1
|
Hartmann A, de Bashan L, Wassermann B, Horn MA, Sessitsch A. FEMSEC-thematic issue "Rhizosphere-a One Health concept". FEMS Microbiol Ecol 2024; 100:fiae136. [PMID: 39471462 PMCID: PMC11523077 DOI: 10.1093/femsec/fiae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 11/01/2024] Open
Abstract
The strength of the microbial biogeographic patterns decreased along the increasing gradient of habitat specificity (from sediment to gut tissue) provided by a benthic sea urchin in the Southern Ocean.
Collapse
Affiliation(s)
- Anton Hartmann
- Faculty of Biology, Microbe-Plant Interactions, Ludwig-Maximilian-University Munich, Grosshaderner Str. 2, D-82152 Planegg/Martinsried, Germany
| | - Luz de Bashan
- Bashan Institute of Science, Auburn, AL 36853, United States
| | - Birgit Wassermann
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/1, A-8010 Graz, Austria
| | - Marcus A Horn
- Institute for Microbiology, Leibniz-University of Hannover, Herrenhaeuser Str. 2, D-30419 Hannover, Germany
| | - Angela Sessitsch
- Bioresources Unit, AIT Austrian Institute of Technology, A-1210 Vienna, Austria
| |
Collapse
|
2
|
Maurice K, Laurent-Webb L, Bourceret A, Boivin S, Boukcim H, Selosse MA, Ducousso M. Networking the desert plant microbiome, bacterial and fungal symbionts structure and assortativity in co-occurrence networks. ENVIRONMENTAL MICROBIOME 2024; 19:65. [PMID: 39223675 PMCID: PMC11370318 DOI: 10.1186/s40793-024-00610-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
In nature, microbes do not thrive in seclusion but are involved in complex interactions within- and between-microbial kingdoms. Among these, symbiotic associations with mycorrhizal fungi and nitrogen-fixing bacteria are namely known to improve plant health, while providing resources to benefit other microbial members. Yet, it is not clear how these microbial symbionts interact with each other or how they impact the microbiota network architecture. We used an extensive co-occurrence network analysis, including rhizosphere and roots samples from six plant species in a natural desert in AlUla region (Kingdom of Saudi Arabia) and described how these symbionts were structured within the plant microbiota network. We found that the plant species was a significant driver of its microbiota composition and also of the specificity of its interactions in networks at the microbial taxa level. Despite this specificity, a motif was conserved across all networks, i.e., mycorrhizal fungi highly covaried with other mycorrhizal fungi, especially in plant roots-this pattern is known as assortativity. This structural property might reflect their ecological niche preference or their ability to opportunistically colonize roots of plant species considered non symbiotic e.g., H. salicornicum, an Amaranthaceae. Furthermore, these results are consistent with previous findings regarding the architecture of the gut microbiome network, where a high level of assortativity at the level of bacterial and fungal orders was also identified, suggesting the existence of general rules of microbiome assembly. Otherwise, the bacterial symbionts Rhizobiales and Frankiales covaried with other bacterial and fungal members, and were highly structural to the intra- and inter-kingdom networks. Our extensive co-occurrence network analysis of plant microbiota and study of symbiont assortativity, provided further evidence on the importance of bacterial and fungal symbionts in structuring the global plant microbiota network.
Collapse
Affiliation(s)
- Kenji Maurice
- Cirad-UMR AGAP, Univ Montpellier, INRAE, 34398, Montpellier Cedex 5, France.
