1
|
Ngo C, Morrell JM, Tummaruk P. Boar semen microbiome: Insights and potential implications. Anim Reprod Sci 2025; 272:107647. [PMID: 39577267 DOI: 10.1016/j.anireprosci.2024.107647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
The pioneers of next-generation sequencing technology and bioinformatic analyses initiated a new era in microbiology research by offering profound insights into bacterial microbiome communities. In the pig farming sector, while considerable attention has been devoted to the gut microbiome and the microbiome of the female reproductive tract, research on the microbiome of boar semen remains limited. Nonetheless, published studies have provided valuable insights, serving as important references and sparking ideas for further investigations into the seminal microbiome. Factors such as breed, seasons, feed additives, hygiene management, and antibiotic use are believed to exert a notable influence on the diversity and richness of bacterial genera in the boar seminal microbiome, potentially affecting semen quality. Moreover, current shifts towards sustainability in the swine industry, coupled with global guidelines concerning the prudent use of antibiotics in stored boar semen for artificial insemination, underscore the need for insights into factors influencing seminal bacteria. The objective of this review is to elucidate the current understanding of boar bacterial contents using conventional culture methods, as well as the boar seminal microbiome through metagenomics and bioinformatics. It also aims to review specific microbiome communities, such as those in the reproductive tract and gut, and their connections to semen quality. In addition, strategic enhancements for processing boar semen doses through alternative methods to improve seminal quality are proposed.
Collapse
Affiliation(s)
- CongBang Ngo
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jane M Morrell
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| | - Padet Tummaruk
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Swine Reproduction, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
2
|
Nuntapaitoon M, Tummaruk P, Suwimonteerabutr J. Supplementation of glutamine in a short-term boar semen extender during 17°C holding time enhances post-thaw sperm quality for cryopreservation. Porcine Health Manag 2024; 10:50. [PMID: 39529174 PMCID: PMC11555944 DOI: 10.1186/s40813-024-00403-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Glutamine is a nonessential amino acid and the most abundant amino acid found in the seminal plasma and sperm-rich fraction of boar semen. Glutamine plays an important role in enhancing glutathione (GSH) synthesis. It acts as an effective antioxidant in semen and provides intracellular defense to sperm against oxidative stress. This study aimed to improve the quality of frozen-thawed boar semen by using glutamine supplementation in a short-term semen extender during the holding time at 17 °C before cryopreservation. RESULTS The results indicate that the total motility, progressive motility, LIN, STR, and WOB were the highest in the 20 mM supplementation group at the 2 h timepoint after thawing. Thus, the optimal concentration for glutamine supplementation in short-term boar semen extender during the holding time at 17 °C was 20 mM. Interestingly, at all of the time points after thawing, 20 mM glutamine supplementation exhibited the highest level of sperm viability and membrane integrity when compared to the CONTROL (0 mM) and other experimental dilution groups. Moreover, the acrosome integrity, mitochondrial activity, and capacitation status (F pattern) were significantly greater in the 20 mM supplementation group than the other groups at the 2 h timepoint after thawing. CONCLUSION Supplementation of glutamine at a concentration of 20 mM in a short-term semen extender (Bio Pig®) during the 17 °C holding time before cryopreservation, which had a standard freezing extender (9.0% glycerol and 1.9% Equex paste), could enhance the post-thaw sperm motility and quality parameters of cryopreservation.
