Ghiaee Shamloo A, Zarrinfar H, Jaafari MR, Yadegari MH. Inhibitory effect of
Nigella sativa oil loaded to liposomal nanocarriers on
Candida parapsilosis isolates.
IRANIAN JOURNAL OF MICROBIOLOGY 2024;
16:560-568. [PMID:
39267937 PMCID:
PMC11389775 DOI:
10.18502/ijm.v16i4.16316]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Background and Objectives
Candida parapsilosis is the second most common species causing infectious diseases and can lead to biofilm resistance. This study aims to adjust and synthesize a liposomal compound of Nigella sativa and evaluate its antifungal properties against C. parapsilosis isolates.
Materials and Methods
The liposomal formulation of N. sativa was optimized through the utilization of transmission electron microscopy (TEM), particle size analysis, zeta potential measurement, and UV-visible spectrophotometry. Furthermore, an MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay was conducted on peripheral blood mononuclear cells (PBMCs). The antifungal efficacy was evaluated in accordance with the M27-A3 guideline.
Results
The minimum inhibitory concentrations (MICs) of N. sativa oil and the liposomal formulation on C. parapsilosis isolates ranged from 128 to 8 µg/mL and from 250 to 31.25 µg/mL, respectively. The MIC50 and MIC90 values of N. sativa oil and the liposomal formulation were 125, 187, and 32, 96 µg/mL, respectively. The viability percentage of cells treated with the liposomal formulation and free N. sativa oil was 91% and 85%, respectively.
Conclusion
The cytotoxicity of free N. sativa was significantly reduced when using nanoliposomes. The liposomal form of N. sativa showed greater antifungal properties compared to the free N. sativa extract against C. parapsilosis isolates.
Collapse