1
|
Vijayan A, Vishnu J, A R, Shankar B, Sambhudevan S. A review on hydroxyapatite fabrication: from powders to additive manufactured scaffolds. Biomater Sci 2025; 13:913-945. [PMID: 39808066 DOI: 10.1039/d4bm00972j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Hydroxyapatite (HA), the main inorganic bone component, is the most widely researched bioceramic for bone repair. This paper presents a comprehensive review of recent advancements in HA synthesis methods and their integration into additive manufacturing (AM) processes. Synthesis methodologies discussed include wet, dry, and biomimetic routes, emphasizing their impact on tailoring the physicochemical properties of HA for biomedical applications. The incorporation of dopants and additives during synthesis is explored for optimizing the mechanical, biological, and osteogenic characteristics of HA-based materials. Moreover, the evolution of AM technologies from conventional 3D printing to advanced 4D and 5D printing is detailed, covering material selection, process parameters, and post-processing strategies vital for fabricating intricate, patient-specific scaffolds, implants, and drug delivery systems utilizing HA. The review underscores the importance of achieving precise control over microstructure and porosity to mimic native tissue architectures accurately. Furthermore, emerging applications of HA-based constructs in tissue engineering, regenerative medicine, drug delivery, and orthopedic implants are discussed, highlighting their potential to address critical clinical needs. Despite the glimmer of hope provided by the advent and progress of such AM capabilities, several aspects need to be addressed to develop efficient HA-based bone substitutes, which are explored in detail in this review.
Collapse
Affiliation(s)
- Ananthika Vijayan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
- Center for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
| | - Jithin Vishnu
- Center for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| | - Revathi A
- NextGen Precision Health, University of Missouri, Columbia, USA
| | - Balakrishnan Shankar
- Center for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| | - Sreedha Sambhudevan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
- Center for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
| |
Collapse
|
2
|
Diputra AH, Hariscandra Dinatha IK, Yusuf Y. A comparative X-ray diffraction analysis of Sr 2+substituted hydroxyapatite from sand lobster shell waste using various methods. Heliyon 2025; 11:e41781. [PMID: 39877603 PMCID: PMC11773041 DOI: 10.1016/j.heliyon.2025.e41781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/17/2024] [Accepted: 01/07/2025] [Indexed: 01/31/2025] Open
Abstract
This study aims to investigate the crystallographic properties of hydroxyapatite (HAp) and strontium-substituted hydroxyapatite (SrHAp) obtained from sand lobster shells (SLS) using various analytical methods. HAp and SrHAp were synthesized by the hydrothermal method using sand lobster (Panulirus homarus) shell waste as a calcium precursor. SLS were calcined at 0 °C, 600 °C, 800 °C, and 1000 °C and characterized by X-ray diffraction (XRD). HAp and SrHAp were analyzed by XRD and transmission electron microscopy (TEM). XRD results revealed that SLS calcined at 1000 °C displayed a Ca(OH)2 phase, while those calcined at other temperatures showed a CaCO3 phase. The characterization also verified the diffraction patterns of HAp and SrHAp according to the reference model. Various methods, including the Scherrer method, linear straight-line Scherrer method, Monshi-Scherrer method, Williamson-Hall plot, size-strain plot, and Halder-Wagner method, were employed to investigate the microstructure parameters (crystallite size and microstrain). All methods resulted in varied yet comparable results of crystallite size, except for the linear straight-line Scherrer method. The TEM results showed that the particle sizes of HAp and SrHAp were approximately 130 nm. In this study, the W-H plot was regarded as the best method for providing additional information on anisotropy elasticity and consistent crystallite size results.
Collapse
Affiliation(s)
- Arian Hermawan Diputra
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - I Kadek Hariscandra Dinatha
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Yusril Yusuf
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| |
Collapse
|
3
|
Liu Y, Liu X, Liu C, Zhang W, Shi T, Liu G. Development of biomaterials for bone tissue engineering based on bile acids. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2025; 36:11. [PMID: 39812871 PMCID: PMC11735600 DOI: 10.1007/s10856-024-06850-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025]
Abstract
Diseases and injuries can cause significant bone loss, leading to increased medical expenses, decreased work efficiency, and a decline in quality of life. Bone tissue engineering (BTE) is gaining attention as an alternative to autologous and allogeneic transplantation due to the limited availability of donors. Biomaterials represent a promising strategy for bone regeneration, and their design should consider the three key processes in bone tissue engineering: osteogenesis, bone conduction, and bone induction. Certain bile acids (BAs) demonstrate significant antioxidant, anti-inflammatory, and immunosuppressive properties, and effectively promote bone and tissue regeneration. Additionally, the combination of BA molecule with other biological materials can help overcome problems associated with limited local bone regeneration and maintain a defined release state for a long time. Thus in this review, we focus on the role and the mechanism of bile acids in bone healing under different conditions, highlighting their unique properties and applications in gel fabrication, microencapsulation, and nanotechnology. These advancements serve as a basis for the advancement of biomaterials derived from BAs, specifically for the purpose of bone reconstruction.
Collapse
Affiliation(s)
- Yongjun Liu
- The Second Department of Spine Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| | - Xiaojie Liu
- Department of Plastic Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| | - Chang Liu
- Department of Plastic Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| | - Wenan Zhang
- Department of Plastic Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| | - Ting Shi
- Department of Plastic Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| | - Guanying Liu
- Department of Hand and Foot Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People's Republic of China.
| |
Collapse
|
4
|
Cao H, Zeng Y, Yuan X, Wang JK, Tay CY. Waste-to-resource: Extraction and transformation of aquatic biomaterials for regenerative medicine. BIOMATERIALS ADVANCES 2025; 166:214023. [PMID: 39260186 DOI: 10.1016/j.bioadv.2024.214023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/16/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
The fisheries and aquaculture industry are known for generating substantial waste or by-products, often underutilized, or relegated to low-value purposes. However, this overlooked segment harbors a rich repository of valuable bioactive materials of which have a broad-spectrum of high-value applications. As the blue economy gains momentum and fisheries expand, sustainable exploitation of these aquatic resources is increasingly prioritized. In this review, we present a comprehensive overview of technology-enabled methods for extracting and transforming aquatic waste into valuable biomaterials and their recent advances in regenerative medicine applications, focusing on marine collagen, chitin/chitosan, calcium phosphate and bioactive-peptides. We discuss the inherent bioactive qualities of these "waste-to-resource" aquatic biomaterials and identify opportunities for their use in regenerative medicine to advance healthcare while achieving the Sustainable Development Goals.