Collapse
Affiliation(s)
- Morakot Nuntapaitoon
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Swine Reproduction, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Padet Tummaruk
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Swine Reproduction, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Junpen Suwimonteerabutr
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Swine Reproduction, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Ngo C, Suwimonteerabutr J, Morrell JM, Tummaruk P. Sow reproductive performance following artificial insemination with semen doses processed using Single Layer Centrifugation without antibiotics in the tropics. Theriogenology 2024; 226:194-201. [PMID: 38909434 DOI: 10.1016/j.theriogenology.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/10/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Single Layer Centrifugation (SLC) through a low density colloid offers an alternative solution to antibiotic use in boar semen extenders, with lower costs compared to high density colloids. The aim of this study was to explore the reproductive performance of sows when using SLC-prepared semen doses without antibiotics, employing low density Porcicoll to prepare semen doses for artificial insemination in a commercial swine herd in Thailand. Ejaculates were divided into two equal parts to create insemination doses, with each dose containing 3000 × 106 sperm/80 ml for intra-uterine insemination in individual sows. The sows were inseminated twice, with the interval between the two inseminations ranging from 8 to 16 h. The CONTROL group consisted of 206 semen doses treated with antibiotics, prepared for insemination in 103 sows, while the SLC group comprised 194 SLC-prepared semen doses without antibiotics for inseminating 97 sows. Fertility and fecundity traits, including non-return rate, conception rate, farrowing rate, and litter traits (i.e., the total number of piglets born per litter, number of piglets born alive per litter, number of stillborn piglets, and number of mummified fetuses), were compared between groups. Furthermore, data on piglet characteristics, including live-born and stillborn piglets (i.e., the prevalence of stillbirth (yes, no), birth weight, crown-rump length, body mass index (BMI), and ponderal index (PI)), were determined. No significant differences in non-return rate (75.7 % vs. 77.3 %), conception rate (73.8 % vs. 73.2 %), and farrowing rate (71.8 % vs. 73.2 %) were observed between the CONTROL and SLC groups, respectively (P > 0.05). Nevertheless, the total number of piglets born per litter in the SLC group was higher than in the CONTROL group (14.6 ± 0.9 vs. 12.3 ± 0.6, respectively, P = 0.049). Interestingly, the prevalence of stillbirth in the SLC group was lower than in the CONTROL group (6.2 % vs. 11.6 %, respectively, P < 0.001). Moreover, the newborn piglets in the SLC group exhibited higher birth weight and BMI compared to those in the CONTROL group (1.36 ± 0.03 vs. 1.26 ± 0.02 kg, P = 0.005, and 18.3 ± 0.3 vs. 17.3 ± 0.2 kg/m2, P = 0.003). In conclusion, employing sperm doses after SLC through a low density colloid in artificial insemination within a commercial breeding operation did not have a detrimental impact on either fertility or fecundity traits but showed potential benefits in increasing the total number of piglets born per litter. Moreover, improvements were observed in the birth weight and body indexes of piglets, and the percentage of stillbirths was reduced. Our findings introduce new possibilities for antibiotic alternatives in semen extenders to reduce the risk of antimicrobial resistance in the swine industry. Additionally, they provide compelling reproductive outcomes supporting the integration of SLC-prepared semen doses into artificial insemination practices.
Collapse
Affiliation(s)
- CongBang Ngo
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Junpen Suwimonteerabutr
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Swine Reproduction, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jane M Morrell
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Padet Tummaruk
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Swine Reproduction, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
4
|
Luther AM, Varzandeh M, Beckermann C, Feyer L, Maaßen IK, Oldenhof H, Hackbarth S, Waberski D. Fertility after photodynamic inactivation of bacteria in extended boar semen. Front Microbiol 2024; 15:1429749. [PMID: 39171264 PMCID: PMC11335528 DOI: 10.3389/fmicb.2024.1429749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Antimicrobial resistance is an increasing challenge in semen preservation of breeding animals, especially in the porcine species. Bacteria are a natural component of semen, and their growth should be inhibited to protect sperm fertilizing capacity and the female's health. In pig breeding, where semen is routinely stored at 17°C in the liquid state, alternatives to conventional antibiotics are urgently needed. Photodynamic inactivation (PDI) of bacteria is a well-established tool in medicine and the food industry but this technology has not been widely adopted in semen preservation. The specific challenge in this setting is to selectively inactivate bacteria while maintaining sperm integrity and functionality. The aim of this study was to test the principle of PDI in liquid stored boar semen using the photosensitizer 5,10,15,20-tetrakis(N-methyl-4-pyridyl)-21H,23H-porphine (TMPyP) and a white light LED-setup. In the first step, photophysical experiments comprising singlet oxygen phosphorescence kinetics of TMPyP and determination of the photosensitizer triplet time revealed a sufficiently high production of reactive singlet oxygen in the Androstar Premium semen extender, whereas seminal plasma acted as strong quencher. In vitro experiments with extended boar semen showed that the established PDI protocol preserves sperm motility, membrane integrity, DNA integrity, and mitochondrial activity while efficiently reducing the bacteria below the detection limit. A proof-of-concept insemination study confirmed the in vivo fertility of semen after photodynamic treatment. In conclusion, using the PDI approach, an innovative tool was established that efficiently controls bacteria growth in extended boar and maintains sperm fertility. This could be a promising contribution to the One Health concept with the potential to reduce antimicrobial resistance in animal husbandry.
