter and Nitrospira were predominant in the high-selenium ecosystem. The plant C. violifolia enriched a high concentration of selenium in the rhizosphere compared to those in the bulk soil, and it recruited Variovorax and Polaromonas in its rhizosphere. Microbial abundance showed a trend of increasing first and then decreasing from low to high selenium concentrations. Annotation of ARGs showed that the multidrug resistance genes adeF, mtrA, and poxtA, the aminoglycoside resistance gene rpsL, and the sulfonamide resistant gene sul2 were enriched in the high-selenium system. It was discovered that putative antibiotic resistant bacteria displayed obvious differences in the farmland and the soils with various selenium concentrations, indicating that a high-selenium ecosystem harbors the specific microbes with a higher capacity to enrich or resist selenium, toxic metals, or antibiotics. Taken together, these results reveal the effects of selenium concentration and the selenium hyperaccumulator plant C. violifolia on shaping the microbial functional community and ARGs. Metalloid selenium-inducible antibiotic resistance is worth paying attention to in future.
Collapse
Affiliation(s)
- Yanmei Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China; Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, China
| | - Jia Guo
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, 213164, China
| | - Fu Wei
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xiaohui Chen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Meng Li
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, China
| | - Chao Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Size Xia
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Guangming Zhang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Wencai You
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xin Cong
- Enshi Se-Run Health Tech Development Co., Ltd., Enshi, 445000, China
| | - Tian Yu
- Enshi Se-Run Health Tech Development Co., Ltd., Enshi, 445000, China.
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|