Collapse
Affiliation(s)
- Huaqi Cao
- China-Singapore International Joint Research Institute (CSIJRI), China Singapore Guangzhou Knowledge City, Huangpu District, Guangzhou, PR China
| | - Yuanjin Zeng
- China-Singapore International Joint Research Institute (CSIJRI), China Singapore Guangzhou Knowledge City, Huangpu District, Guangzhou, PR China
| | - Xueyu Yuan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China; School of Materials Science and Engineering, Nanyang Technological University, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jun Kit Wang
- School of Materials Science and Engineering, Nanyang Technological University, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Chor Yong Tay
- China-Singapore International Joint Research Institute (CSIJRI), China Singapore Guangzhou Knowledge City, Huangpu District, Guangzhou, PR China; School of Materials Science and Engineering, Nanyang Technological University, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore; Center for Sustainable Materials (SusMat), Nanyang Technological University, Singapore 637553, Singapore; Nanyang Environment & Water Research Institute, 1 CleanTech Loop, CleanTech One, Singapore 637141, Singapore.
| |
Collapse
|
5
|
Feng P, Liu L, Yang F, Min R, Wu P, Shuai C. Shape/properties collaborative intelligent manufacturing of artificial bone scaffold: structural design and additive manufacturing process. Biofabrication 2024; 17:012005. [PMID: 39514965 DOI: 10.1088/1758-5090/ad905f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Artificial bone graft stands out for avoiding limited source of autograft as well as susceptibility to infection of allograft, which makes it a current research hotspot in the field of bone defect repair. However, traditional design and manufacturing method cannot fabricate bone scaffold that well mimics complicated bone-like shape with interconnected porous structure and multiple properties akin to human natural bone. Additive manufacturing, which can achieve implant's tailored external contour and controllable fabrication of internal microporous structure, is able to form almost any shape of designed bone scaffold via layer-by-layer process. As additive manufacturing is promising in building artificial bone scaffold, only combining excellent structural design with appropriate additive manufacturing process can produce bone scaffold with ideal biological and mechanical properties. In this article, we sum up and analyze state of art design and additive manufacturing methods for bone scaffold to realize shape/properties collaborative intelligent manufacturing. Scaffold design can be mainly classified into design based on unit cells and whole structure, while basic additive manufacturing and 3D bioprinting are the recommended suitable additive manufacturing methods for bone scaffold fabrication. The challenges and future perspectives in additive manufactured bone scaffold are also discussed.
Collapse
Affiliation(s)
- Pei Feng
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Lingxi Liu
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Feng Yang
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Rui Min
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Ping Wu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, People's Republic of China
| | - Cijun Shuai
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People's Republic of China
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, People's Republic of China
- College of Mechanical Engineering, Xinjiang University, Urumqi 830017, People's Republic of China
| |
Collapse
|
6
|
Aspera-Werz RH, Chen G, Schilonka L, Bouakaz I, Bronne C, Cobraiville E, Nolens G, Nussler A. Impact of Particle Size and Sintering Temperature on Calcium Phosphate Gyroid Structure Scaffolds for Bone Tissue Engineering. J Funct Biomater 2024; 15:355. [PMID: 39728155 PMCID: PMC11727752 DOI: 10.3390/jfb15120355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 12/28/2024] Open
Abstract
Due to the chemical composition and structure of the target tissue, autologous bone grafting remains the gold standard for orthopedic applications worldwide. However, ongoing advancements in alternative grafting materials show that 3D-printed synthetic biomaterials offer many advantages. For instance, they provide high availability, have low clinical limitations, and can be designed with a chemical composition and structure comparable to the target tissue. This study aimed to compare the influences of particle size and sintering temperature on the mechanical properties and biocompatibility of calcium phosphate (CaP) gyroid scaffolds. CaP gyroid scaffolds were fabricated by 3D printing using powders with the same chemical composition but different particle sizes and sintering temperatures. The physicochemical characterization of the scaffolds was performed using X-ray diffractometry, scanning electron microscopy, and microtomography analyses. The immortalized human mesenchymal stem cell line SCP-1 (osteoblast-like cells) and osteoclast-like cells (THP-1 cells) were seeded on the scaffolds as mono- or co-cultures. Bone cell attachment, number of live cells, and functionality were assessed at different time points over a period of 21 days. Improvements in mechanical properties were observed for scaffolds fabricated with narrow-particle-size-distribution powder. The physicochemical analysis showed that the microstructure varied with sintering temperature and that narrow particle size distribution resulted in smaller micropores and a smoother surface. Viable osteoblast- and osteoclast-like cells were observed for all scaffolds tested, but scaffolds produced with a smaller particle size distribution showed less attachment of osteoblast-like cells. Interestingly, low attachment of osteoclast-like cells was observed for all scaffolds regardless of surface roughness. Although bone cell adhesion was lower in scaffolds made with powder containing smaller particle sizes, the long-term function of osteoblast-like and osteoclast-like cells was superior in scaffolds with improved mechanical properties.
Collapse
Affiliation(s)
- Romina Haydeé Aspera-Werz
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany; (R.H.A.-W.); (G.C.); (L.S.)
| | - Guanqiao Chen
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany; (R.H.A.-W.); (G.C.); (L.S.)
| | - Lea Schilonka
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany; (R.H.A.-W.); (G.C.); (L.S.)
| | - Islam Bouakaz
- CERHUM-PIMW, 4000 Liège, Belgium; (I.B.); (C.B.); (E.C.); (G.N.)
| | - Catherine Bronne
- CERHUM-PIMW, 4000 Liège, Belgium; (I.B.); (C.B.); (E.C.); (G.N.)
| | | | - Grégory Nolens
- CERHUM-PIMW, 4000 Liège, Belgium; (I.B.); (C.B.); (E.C.); (G.N.)
| | - Andreas Nussler
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany; (R.H.A.-W.); (G.C.); (L.S.)