Collapse
Affiliation(s)
- Anne-Marie Luther
- Unit for Reproductive Medicine/Clinic for Swine and Small Ruminants, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Mohammad Varzandeh
- Photobiophysics, Institute of Physics, Humboldt University of Berlin, Berlin, Germany
| | - Christina Beckermann
- Unit for Reproductive Medicine/Clinic for Swine and Small Ruminants, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Leon Feyer
- Photobiophysics, Institute of Physics, Humboldt University of Berlin, Berlin, Germany
| | - Isabel Katharina Maaßen
- Unit for Reproductive Medicine/Clinic for Swine and Small Ruminants, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Harriёtte Oldenhof
- Unit for Reproductive Medicine/Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Steffen Hackbarth
- Photobiophysics, Institute of Physics, Humboldt University of Berlin, Berlin, Germany
| | - Dagmar Waberski
- Unit for Reproductive Medicine/Clinic for Swine and Small Ruminants, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
5
|
Keeratikunakorn K, Chanapiwat P, Aunpad R, Ngamwongsatit N, Kaeoket K. Effect of Antimicrobial Peptide BiF2_5K7K on Contaminated Bacteria Isolated from Boar Semen and Semen Qualities during Preservation and Subsequent Fertility Test on Pig Farm. Antibiotics (Basel) 2024; 13:579. [PMID: 39061261 PMCID: PMC11274119 DOI: 10.3390/antibiotics13070579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
The purpose of this study was to determine the impact of an antimicrobial peptide, BiF2_5K7K, on semen quality and bacterial contamination in boar semen doses used for artificial insemination. A key factor affecting semen quality and farm production is bacterial contamination in semen doses. Using antibiotics in a semen extender seems to be the best solution for minimizing bacterial growth during semen preservation. However, concern regarding antibiotic-resistant microorganisms has grown globally. As a result, antimicrobial peptides have emerged as interesting alternative antimicrobial agents to replace the current antibiotics used in semen extenders. BiF2_5K7K is an antimicrobial peptide that can inhibit Gram-negative and Gram-positive bacteria isolated from boar semen and sow vaginal discharge. In this study, ten fresh boar semen samples were collected and diluted with one of two types of semen extender: with (positive control) or without (negative control) an antibiotic (i.e., gentamicin). The semen extender without an antibiotic contained antimicrobial peptide BiF2_5K7K at different concentrations (15.625, 31.25, 62.5, and 125 µg/mL). The samples were stored at 18 °C until use. Semen quality parameters were assessed on days 0, 1, 3, and 5, and the total bacterial count was also evaluated at 0, 24, 36, 48, and 72 h after storage. A fertility test on a pig farm was also performed via sow insemination with a commercial extender plus BiF2_5K7K at a concentration of 31.25 µg/mL. No significant difference was found in terms of semen quality on days 0 or 1. On days 3 and 5, the total motility, progressive motility, and viability remained normal in the 15.625 and 31.25 µg/mL groups. However, the sperm parameters decreased starting on day 3 for the 125 µg/mL group and on day 5 for the 62.5 µg/mL group. For total bacterial count at 0, 24, 36, 48, and 72 h, the lowest bacterial count was found in the positive control group, and the highest bacterial count was found in the negative control group compared with the other groups. Comparing antimicrobial peptide groups from 0 to 48 h, the lowest bacterial count was found in the 125 µg/mL group, and the highest bacterial count was found in the 15.625 µg/mL group. For the fertility test, artificial insemination was conducted by using a commercial extender plus BiF2_5K7K at a concentration of 31.25 µg/mL. The results showed a superior pregnancy rate, farrowing rate, and total number of piglets born compared with artificial insemination conducted using a commercial extender plus antibiotic. In conclusion, BiF2_5K7K can inhibit bacterial growth in extended boar semen for 24 h, and thereafter, the bacterial count slightly increases. However, the increase in the number of bacterial counts from days 0 to 3 had no negative effect on sperm quality in the positive control, 15.625, or 31.25 µg/mL groups. This indicates that BiF2_5K7K might be an antimicrobial peptide candidate with potential for use as an alternative antimicrobial agent to replace the conventional antibiotic used in boar semen extenders.