| | - Liam Laurent-Webb
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 - CNRS, MNHN, UPMC, EPHE), Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 Rue Cuvier, 75005, Paris, France
| | - Amélia Bourceret
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 - CNRS, MNHN, UPMC, EPHE), Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 Rue Cuvier, 75005, Paris, France
| | - Stéphane Boivin
- Department of Research and Development, VALORHIZ, Montpellier, France
| | - Hassan Boukcim
- Department of Research and Development, VALORHIZ, Montpellier, France
- ASARI, Mohammed VI Polytechnic University, Laayoune, Morocco
| | - Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 - CNRS, MNHN, UPMC, EPHE), Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 Rue Cuvier, 75005, Paris, France
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
- Institut Universitaire de France, Paris, France
| | - Marc Ducousso
- Cirad-UMR AGAP, Univ Montpellier, INRAE, 34398, Montpellier Cedex 5, France
| |
Collapse
|
3
|
Leveau JHJ. Re-Envisioning the Plant Disease Triangle: Full Integration of the Host Microbiota and a Focal Pivot to Health Outcomes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:31-47. [PMID: 38684078 DOI: 10.1146/annurev-phyto-121423-042021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The disease triangle is a structurally simple but conceptually rich model that is used in plant pathology and other fields of study to explain infectious disease as an outcome of the three-way relationship between a host, a pathogen, and their environment. It also serves as a guide for finding solutions to treat, predict, and prevent such diseases. With the omics-driven, evidence-based realization that the abundance and activity of a pathogen are impacted by proximity to and interaction with a diverse multitude of other microorganisms colonizing the same host, the disease triangle evolved into a tetrahedron shape, which features an added fourth dimension representing the host-associated microbiota. Another variant of the disease triangle emerged from the recently formulated pathobiome paradigm, which deviates from the classical "one pathogen" etiology of infectious disease in favor of a scenario in which disease represents a conditional outcome of complex interactions between and among a host, its microbiota (including microbes with pathogenic potential), and the environment. The result is a version of the original disease triangle where "pathogen" is substituted with "microbiota." Here, as part of a careful and concise review of the origin, history, and usage of the disease triangle, I propose a next step in its evolution, which is to replace the word "disease" in the center of the host-microbiota-environment triad with the word "health." This triangle highlights health as a desirable outcome (rather than disease as an unwanted state) and as an emergent property of host-microbiota-environment interactions. Applied to the discipline of plant pathology, the health triangle offers an expanded range of targets and approaches for the diagnosis, prediction, restoration, and maintenance of plant health outcomes. Its applications are not restricted to infectious diseases only, and its underlying framework is more inclusive of all microbial contributions to plant well-being, including those by mycorrhizal fungi and nitrogen-fixing bacteria, for which there never was a proper place in the plant disease triangle. The plant health triangle also may have an edge as an education and communication tool to convey and stress the importance of healthy plants and their associated microbiota to a broader public and stakeholdership.
Collapse
Affiliation(s)
- Johan H J Leveau
- Department of Plant Pathology, University of California, Davis, California, USA;
| |
Collapse
|
4
|
Fiorilli V, Martínez-Medina A, Pozo MJ, Lanfranco L. Plant Immunity Modulation in Arbuscular Mycorrhizal Symbiosis and Its Impact on Pathogens and Pests. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:127-156. [PMID: 39251211 DOI: 10.1146/annurev-phyto-121423-042014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Arbuscular mycorrhizal (AM) symbiosis is the oldest and most widespread mutualistic association on Earth and involves plants and soil fungi belonging to Glomeromycotina. A complex molecular, cellular, and genetic developmental program enables partner recognition, fungal accommodation in plant tissues, and activation of symbiotic functions such as transfer of phosphorus in exchange for carbohydrates and lipids. AM fungi, as ancient obligate biotrophs, have evolved strategies to circumvent plant defense responses to guarantee an intimate and long-lasting mutualism. They are among those root-associated microorganisms able to boost plants' ability to cope with biotic stresses leading to mycorrhiza-induced resistance (MIR), which can be effective across diverse hosts and against different attackers. Here, we examine the molecular mechanisms underlying the modulation of plant immunity during colonization by AM fungi and at the onset and display of MIR against belowground and aboveground pests and pathogens. Understanding the MIR efficiency spectrum and its regulation is of great importance to optimizing the biotechnological application of these beneficial microbes for sustainable crop protection.