| |
Collapse
|
7
|
Wang Z, Sun Y, Li C. Advances in 3D printing technology for preparing bone tissue engineering scaffolds from biodegradable materials. Front Bioeng Biotechnol 2024; 12:1483547. [PMID: 39610936 PMCID: PMC11602280 DOI: 10.3389/fbioe.2024.1483547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Introduction Bone tissue engineering (BTE) provides an effective repair solution by implanting osteoblasts or stem cells into biocompatible and biodegradable scaffolds to promote bone regeneration. In recent years, the rapid development of 3D bioprinting has enabled its extensive application in fabricating BTE scaffolds. Based on three-dimensional computer models and specialized "bio-inks," this technology offers new pathways for customizing BTE scaffolds. This study reviews the current status and future prospects of scaffold materials for BTE in 3D bioprinting. Methods This literature review collected recent studies on BTE and 3D bioprinting, analyzing the advantages and limitations of various scaffold materials for 3D printing, including bioceramics, metals, natural polymers, and synthetic polymers. Key characteristics like biocompatibility, mechanical properties, and degradation rates of these materials were systematically compared. Results The study highlights the diverse performances of materials used in BTE scaffolds. Bioceramics exhibit excellent biocompatibility but suffer from brittleness; metals offer high strength but may induce chronic inflammation; natural polymers are biocompatible yet have poor mechanical properties, while synthetic polymers offer strong tunability but may produce acidic by-products during degradation. Additionally, integrating 3D bioprinting with composite materials could enhance scaffold biocompatibility and mechanical properties, presenting viable solutions to current challenges. Discussion This review summarizes recent advances in 3D bioprinting for BTE scaffold applications, exploring the strengths and limitations of various materials and proposing composite material combinations to improve scaffold performance. By optimizing material selection and combinations, 3D bioprinting shows promise for creating customized scaffolds, offering a new technical route for clinical applications of BTE. This research provides a unique perspective and theoretical support for advancing 3D bioprinting technology in bone regeneration, outlining future directions for BTE materials and 3D bioprinting technology development.
Collapse
Affiliation(s)
- Zhen Wang
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China
- State Key Laboratory of Crane Technology, Yanshan University, Hebei, China
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou, China
| | - Yanan Sun
- School of Information Science and Engineering, Yanshan University, Hebei, China
| | - Chen Li
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
8
|
Siswomihardjo W, Ana ID, Ardhani R. Fabrication of strontium ions substituted hydroxyapatite from the shells of the golden apple snail (Pomacea canaliculate L) with enhanced osteoconductive and improved biological properties. Dent Mater J 2024; 43:643-655. [PMID: 39198176 DOI: 10.4012/dmj.2023-246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
The use of biogenic calcium ions for the source of hydroxyapatite (HAp or HA) are very common and have been being explored extensively. However, it usually results high crystalline HA, due to high reaction and decomposition temperatures. In this study, strontium (Sr2+) doped HA from the golden apple snail shells (Pomacea canaliculate L) was successfully synthesized. It was indicated that Sr ions completely replaced calcium (Ca) ions, increased the lattice constant, and consecutively reduced HA crystallinity. Smaller crystal size and β-type carbonate (CO32-) ions substitution with Ca/P close to 1.67 molar ratio that mimic bone crystals were observed in Sr-doped HA, with significant increased rate of MC3T3-E1 cells viability and higher IC50 values. It was proven that Sr ions substitution resolved challenges on the use of biogenic sources for HA fabrication. Further in vivo study is needed to continue to valorise the results into real biomedical and clinical applications.
Collapse
Affiliation(s)
- Widowati Siswomihardjo
- Postgraduate Program of Dental Sciences, Faculty of Dentistry, Universitas Gadjah Mada
- Department of Dental Biomaterials, Faculty of Dentistry, Universitas Gadjah Mada
| | - Ika Dewi Ana
- Department of Dental Biomedical Science, Faculty of Dentistry, Universitas Gadjah Mada
- Research Collaboration Center for Biomedical Scaffolds, National Research and Innovation Agency (BRIN) and Universitas Gadjah Mada (UGM)
| | - Retno Ardhani
- Department of Dental Biomedical Science, Faculty of Dentistry, Universitas Gadjah Mada
| |
Collapse
|
9
|
Cinici B, Yaba S, Kurt M, Yalcin HC, Duta L, Gunduz O. Fabrication Strategies for Bioceramic Scaffolds in Bone Tissue Engineering with Generative Design Applications. Biomimetics (Basel) 2024; 9:409. [PMID: 39056850 PMCID: PMC11275129 DOI: 10.3390/biomimetics9070409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The aim of this study is to provide an overview of the current state-of-the-art in the fabrication of bioceramic scaffolds for bone tissue engineering, with an emphasis on the use of three-dimensional (3D) technologies coupled with generative design principles. The field of modern medicine has witnessed remarkable advancements and continuous innovation in recent decades, driven by a relentless desire to improve patient outcomes and quality of life. Central to this progress is the field of tissue engineering, which holds immense promise for regenerative medicine applications. Scaffolds are integral to tissue engineering and serve as 3D frameworks that support cell attachment, proliferation, and differentiation. A wide array of materials has been explored for the fabrication of scaffolds, including bioceramics (i.e., hydroxyapatite, beta-tricalcium phosphate, bioglasses) and bioceramic-polymer composites, each offering unique properties and functionalities tailored to specific applications. Several fabrication methods, such as thermal-induced phase separation, electrospinning, freeze-drying, gas foaming, particle leaching/solvent casting, fused deposition modeling, 3D printing, stereolithography and selective laser sintering, will be introduced and thoroughly analyzed and discussed from the point of view of their unique characteristics, which have proven invaluable for obtaining bioceramic scaffolds. Moreover, by highlighting the important role of generative design in scaffold optimization, this review seeks to pave the way for the development of innovative strategies and personalized solutions to address significant gaps in the current literature, mainly related to complex bone defects in bone tissue engineering.
Collapse
Affiliation(s)
- Bilal Cinici
- Department of Mechanical Engineering, Faculty of Technology, Marmara University, Istanbul 34890, Turkey; (B.C.); (M.K.)