Collapse
Affiliation(s)
- Krittika Keeratikunakorn
- Semen Laboratory, Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (K.K.); (P.C.)
| | - Panida Chanapiwat
- Semen Laboratory, Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (K.K.); (P.C.)
| | - Ratchaneewan Aunpad
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Rangsit Campus, Klong Luang, Pathumthani 12120, Thailand;
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand;
- Laboratory of Bacteria, Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Kampon Kaeoket
- Semen Laboratory, Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (K.K.); (P.C.)
| |
Collapse
|
6
|
Ros-Santaella JL, Nový P, Scaringi M, Pintus E. Antimicrobial peptides and proteins as alternative antibiotics for porcine semen preservation. BMC Vet Res 2024; 20:257. [PMID: 38867200 PMCID: PMC11167811 DOI: 10.1186/s12917-024-04105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is nowadays a major emerging challenge for public health worldwide. The over- and misuse of antibiotics, including those for cell culture, are promoting AMR while also encouraging the research and employment of alternative drugs. The addition of antibiotics to the cell media is strongly recommended in sperm preservation, being gentamicin the most used for boar semen. Because of its continued use, several bacterial strains present in boar semen have developed resistance to this antibiotic. Antimicrobial peptides and proteins (AMPPs) are promising candidates as alternative antibiotics because their mechanism of action is less likely to promote AMR. In the present study, we tested two AMPPs (lysozyme and nisin; 50 and 500 µg/mL) as possible substitutes of gentamicin for boar semen preservation up to 48 h of storage. RESULTS We found that both AMPPs improved sperm plasma membrane and acrosome integrity during semen storage. The highest concentration tested for lysozyme also kept the remaining sperm parameters unaltered, at 48 h of semen storage, and reduced the bacterial load at comparable levels of the samples supplemented with gentamicin (p > 0.05). On the other hand, while nisin (500 µg/mL) reduced the total Enterobacteriaceae counts, it also decreased the rapid and progressive sperm population and the seminal oxidation-reduction potential (p < 0.05). CONCLUSIONS The protective effect of lysozyme on sperm function together with its antimicrobial activity and inborn presence in body fluids, including semen and cervical mucus, makes this enzyme a promising antimicrobial agent for boar semen preservation.
Collapse
Affiliation(s)
- Jose Luis Ros-Santaella
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, 165 00, Czech Republic.
| | - Pavel Nový
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, 165 00, Czech Republic
| | - Maria Scaringi
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, 165 00, Czech Republic
| | - Eliana Pintus
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, 165 00, Czech Republic.
