1
|
Lu W, Ahmed W, Mahmood M, Wenjie O, Jiannan L, Yunting W, Jie Y, Wenxin X, Xiuxian F, Zhao H, Liu W, Li W, Mehmood S. A study on the effectiveness of sodium selenite in treating cadmium and perfluoro octane sulfonic (PFOS) poisoned zebrafish (Danio rerio). Biol Trace Elem Res 2024; 202:319-331. [PMID: 37020163 DOI: 10.1007/s12011-023-03654-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023]
Abstract
Perfluoro octane sulfonate (PFOS) and cadmium (Cd) are toxic elements in the environment. As a micronutrient trace element, selenium (Se) can mitigate the adverse effects induced by PFOS and Cd. However, few studies have examined the correlation between Se, PFOS and Cd in fish. The present study focused on the antagonistic effects of Se on PFOS+Cd-induced accumulation in the liver of zebrafish. The fish was exposed to PFOS (0.08mg/L), Cd (1mg/L), PFOS+ Cd (0.08 mg/L PFOS+1 mg/L Cd), L-Se (0.07mg/L Sodium selenite +0.08mg/L PFOS+1mg/L Cd), M-Se (0.35mg/L Sodium selenite + 0.08mg/L PFOS+ 1 mg/L Cd), H-Se (1.75 mg/L Sodium selenite + 0.08 mg/L PFOS+ 1mg/L Cd) for 14d. The addition of selenium to fish exposed to PFOS and Cd has been found to have significant positive effects. Specifically, selenium treatments can alleviate the adverse effects of PFOS and Cd on fish growth, with a 23.10% improvement observed with the addition of T6 compared to T4. In addition, selenium can alleviate the negative effects of PFOS and Cd on antioxidant enzymes in zebrafish liver, thus reducing the liver toxicity caused by PFOS and Cd. Overall, the supplementation of selenium can reduce the health risks to fish and mitigate the injuries caused by PFOS and Cd in zebrafish.
Collapse
Affiliation(s)
- Wang Lu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China
| | - Waqas Ahmed
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China
| | - Mohsin Mahmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China
| | - Ou Wenjie
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China
| | - Li Jiannan
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China
| | - Wang Yunting
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China
| | - Yang Jie
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China
| | - Xu Wenxin
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China
| | - Fu Xiuxian
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China
| | - Hongwei Zhao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China
| | - Wenjie Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China
| | - Weidong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China.
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China.
| | - Sajid Mehmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China.
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China.
| |
Collapse
|
2
|
Reinoso-Maset E, Falk M, Bernhoft A, Ersdal C, Framstad T, Fuhrmann H, Salbu B, Oropeza-Moe M. Selenium Speciation Analysis Reveals Improved Antioxidant Status in Finisher Pigs Fed L-Selenomethionine, Alone or Combined with Sodium Selenite, and Vitamin E. Biol Trace Elem Res 2022:10.1007/s12011-022-03516-9. [PMID: 36577830 PMCID: PMC10350441 DOI: 10.1007/s12011-022-03516-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/02/2022] [Indexed: 12/30/2022]
Abstract
Conditions associated with selenium (Se) and/or vitamin E (VitE) deficiency are still being reported in high-yielding pigs fed the recommended amounts. Here, the dietary effects of Se source (sodium selenite, NaSe, 0.40 or 0.65 mg Se/kg; L-selenomethionine, SeMet, 0.19 or 0.44 mg Se/kg; a NaSe-SeMet mixture, SeMix, 0.44-0.46 mg Se/kg) and VitE concentration (27, 50-53 or 101 mg/kg) on the antioxidant status of finisher pigs were compared with those in pigs fed non-Se-supplemented diets (0.08-0.09 mg Se/kg). Compared to NaSe-enriched diets, SeMet-supplemented diets resulted in significantly (p < 0.0018) higher plasma concentrations of total Se (14-27%) and selenospecies (GPx3, SelP, SeAlb; 7-83%), significantly increased the total Se accumulation in skeletal muscles, myocardium, liver and brain (10-650%), and enhanced the VitE levels in plasma (15-74%) and tissues (8-33%) by the end of the 80-day trial, proving better Se distribution and retention in pigs fed organic Se. Injecting lipopolysaccharide (LPS) intravenously half-way into the trial provoked a pyrogenic response in the pigs followed by a rapid increase of inorganic Se after 5-12 h, a drastic drop of SeMet levels between 12 and 24 h that recovered by 48 h, and a small increase of SeCys by 24-48 h, together with a gradual rise of GPx3, SelP and SeAlb in plasma up to 48 h. These changes in Se speciation in plasma were particularly significant (0.0024 > p > 0.00007) in pigs receiving SeMet- (0.44 mg Se/kg, above EU-legislated limits) or SeMix-supplemented (SeMet and NaSe both at 0.2 mg Se/kg, within EU-legislated limits) diets, which demonstrates Se metabolism upregulation to counteract the LPS-induced oxidative stress and a strengthened antioxidant capacity in these pigs. Overall, a Se source combination (without exceeding EU-legislated limits) and sufficient VitE supplementation (≥ 50 mg/kg) improved the pigs' antioxidant status, while doubling the allowed dietary organic Se increased the Se in tissues up to sixfold without compromising the animal's health due to toxicity. This study renders valuable results for revising the current dietary SeMet limits in swine rations.
Collapse
Affiliation(s)
- Estela Reinoso-Maset
- Centre for Environmental Radioactivity CoE, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Elizabeth Stephansens vei 31, 1433, Aas, Norway.
| | - Michaela Falk
- Norwegian Veterinary Institute, Svebastadveien 112, 4325, Sandnes, Norway
- Department of Production Animal Clinical Sciences (PRODMED), Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien 112, 4325, Sandnes, Norway
| | - Aksel Bernhoft
- Norwegian Veterinary Institute, Elizabeth Stephansens vei 1, 1433, Aas, Norway
| | - Cecilie Ersdal
- Department of Production Animal Clinical Sciences (PRODMED), Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien 112, 4325, Sandnes, Norway
| | - Tore Framstad
- Department of Production Animal Clinical Sciences (PRODMED), Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens vei 15, 1433, Aas, Norway
| | - Herbert Fuhrmann
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, University of Leipzig, 04103, Leipzig, Germany
| | - Brit Salbu
- Centre for Environmental Radioactivity CoE, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Elizabeth Stephansens vei 31, 1433, Aas, Norway
| | - Marianne Oropeza-Moe
- Department of Production Animal Clinical Sciences (PRODMED), Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien 112, 4325, Sandnes, Norway
| |
Collapse
|