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34890, Turkey
- AYEM Innovation Anonim Sirketi, Cube Incubation Center, Technopark Istanbul, Istanbul 34890, Turkey;
| | - Sule Yaba
- AYEM Innovation Anonim Sirketi, Cube Incubation Center, Technopark Istanbul, Istanbul 34890, Turkey;
| | - Mustafa Kurt
- Department of Mechanical Engineering, Faculty of Technology, Marmara University, Istanbul 34890, Turkey; (B.C.); (M.K.)
| | - Huseyin C. Yalcin
- Biomedical Research Center, Qatar University, Doha 2713, Qatar;
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
| | - Liviu Duta
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34890, Turkey
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34890, Turkey
| |
Collapse
|
10
|
S. AD, P. SPA, Naveen J, Khan T, Khahro SH. Advancement in biomedical implant materials-a mini review. Front Bioeng Biotechnol 2024; 12:1400918. [PMID: 39021364 PMCID: PMC11252025 DOI: 10.3389/fbioe.2024.1400918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024] Open
Abstract
Metal alloys like stainless steel, titanium, and cobalt-chromium alloys are preferable for bio-implants due to their exceptional strength, tribological properties, and biocompatibility. However, long-term implantation of metal alloys can lead to inflammation, swelling, and itching because of ion leaching. To address this issue, polymers are increasingly being utilized in orthopedic applications, replacing metallic components such as bone fixation plates, screws, and scaffolds, as well as minimizing metal-on-metal contact in total hip and knee joint replacements. Ceramics, known for their hardness, thermal barrier, wear, and corrosion resistance, find extensive application in electrochemical, fuel, and biomedical industries. This review delves into a variety of biocompatible materials engineered to seamlessly integrate with the body, reducing adverse reactions like inflammation, toxicity, or immune responses. Additionally, this review examines the potential of various biomaterials including metals, polymers, and ceramics for implant applications. While metallic biomaterials remain indispensable, polymers and ceramics show promise as alternative options. However, surface-modified metallic materials offer a hybrid effect, combining the strengths of different constituents. The future of biomedical implant materials lies in advanced fabrication techniques and personalized designs, facilitating tailored solutions for complex medical needs.
Collapse
Affiliation(s)
- Ashish Daniel S.
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, India
| | - Suya Prem Anand P.
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, India
| | - Jesuarockiam Naveen
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, India
| | - Tabrej Khan
- Department of Engineering Management, Faculty of Engineering, Prince Sultan University, Riyadh, Saudi Arabia
| | - Shabir Hussain Khahro
- Department of Engineering Management, Faculty of Engineering, Prince Sultan University, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Zhanbassynova A, Mukasheva F, Abilev M, Berillo D, Trifonov A, Akilbekova D. Impact of Hydroxyapatite on Gelatin/Oxidized Alginate 3D-Printed Cryogel Scaffolds. Gels 2024; 10:406. [PMID: 38920952 PMCID: PMC11203254 DOI: 10.3390/gels10060406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Fabrication of scaffolds via 3D printing is a promising approach for tissue engineering. In this study, we combined 3D printing with cryogenic crosslinking to create biocompatible gelatin/oxidized alginate (Gel/OxAlg) scaffolds with large pore sizes, beneficial for bone tissue regeneration. To enhance the osteogenic effects and mechanical properties of these scaffolds, we evaluated the impact of hydroxyapatite (HAp) on the rheological characteristics of the 2.86% (1:1) Gel/OxAlg ink. We investigated the morphological and mechanical properties of scaffolds with low, 5%, and high 10% HAp content, as well as the resulting bio- and osteogenic effects. Scanning electron microscopy revealed a reduction in pore sizes from 160 to 180 µm (HAp-free) and from 120 to 140 µm for both HAp-containing scaffolds. Increased stability and higher Young's moduli were measured for 5% and 10% HAp (18 and 21 kPa, respectively) compared to 11 kPa for HAp-free constructs. Biological assessments with mesenchymal stem cells indicated excellent cytocompatibility and osteogenic differentiation in all scaffolds, with high degree of mineralization in HAp-containing constructs. Scaffolds with 5% HAp exhibited improved mechanical characteristics and shape fidelity, demonstrated positive osteogenic impact, and enhanced bone tissue formation. Increasing the HAp content to 10% did not show any advantages in osteogenesis, offering a minor increase in mechanical strength at the cost of significantly compromised shape fidelity.
Collapse
Affiliation(s)
- Ainur Zhanbassynova
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan; (A.Z.)
| | - Fariza Mukasheva
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan; (A.Z.)
| | - Madi Abilev
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan; (A.Z.)
| | - Dmitriy Berillo
- Department of Chemistry and Biochemical Engineering, Satbayev University, Almaty 050013, Kazakhstan
| | - Alexander Trifonov
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan; (A.Z.)
| | - Dana Akilbekova
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan; (A.Z.)
| |
Collapse
|
12
|
Wu S, Lai Y, Zheng X, Yang Y. Facile fabrication of linezolid/strontium coated hydroxyapatite/graphene oxide nanocomposite for osteoporotic bone defect. Heliyon 2024; 10:e31638. [PMID: 38947479 PMCID: PMC11214387 DOI: 10.1016/j.heliyon.2024.e31638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024] Open
Abstract
Hydroxyapatite (HAp) coatings currently have limited therapeutic applications because they lack anti-infection, osteoinductivity, and poor mechanical characteristics. On the titanium substrate, electrochemical deposition (ECD) was used to construct the strontium (Sr)-featuring hydroxyapatite (HAp)/graphene oxides (GO)/linezolid (LZ) nanomaterial coated with antibacterial and drug delivery properties. The newly fabricated nanomaterials were confirmed by X-ray diffraction analysis (XRD), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analysis and morphological features were examined by scanning electron microscope (SEM) analysis. The results reveal multiple nucleation sites for SrHAp/GO/LZ composite coatings due to oxygen-comprising moieties on the 2D surface of GO. It was shown to be favorable for osteoblast proliferation and differentiation. The elastic modulus and hardness of LZ nanocomposite with SrHAp/GO/LZ coatings were increased by 67 % and 121 %, respectively. An initial 5 h burst of LZ release from the SrHAp/GO/LZ coating was followed by 14 h of gradual release, owing to LZ's physical and chemical adsorption. The SrHAp/GO/LZ coating effectively inhibited both S. epidermidis and S. aureus, and the inhibition lasted for three days, as demonstrated by the inhibition zone and colony count assays. When MG-63 cells are coated with SrHAp/GO/LZ composite coating, their adhesion, proliferation, and differentiation greatly improve when coated with pure titanium. A novel surface engineering nanomaterial for treating and preventing osteoporotic bone defects, SrHAp/GO/LZ, was shown to have high mechanical characteristics, superior antibacterial abilities, and osteoinductivity.