| |
Collapse
|
7
|
Luther AM, Nguyen TQ, Verspohl J, Waberski D. Update of the cooling protocol for antibiotic-free storage of boar semen at 5°C improves sperm quality and maintains low bacterial counts. PLoS One 2024; 19:e0305280. [PMID: 38865384 PMCID: PMC11168697 DOI: 10.1371/journal.pone.0305280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
Preserving boar semen at 5°C instead of the conventional storage temperature of 17°C would enable a reduction of antibiotic use in pig insemination. To protect the chilling-sensitive boar spermatozoa, holding the extended semen at a higher temperature before cooling could be beneficial and facilitate the implementation of the innovative preservation concept in practice, provided that bacterial growth is kept at a low level. The aim of this study was to introduce a holding time (HT) at 17°C before cooling and to examine the effect on sperm quality and bacterial growth compared to the original cooling protocol for antibiotic-free 5°C semen storage. A series of experiments with semen doses from eight boars extended in Androstar® Premium without conventional antibiotics revealed that sperm kinematics and the integrity of sperm plasma membranes and acrosomes were improved with HT between 16 and 24 h followed by delayed cooling with 0.04°C/min when compared to the original protocol for semen preservation at 5°C (p < 0.05). Both a shorter HT of 6 h and a faster cooling rate of 0.07°C/min reduced sperm quality (p < 0.05). The HT for 24 h did not compromise the inhibitory effect on bacterial growth during long-term semen storage at 5°C, not even in semen doses spiked with Serratia marcescens. In conclusion, semen storage at 5°C with the modified cooling protocol improved sperm quality and is antimicrobially efficient. It thus presents a ready-to-use tool for a reduction or replacement of antibiotics in pig insemination.
Collapse
Affiliation(s)
- Anne-Marie Luther
- Unit for Reproductive Medicine/Clinic for Pigs and Small Ruminants, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Thu Quynh Nguyen
- Unit for Reproductive Medicine/Clinic for Pigs and Small Ruminants, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jutta Verspohl
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Dagmar Waberski
- Unit for Reproductive Medicine/Clinic for Pigs and Small Ruminants, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
8
|
Keeratikunakorn K, Chanapiwat P, Aunpad R, Ngamwongsatit N, Kaeoket K. The Effects of Different Antimicrobial Peptides (A-11 and AP19) on Isolated Bacteria from Fresh Boar Semen and Semen Quality during Storage at 18 °C. Antibiotics (Basel) 2024; 13:489. [PMID: 38927156 PMCID: PMC11200709 DOI: 10.3390/antibiotics13060489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Antibiotic resistance (AMR) is a major public health concern. Antimicrobial peptides (AMPs) could be an alternative to conventional antibiotics. The purpose of this research was to investigate the antimicrobial ability of the synthetic AMPs (i.e., A-11 and AP19) on the most frequently isolated bacteria in boar semen and their effect on extended boar semen quality during storage. We tested the antimicrobial effect of A-11 and AP19 at different concentrations and compared them with gentamicin for inhibiting the growth of E. coli, Pseudomonas aeruginosa and Proteus mirabilis that were isolated from fresh boar semen. In order to evaluate the effect of AMP on semen qualities on days 0, 1, 3, and 5 after storage at 18 °C, seven fresh boar semen samples were collected, diluted with semen extender with antibiotic (i.e., gentamicin at 200 µg/mL, positive control) or without (negative control), and semen extender contained only A-11 or AP19 at different concentrations (i.e., 62.50, 31.25, and 15.625 µg/mL). The total bacterial count was also measured at 0, 24, 36, 48, and 72 h after storage. Comparable to gentamicin, both A-11 and AP19 inhibited the growth of E. coli, Pseudomonas aeruginosa, and Proteus mirabilis at 62.50, 31.25, and 15.625 µg/mL, respectively. Comparing the total bacterial count at 0, 24, 36, 48 and 72 h after storage, the lowest total bacterial concentration was found in the positive control group (p < 0.05), and an inferior total bacterial concentration was found in the treatment groups than in the negative control. On day 1, there is a lower percentage of all sperm parameters in the AP19 group at a concentration of 62.50 µg/mL compared with the other groups. On day 3, the highest percentage of all sperm parameters was found in the positive control and A-11 at a concentration of 31.25 µg/mL compared with the other groups. The AP19 group at 62.5 µg/mL constantly yielded inferior sperm parameters. On day 5, only A-11 at a concentration of 15.625 µg/mL showed a total motility higher than 70%, which is comparable to the positive control. A-11 and AP19 showed antimicrobial activity against E. coli, Pseudomonas aeruginosa and Proteus mirabilis isolated from boar semen. Considering their effect on semen quality during storage, these antimicrobial peptides are an alternative to conventional antibiotics used in boar semen extenders. Nevertheless, the utilization of these particular antimicrobial peptides relied on the concentration and duration of storage.