Collapse
Affiliation(s)
- V Fiorilli
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy;
| | - A Martínez-Medina
- Department of Plant-Microbe Interactions, Institute of Natural Resources and Agrobiology of Salamanca, CSIC, Salamanca, Spain
| | - Maria J Pozo
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain;
| | - L Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy;
| |
Collapse
|
5
|
Zhang C, van der Heijden MGA, Dodds BK, Nguyen TB, Spooren J, Valzano-Held A, Cosme M, Berendsen RL. A tripartite bacterial-fungal-plant symbiosis in the mycorrhiza-shaped microbiome drives plant growth and mycorrhization. MICROBIOME 2024; 12:13. [PMID: 38243337 PMCID: PMC10799531 DOI: 10.1186/s40168-023-01726-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/18/2023] [Indexed: 01/21/2024]
Abstract
BACKGROUND Plant microbiomes play crucial roles in nutrient cycling and plant growth, and are shaped by a complex interplay between plants, microbes, and the environment. The role of bacteria as mediators of the 400-million-year-old partnership between the majority of land plants and, arbuscular mycorrhizal (AM) fungi is still poorly understood. Here, we test whether AM hyphae-associated bacteria influence the success of the AM symbiosis. RESULTS Using partitioned microcosms containing field soil, we discovered that AM hyphae and roots selectively assemble their own microbiome from the surrounding soil. In two independent experiments, we identified several bacterial genera, including Devosia, that are consistently enriched on AM hyphae. Subsequently, we isolated 144 pure bacterial isolates from a mycorrhiza-rich sample of extraradical hyphae and isolated Devosia sp. ZB163 as root and hyphal colonizer. We show that this AM-associated bacterium synergistically acts with mycorrhiza on the plant root to strongly promote plant growth, nitrogen uptake, and mycorrhization. CONCLUSIONS Our results highlight that AM fungi do not function in isolation and that the plant-mycorrhiza symbiont can recruit beneficial bacteria that support the symbiosis. Video Abstract.
Collapse
Affiliation(s)
- Changfeng Zhang
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
- Plant Soil Interactions, Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, CH-8046, Zürich, Switzerland
| | - Marcel G A van der Heijden
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
- Plant Soil Interactions, Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, CH-8046, Zürich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| | - Bethany K Dodds
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Thi Bich Nguyen
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Jelle Spooren
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Alain Valzano-Held
- Plant Soil Interactions, Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, CH-8046, Zürich, Switzerland
| | - Marco Cosme
- Mycology, Earth and Life Institute, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
- Plants and Ecosystems, Biology Department, University of Antwerp, Antwerp, Belgium
| | - Roeland L Berendsen
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.
| |
Collapse
|
6
|
Byers AK, Condron LM, O'Callaghan M, Waller L, Dickie IA, Wakelin SA. Plant species identity and plant-induced changes in soil physicochemistry-but not plant phylogeny or functional traits - shape the assembly of the root-associated soil microbiome. FEMS Microbiol Ecol 2023; 99:fiad126. [PMID: 37816673 PMCID: PMC10589101 DOI: 10.1093/femsec/fiad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023] Open
Abstract
The root-associated soil microbiome contributes immensely to support plant health and performance against abiotic and biotic stressors. Understanding the processes that shape microbial assembly in root-associated soils is of interest in microbial ecology and plant health research. In this study, 37 plant species were grown in the same soil mixture for 10 months, whereupon the root-associated soil microbiome was assessed using amplicon sequencing. From this, the contribution of direct and indirect plant effects on microbial assembly was assessed. Plant species and plant-induced changes in soil physicochemistry were the most significant factors that accounted for bacterial and fungal community variation. Considering that all plants were grown in the same starting soil mixture, our results suggest that plants, in part, shape the assembly of their root-associated soil microbiome via their effects on soil physicochemistry. With the increase in phylogenetic ranking from plant species to class, we observed declines in the degree of community variation attributed to phylogenetic origin. That is, plant-microbe associations were unique to each plant species, but the phylogenetic associations between plant species were not important. We observed a large degree of residual variation (> 65%) not accounted for by any plant-related factors, which may be attributed to random community assembly.
Collapse
Affiliation(s)
- Alexa-Kate Byers
- Bioprotection Aotearoa, Lincoln University, PO Box 85084, Lincoln 7647, New Zealand
| | - Leo M Condron
- Bioprotection Aotearoa, Lincoln University, PO Box 85084, Lincoln 7647, New Zealand
| | | | - Lauren Waller
- Biosecurity New Zealand, Ministry for Primary Industries, 34-38 Bowen Street, PO Box 2526, Wellington 6140, New Zealand
| | - Ian A Dickie
- Bioprotection Aotearoa, School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch 8140, New Zealand
| | - Steve A Wakelin
- Ecology and Environment, Scion Research Ltd, 10 Kyle Street, Riccarton, Christchurch 8011, Canterbury, New Zealand
| |
Collapse
|