Collapse
Affiliation(s)
- Shuhui Wu
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian, 463003, China
- Medical College, Huanghuai University, Zhumadian, 463003, China
| | - Yunxiao Lai
- Medical College, Huanghuai University, Zhumadian, 463003, China
| | - Xian Zheng
- Department of Obstetrics, Wenling First People's Hospital, Wenling, 317500, China
| | - Yang Yang
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian, 463003, China
- Medical College, Huanghuai University, Zhumadian, 463003, China
| |
Collapse
|
13
|
Qi Y, Lv H, Huang Q, Pan G. The Synergetic Effect of 3D Printing and Electrospinning Techniques in the Fabrication of Bone Scaffolds. Ann Biomed Eng 2024; 52:1518-1533. [PMID: 38530536 DOI: 10.1007/s10439-024-03500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
The primary goal of bone tissue engineering is to restore and rejuvenate bone defects by using a suitable three-dimensional scaffold, appropriate cells, and growth hormones. Various scaffolding methods are used to fabricate three-dimensional scaffolds, which provide the necessary environment for cell activity and bone formation. Multiple materials may be used to create scaffolds with hierarchical structures that are optimal for cell growth and specialization. This study examines a notion for creating an optimal framework for bone regeneration using a combination of the robocasting method and the electrospinning approach. Research indicates that the integration of these two procedures enhances the benefits of each method and provides a rationale for addressing their shortcomings via this combination. The hybrid approach is anticipated to provide a manufactured scaffold that can effectively replace bone defects while possessing the necessary qualities for bone regeneration.
Collapse
Affiliation(s)
- Yongjie Qi
- School of Intelligent Manufacturing, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, 322100, China
| | - Hangying Lv
- School of Intelligent Manufacturing, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, 322100, China
| | - Qinghua Huang
- School of Intelligent Manufacturing, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, 322100, China
| | - Guangyong Pan
- School of Intelligent Manufacturing, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, 322100, China.
| |
Collapse
|
14
|
Dinatha IKH, Diputra AH, Wihadmadyatami H, Partini J, Yusuf Y. Nanofibrous electrospun scaffold doped with hydroxyapatite derived from sand lobster shell ( Panulirus homarus) for bone tissue engineering. RSC Adv 2024; 14:8222-8239. [PMID: 38469192 PMCID: PMC10925909 DOI: 10.1039/d4ra00619d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
Healing of significant segmental bone defects remains a challenge, and various studies attempt to make materials that mimic bone structures and have biocompatibility, bioactivity, biodegradability, and osteoconductivity to native bone tissues. In this work, a nanofiber scaffold membrane of polyvinyl alcohol (PVA)/polyvinylpyrrolidone (PVP)/chitosan (CS) combined with hydroxyapatite (HAp) from sand lobster (SL; Panulirus homarus) shells, as a calcium source, was successfully synthesized to mimic the nanoscale extracellular matrix (ECM) in the native bone. The HAp from SL shells was synthesized by co-precipitation method with Ca/P of 1.67 and incorporated into the nanofiber membrane PVA/PVP/CS synthesized by the electrospinning method with varying concentrations, i.e. 0, 1, 3, and 5% (w/v). Based on the morphological and physicochemical analysis, the addition of HAp into the nanofiber successfully showed incorporation into the nanofiber with small agglomeration at HAp concentrations of 1, 3, and 5% (w/v). This led to a smaller fiber diameter with higher concentration of Hap, and incorporating HAp into the nanofiber could improve the mechanical properties of the nanofiber closer to the trabecula bone. Moreover, in general, swelling due to water absorption increases due to higher hydrophilicity at higher HAp concentrations and leads to the improvement of the degradation process and protein adsorption of the nanofiber. Biomineralization in a simulated body fluid (SBF) solution confirms that the HAp in the nanofiber increases bioactivity, and it can be seen that more apatite is formed during longer immersion in the SBF solution. The nanofiber PVA/PVP/CS HAp 5% has the most potential for osteoblast (MC3T3E1) cell viability after being incubated for 24 h, and it allowed the cell to attach and proliferate. Additionally, the higher HAp concentration in the nanofiber scaffold membrane can significantly promote the osteogenic differentiation of MC3T3E1 cells. Overall, the PVA/PVP/CS/HAp 5% nanofiber scaffold membrane has the most potential for bone tissue engineering.
Collapse
Affiliation(s)
- I Kadek Hariscandra Dinatha
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada Yogyakarta Indonesia
| | - Arian H Diputra
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada Yogyakarta Indonesia
| | - Hevi Wihadmadyatami
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada Yogyakarta Indonesia
| | - Juliasih Partini
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada Yogyakarta Indonesia
| | - Yusril Yusuf
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada Yogyakarta Indonesia
| |
Collapse
|
15
|
Yang Y, He H, Miao F, Yu M, Wu X, Liu Y, Fu J, Chen J, Ma L, Chen X, Peng X, You Z, Zhou C. 3D-printed PCL framework assembling ECM-inspired multi-layer mineralized GO-Col-HAp microscaffold for in situ mandibular bone regeneration. J Transl Med 2024; 22:224. [PMID: 38429799 PMCID: PMC10908055 DOI: 10.1186/s12967-024-05020-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/22/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND In recent years, natural bone extracellular matrix (ECM)-inspired materials have found widespread application as scaffolds for bone tissue engineering. However, the challenge of creating scaffolds that mimic natural bone ECM's mechanical strength and hierarchical nano-micro-macro structures remains. The purposes of this study were to introduce an innovative bone ECM-inspired scaffold that integrates a 3D-printed framework with hydroxyapatite (HAp) mineralized graphene oxide-collagen (GO-Col) microscaffolds and find its application in the repair of mandibular bone defects. METHODS Initially, a 3D-printed polycaprolactone (PCL) scaffold was designed with cubic disks and square pores to mimic the macrostructure of bone ECM. Subsequently, we developed multi-layer mineralized GO-Col-HAp microscaffolds (MLM GCH) to simulate natural bone ECM's nano- and microstructural features. Systematic in vitro and in vivo experiments were introduced to evaluate the ECM-inspired structure of the scaffold and to explore its effect on cell proliferation and its ability to repair rat bone defects. RESULTS The resultant MLM GCH/PCL composite scaffolds exhibited robust mechanical strength and ample assembly space. Moreover, the ECM-inspired MLM GCH microscaffolds displayed favorable attributes such as water absorption and retention and demonstrated promising cell adsorption, proliferation, and osteogenic differentiation in vitro. The MLM GCH/PCL composite scaffolds exhibited successful bone regeneration within mandibular bone defects in vivo. CONCLUSIONS This study presents a well-conceived strategy for fabricating ECM-inspired scaffolds by integrating 3D-printed PCL frameworks with multilayer mineralized porous microscaffolds, enhancing cell proliferation, osteogenic differentiation, and bone regeneration. This construction approach holds the potential for extension to various other biomaterial types.