Collapse
Affiliation(s)
- Krittika Keeratikunakorn
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (K.K.); (P.C.); (N.N.)
| | - Panida Chanapiwat
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (K.K.); (P.C.); (N.N.)
| | - Ratchaneewan Aunpad
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Rangsit Campus, Klongluang, Pathum Thani 12120, Thailand;
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (K.K.); (P.C.); (N.N.)
- Laboratory of Bacteria, Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Kampon Kaeoket
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (K.K.); (P.C.); (N.N.)
| |
Collapse
|
9
|
Hu B, Zhang H, Li Y, Xue Q, Yang M, Cao C, Gao L, Chu G, Cai R, Zheng Y, Pang W. Kojic acid inhibits pig sperm apoptosis and improves capacitated sperm state during liquid preservation at 17°C. Mol Reprod Dev 2024; 91:e23738. [PMID: 38462735 DOI: 10.1002/mrd.23738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/28/2023] [Accepted: 01/12/2024] [Indexed: 03/12/2024]
Abstract
The parameters of sperm apoptosis and capacitation during liquid storage at 17°C can indicate the quality of pig sperm and the potential development of early embryos. However, the effect of kojic acid (KA) on semen preservation and its mechanism has not been fully understood. In this study, we discovered that adding KA to the diluent improved the antioxidant capacity of sperm mitochondria, maintained the normal structure of sperm mitochondria, and reduced sperm apoptosis. Western blot analysis revealed that KA prevented the release of Cytochrome c from mitochondria to the cytoplasm, reduced the expression of pro-apoptosis proteins cleaved Caspase-3 and cleaved Caspase-9, and increased the expression of the antiapoptosis protein Bcl-XL. Furthermore, KA also enhanced the motility parameters, oxidative phosphorylation level, adenosine triphosphate level, and protein tyrosine phosphorylation of capacitated sperm, while preserving the acrosome integrity and plasma membrane integrity of capacitated sperm. In conclusion, this study offers new insights into the molecular mechanism of how KA inhibits porcine sperm apoptosis and improves capacitated sperm parameters. Additionally, it suggests that KA can serve as an alternative to antibiotics.
Collapse
Affiliation(s)
- Bingyan Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Haize Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuqing Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qin Xue
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Menghao Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chaoyue Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Guiyan Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Rui Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yi Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Weijun Pang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
10
|
Li Y, Xiao H, Qin X, Zhang H, Zheng Y, Cai R, Pang W. Carboxyfullerene C60 preserves porcine sperm by enhancing antioxidant capacity and inhibiting apoptosis and harmful bacteria. J Anim Sci 2024; 102:skae196. [PMID: 39008364 PMCID: PMC11345516 DOI: 10.1093/jas/skae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/13/2024] [Indexed: 07/17/2024] Open
Abstract
This study used a porcine model to systematically investigate whether carboxyfullerene C60(CF-C60) can be used for sperm preservation. The results indicated that CF-C60 supplementation can preserve porcine sperm quality during storage at 17 °C. This effect was attributable to an improvement in the antioxidant capacity of sperm through a decrease in the reactive oxygen species (ROS) level. Additionally, CF-C60 can maintain mitochondrial function, inhibit sperm apoptosis through the ROS/Cytochrome C (Cyt C)/Caspase 3 signaling pathway, and mediate suppression of bacterial growth through the effects of ROS. Finally, the results of artificial insemination experiments indicated that insemination with CF-C60-treated sperm can increase the total number of offspring born and reduce the number of deformed piglets. Thus, CF-C60 is safe for use as a component of semen diluent for sperm storage.