Collapse
Affiliation(s)
- Yanqing Yang
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Huan He
- Department of Plastic Surgery, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, 100038, China
| | - Fang Miao
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Mingwei Yu
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Xixi Wu
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Yuanhang Liu
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Jie Fu
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Junwei Chen
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Liya Ma
- The Centre of Analysis and Measurement of Wuhan University, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Xiangru Chen
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Ximing Peng
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Zhen You
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Chuchao Zhou
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China.
| |
Collapse
|
16
|
de Souza AM, Dantas MRDN, Secundo EL, Silva EDC, Silva PF, Moreira SMG, de Medeiros SRB. Are hydroxyapatite-based biomaterials free of genotoxicity? A systematic review. CHEMOSPHERE 2024; 352:141383. [PMID: 38360416 DOI: 10.1016/j.chemosphere.2024.141383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/26/2023] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Hydroxyapatite (HA) is a biomaterial widely used in clinical applications and pharmaceuticals. The literature on HA-based materials studies is focused on chemical characterization and biocompatibility. Generally, biocompatibility is analyzed through adhesion, proliferation, and differentiation assays. Fewer studies are looking for genotoxic events. Thus, although HA-based biomaterials are widely used as biomedical devices, there is a lack of literature regarding their genotoxicity. This systematic review was carried out following the PRISMA statement. Specific search strategies were developed and performed in four electronic databases (PubMed, Science Direct, Scopus, and Web of Science). The search used "Hydroxyapatite OR Calcium Hydroxyapatite OR durapatite AND genotoxicity OR genotoxic OR DNA damage" and "Hydroxyapatite OR Calcium Hydroxyapatite OR durapatite AND mutagenicity OR mutagenic OR DNA damage" as keywords and articles published from 2000 to 2022, after removing duplicate studies and apply include and exclusion criteria, 53 articles were identified and submitted to a qualitative descriptive analysis. Most of the assays were in vitro and most of the studies did not show genotoxicity. In fact, a protective effect was observed for hydroxyapatites. Only 20 out of 71 tests performed were positive for genotoxicity. However, no point mutation-related mutagenicity was observed. As the genotoxicity of HA-based biomaterials observed was correlated with its nanostructured forms as needles or rods, it is important to follow their effect in chronic exposure to guarantee safe usage in humans.
Collapse
Affiliation(s)
- Augusto Monteiro de Souza
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Estefânia Lins Secundo
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Elisângela da Costa Silva
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Priscila Fernandes Silva
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Susana Margarida Gomes Moreira
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | |
Collapse
|
17
|
Khan R, Aslam Khan MU, Stojanović GM, Javed A, Haider S, Abd Razak SI. Fabrication of Bilayer Nanofibrous-Hydrogel Scaffold from Bacterial Cellulose, PVA, and Gelatin as Advanced Dressing for Wound Healing and Soft Tissue Engineering. ACS OMEGA 2024; 9:6527-6536. [PMID: 38371763 PMCID: PMC10870282 DOI: 10.1021/acsomega.3c06613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/16/2023] [Accepted: 12/27/2023] [Indexed: 02/20/2024]
Abstract
Tissue engineering is currently one of the fastest-growing areas of engineering, requiring the fabrication of advanced and multifunctional materials that can be used as scaffolds or dressings for tissue regeneration. In this work, we report a bilayer material prepared by electrospinning a hybrid material of poly(vinyl alcohol) (PVA) and bacterial cellulose (BC NFs) (top layer) over a highly interconnected porous 3D gelatin-PVA hydrogel obtained by a freeze-drying process (bottom layer). The techniques were combined to produce an advanced material with synergistic effects on the physical and biological properties of the two materials. The bilayer material was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and a water contact measurement system (WCMS). Studies on swelling, degradability, porosity, drug release, cellular and antibacterial activities were performed using standardized procedures and assays. FTIR confirmed cross-linking of both the top and bottom layers, and SEM showed porous structure for the bottom layer, random deposition of NFs on the surface, and aligned NFs in the cross section. The water contact angle (WCA) showed a hydrophilic surface for the bilayer material. Swelling analysis showed high swelling, and degradation analysis showed good stability. The bilayer material released Ag-sulfadiazine in a sustained and controlled manner and showed good antibacterial activities against severe disease-causing gram + ive and -ive (Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa) bacterial strains. In vitro biological studies were performed on fibroblasts (3T3) and human embryonic kidneys (HEK-293), which showed desirable cell viability, proliferation, and adhesion to the bilayer. Thus, the synergistic effect of NFs and the hydrogel resulted in a potential wound dressing material for wound healing and soft tissue engineering.