Collapse
Affiliation(s)
- Yuqing Li
- Key Laboratory of Northwest China’s Pig Breading and Reproduction, Ministry of Agriculture and Rural Affairs P.R. China, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haoqi Xiao
- Key Laboratory of Northwest China’s Pig Breading and Reproduction, Ministry of Agriculture and Rural Affairs P.R. China, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xue Qin
- Key Laboratory of Northwest China’s Pig Breading and Reproduction, Ministry of Agriculture and Rural Affairs P.R. China, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haize Zhang
- Key Laboratory of Northwest China’s Pig Breading and Reproduction, Ministry of Agriculture and Rural Affairs P.R. China, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Zheng
- Key Laboratory of Northwest China’s Pig Breading and Reproduction, Ministry of Agriculture and Rural Affairs P.R. China, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Cai
- Key Laboratory of Northwest China’s Pig Breading and Reproduction, Ministry of Agriculture and Rural Affairs P.R. China, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weijun Pang
- Key Laboratory of Northwest China’s Pig Breading and Reproduction, Ministry of Agriculture and Rural Affairs P.R. China, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
11
|
Ngo C, Suwimonteerabutr J, Apiwatsiri P, Saenkankam I, Prapasarakul N, Morrell JM, Tummaruk P. Boar Seminal Microbiota in Relation to Sperm Quality under Tropical Environments. Animals (Basel) 2023; 13:3837. [PMID: 38136874 PMCID: PMC10740666 DOI: 10.3390/ani13243837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The present study was carried out to determine the seminal microbiota of boars and their correlation with sperm quality. A total of 17 ejaculates were collected from 17 Duroc boars and were classified according to sperm quality into two groups: low-quality (n = 8) and high-quality (n = 9). Each ejaculate was subjected to (i) semen evaluation, (ii) bacterial culture and MALDI-TOF identification, and (iii) 16S rRNA gene sequencing and bioinformatic analyses. No difference in the total bacterial count, alpha diversity, and beta diversity between the high-quality group and the low-quality group was detected (p > 0.05). While Globicatella sanguinis was negatively correlated with sperm quality (p < 0.05), Delftia acidovorans was positively correlated with sperm quality (p < 0.05). Lactobacillales (25.2%; LB) and Enterobacterales (10.3%; EB) were the most dominant bacteria and negatively correlated: EB = 507.3 - 0.5 × LB, R2 = 0.24, p < 0.001. Moreover, the abundance of Escherichia-shigella was negatively correlated with LB (r = -0.754, p < 0.001) and positively correlated with Proteus (r = 0.533, p < 0.05). Alysiella was positively correlated with Lactobacillus (r = 0.485, p < 0.05), Prevotella (r = 0.622, p < 0.01), and Staphylococcus (r = 0.489, p < 0.05). In conclusion, seminal microbiota is significantly associated with boar semen qualities. The distributions of the most dominant bacterial genera, the differences in the abundance of small subset microbes, and their correlation appear to have far more impact than the overall seminal bacterial content (e.g., total bacterial count, alpha diversity, and beta diversity) on sperm quality.
Collapse
Affiliation(s)
- CongBang Ngo
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (C.N.); (J.S.)
| | - Junpen Suwimonteerabutr
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (C.N.); (J.S.)
- Center of Excellent in Swine Reproduction, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prasert Apiwatsiri
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (P.A.); (I.S.); (N.P.)
| | - Imporn Saenkankam
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (P.A.); (I.S.); (N.P.)
| | - Nuvee Prapasarakul
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (P.A.); (I.S.); (N.P.)
- Center of Excellence in Diagnosis and Monitoring for Animal Pathogens, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jane M. Morrell
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden;
| | - Padet Tummaruk
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (C.N.); (J.S.)
- Center of Excellent in Swine Reproduction, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|