Collapse
Affiliation(s)
- Rawaiz Khan
- Faculty
of Chemical and Energy Engineering, Universiti
Teknologi Malaysia (UTM), UTM Skudai, Johor Bahru, Johor 81310, Malaysia
| | - Muhammad Umar Aslam Khan
- Biomedical
Research Center, Qatar University, Doha 2713, Qatar
- Department
of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- BioInspired
Device and Tissue Engineering Research Group, School of Biomedical
Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor 81300, Malaysia
| | - Goran M. Stojanović
- Department
of Electronics, Faculty of Technical Sciences, University of Novi Sad, Novi Sad 21000, Serbia
| | - Aneela Javed
- Department
of Healthcare Biotechnology, Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Sajjad Haider
- Chemical
Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Saiful Izwan Abd Razak
- BioInspired
Device and Tissue Engineering Research Group, School of Biomedical
Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor 81300, Malaysia
- Sports
Innovation
& Technology Centre, Institute of Human Centred Engineering, Universiti Teknologi Malaysia, Skudai, Johor 81300, Malaysia
| |
Collapse
|
18
|
Mi L, Li F, Xu D, Liu J, Li J, Zhong L, Liu Y, Bai N. Performance of 3D printed porous polyetheretherketone composite scaffolds combined with nano-hydroxyapatite/carbon fiber in bone tissue engineering: a biological evaluation. Front Bioeng Biotechnol 2024; 12:1343294. [PMID: 38333080 PMCID: PMC10850574 DOI: 10.3389/fbioe.2024.1343294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Polyetheretherketone (PEEK) has been one of the most promising materials in bone tissue engineering in recent years, with characteristics such as biosafety, corrosion resistance, and wear resistance. However, the weak bioactivity of PEEK leads to its poor integration with bone tissues, restricting its application in biomedical fields. This research effectively fabricated composite porous scaffolds using a combination of PEEK, nano-hydroxyapatite (nHA), and carbon fiber (CF) by the process of fused deposition molding (FDM). The experimental study aimed to assess the impact of varying concentrations of nHA and CF on the biological performance of scaffolds. The incorporation of 10% CF has been shown to enhance the overall mechanical characteristics of composite PEEK scaffolds, including increased tensile strength and improved mechanical strength. Additionally, the addition of 20% nHA resulted in a significant increase in the surface roughness of the scaffolds. The high hydrophilicity of the PEEK composite scaffolds facilitated the in vitro inoculation of MC3T3-E1 cells. The findings of the study demonstrated that the inclusion of 20% nHA and 10% CF in the scaffolds resulted in improved cell attachment and proliferation compared to other scaffolds. This suggests that the incorporation of 20% nHA and 10% CF positively influenced the properties of the scaffolds, potentially facilitating bone regeneration. In vitro biocompatibility experiments showed that PEEK composite scaffolds have good biosafety. The investigation on osteoblast differentiation revealed that the intensity of calcium nodule staining intensified, along with an increase in the expression of osteoblast transcription factors and alkaline phosphatase activities. These findings suggest that scaffolds containing 20% nHA and 10% CF have favorable properties for bone induction. Hence, the integration of porous PEEK composite scaffolds with nHA and CF presents a promising avenue for the restoration of bone defects using materials in the field of bone tissue engineering.
Collapse
Affiliation(s)
- Lian Mi
- Department of Oral Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Feng Li
- Department of Oral Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Dian Xu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Jian Liu
- Department of Oral Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Jian Li
- Department of Oral Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Lingmei Zhong
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanshan Liu
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Dental Digital Medicine and 3D Printing Engineering Laboratory of Qingdao, Qingdao, China
| | - Na Bai
- Department of Oral Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
19
|
Kadek Hariscandra Dinatha I, Jamilludin MA, Supii AI, Wihadmadyatami H, Partini J, Yusuf Y. Porous scaffold hydroxyapatite from sand lobster shells (Panulirus homarus) using polyethylene oxide/chitosan as polymeric porogen for bone tissue engineering. J Biomed Mater Res B Appl Biomater 2024; 112:e35341. [PMID: 37877433 DOI: 10.1002/jbm.b.35341] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/18/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023]
Abstract
The hydroxyapatite (HAp; Ca10 (PO4 )6 (OH)2 )) has good biocompatibility, bioactivity, and osteoconductivity as a bone implant because the main inorganic mineral of human bone is HAp. The use of scaffold HAp from biogenic resources that contain high calcium and polymer as a pore forming agent to support bone growth is a longstanding area of interest. In this study, porous scaffolds based on HAp were synthesized from sand lobster (SL; Panulirus homarus) shells as a source of calcium using the porogen leaching method with polyethylene oxide (PEO) and chitosan (Chs) as polymeric porogen. The present study aims to synthesize HAp derived from SL shells and evaluate the effect variations of PEO on the physicochemical properties of the scaffold and cytotoxicity in cell viability assay. Briefly, the SL shell powder was calcinated with temperature variations of 600°C, 800°C, and 1000°C for 6 h. Based on the characterization, it was shown that 1000°C was the optimum calcination temperature for SL shells to synthesize HAp using the precipitation method. The characterization results of HAp using energy dispersive x-ray (EDX) revealed that the molar ratio of Ca/P was 1.67. The Fourier transform infrared (FTIR) and x-ray diffractometer (XRD) spectral patterns indicated that HAp had been successfully synthesized with minor β-tricalcium phosphate (β-TCP), a calcium phosphate with high biocompatibility. Porous scaffolds were synthesized by varying the concentration of PEO at 0, 5, 10, and 15 wt %. Physicochemical analysis revealed that a higher concentration of PEO affected decreased crystallinity and compressive strength, but on the other hand, the porosity and pore sizes increased. Based on the physicochemical analysis, the synthesized porous scaffold showed that HAp/PEO/Chs 15 wt % had the most potential as a scaffold for biomedical applications. MTT Assay, after 24 h incubation, revealed that the scaffold was safe for use at low concentrations on the MC3T3E1 osteoblast cells, with a percentage of cell viability of 83.23 ± 3.18% at 23.4375 μg/mL. Although the cell viability decreased at higher concentrations, the HAp/PEO/Chs 15 wt % scaffold was cytocompatible with the cells. Thus, in the present study, HAp/PEO/Chs 15 wt % was the best scaffold based on pore structure, chemical composition, mechanical and crystalographic properties and cell viability.
Collapse
Affiliation(s)
- I Kadek Hariscandra Dinatha
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Muhammad A Jamilludin
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Apri I Supii
- Research Center of Marine and Land Bioindustry, National Research and Innovation Agency, Bali, Indonesia
| | - Hevi Wihadmadyatami
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Juliasih Partini
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yusril Yusuf
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
20
|
Lee H, Shin DY, Bang SJ, Han G, Na Y, Kang HS, Oh S, Yoon CB, Vijayavenkataraman S, Song J, Kim HE, Jung HD, Kang MH. A strategy for enhancing bioactivity and osseointegration with antibacterial effect by incorporating magnesium in polylactic acid based biodegradable orthopedic implant. Int J Biol Macromol 2024; 254:127797. [PMID: 37949272 DOI: 10.1016/j.ijbiomac.2023.127797] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
Biodegradable orthopedic implants are essential for restoring the physiological structure and function of bone tissue while ensuring complete degradation after recovery. Polylactic acid (PLA), a biodegradable polymer, is considered a promising material due to its considerable mechanical properties and biocompatibility. However, further improvements are necessary to enhance the mechanical strength and bioactivity of PLA for reliable load-bearing orthopedic applications. In this study, a multifunctional PLA-based composite was fabricated by incorporating tricalcium phosphate (TCP) microspheres and magnesium (Mg) particles homogenously at a volume fraction of 40 %. This approach aims to enhance mechanical strength, accelerate pore generation, and improve biological and antibacterial performance. Mg content was incorporated into the composite at varying values of 1, 3, and 5 vol% (referred to as PLA/TCP-1 Mg, PLA/TCP-3 Mg, and PLA/TCP-5 Mg, respectively). The compressive strength and stiffness were significantly enhanced in all composites, reaching 87.7, 85.9, and 84.1 MPa, and 2.7, 3.0, and 3.1 GPa, respectively. The degradation test indicated faster elimination of the reinforcers as the Mg content increased, resulting in accelerated pore generation to induce enhanced osseointegration. Because PLA/TCP-3 Mg and PLA/TCP-5 Mg exhibited cracks in the PLA matrix due to rapid corrosion of Mg forming corrosion byproducts, to optimize the Mg particle content, PLA/TCP-1 Mg was selected for further evaluation. As determined by in vitro biological and antibacterial testing, PLA/TCP-1 Mg showed enhanced bioactivity with pre-osteoblast cells and exhibited antibacterial properties by suppressing bacterial colonization. Overall, the multifunctional PLA/TCP-Mg composite showed improved mechanobiological performance, making it a promising material for biodegradable orthopedic implants.
Collapse
Affiliation(s)
- Hyun Lee
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Da Yong Shin
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seo-Jun Bang
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Ginam Han
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Yuhyun Na
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Hyeong Seok Kang
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - SeKwon Oh
- Research Institute of Advanced Manufacturing & Materials Technology, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea
| | - Chang-Bun Yoon
- Department of Advanced Materials Engineering, Tech University of Korea, Siheung-si 15073, Republic of Korea
| | - Sanjairaj Vijayavenkataraman
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, NY, USA
| | - Juha Song
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Hyoun-Ee Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Do Jung
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Min-Ho Kang
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
21
|
Jamilludin MA, Dinatha IKH, Supii AI, Partini J, Kusindarta DL, Yusuf Y. Functionalized cellulose nanofibrils in carbonate-substituted hydroxyapatite nanorod-based scaffold from long-spined sea urchin ( Diadema setosum) shells reinforced with polyvinyl alcohol for alveolar bone tissue engineering. RSC Adv 2023; 13:32444-32456. [PMID: 37928842 PMCID: PMC10623659 DOI: 10.1039/d3ra06165e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023] Open
Abstract
In this study, carbonate-substituted hydroxyapatite (C-HAp) nanorods were synthesised using a dissolution-precipitation reaction on hydroxyapatite (HAp) nanorods based on long-spined sea urchin (Diadema setosum) shells. From the EDS analysis, the Ca/P molar ratio of C-HAp was 1.705, which was very close to the Ca/P of natural bone apatite of 1.71. The FTIR and XRD analyses revealed the AB-type CHAp of the C-HAp nanorods. The TEM showed the rod-like shape of nanosize C-HAp with a high aspect ratio. The antibacterial test against Pseudomonas aeruginosa and Staphylococcus aureus also showed that C-HAp had a high antibacterial activity. The C-HAp/PVA-based scaffolds were fabricated, using a freeze-drying method, for use in alveolar bone tissue engineering applications. There were various scaffolds, with no filler, with microcrystalline cellulose (MCC) filler, and with cellulose nanofibrils (CNF) filler. The physicochemical analysis showed that adding PVA and cellulose caused no chemical decomposition but decreased the scaffold crystallinity, and the lower crystallinity created more dislocations that can help cells proliferate well. The antibacterial activity showed that the CNF induced the higher antibacterial level of the scaffold. According to the SEM results, the micropores of the C-HAp/PVA/CNF can provide a place for cells to grow, and its porosity can promote cell nutrient supply. The macropores of the C-HAp/PVA/CNF were also suitable for cells and new blood vessels. Therefore, the C-HAp/PVA/CNF scaffold was examined for its cytocompatibility using the MTT assay against NIH/3T3 fibroblast cells with a 24 h incubation. The C-HAp/PVA/CNF scaffold showed a high cell viability of 90.36 ± 0.37% at a low scaffold dose of 31.25 μg mL-1. The scaffold could also facilitate NIH/3T3 cells to attach to its surface. The IC50 value had also been estimated to be 2732 μg mL-1.
Collapse
Affiliation(s)
- Muhammad Amir Jamilludin
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
| | - I Kadek Hariscandra Dinatha
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
| | - Apri I Supii
- Research Centre for Marine and Land Bioindustry, National Research and Innovation Agency Lombok Utara 83352 Indonesia
| | - Juliasih Partini
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
| | - Dwi Liliek Kusindarta
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
| | - Yusril Yusuf
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
| |
Collapse
|
22
|
Novella I, Rupaedah B, Eddy DR, Suryana, Irwansyah FS, Noviyanti AR. The Influence of Polyvinyl Alcohol Porogen Addition on the Nanostructural Characteristics of Hydroxyapatite. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6313. [PMID: 37763589 PMCID: PMC10532944 DOI: 10.3390/ma16186313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Hydroxyapatite (HA) is a porous material widely developed in various research fields because of its high biodegradability, biocompatibility, and low toxicity. In this research, HA was synthesized using a hydrothermal method with chicken eggshells as a calcium source and various concentrations of polyvinyl alcohol as a porogen (2.5%, 5.0%, and 7.5% by wt). The structure and morphology of HA were determined by X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. HA was obtained with varying concentrations of polyvinyl alcohol (PVA) porogen according to Inorganic Crystal Structure Database (ICSD) standard. Based on analysis using a refinement method, changes in unit cell parameters (cell volume and lattice strain) of HA synthesized using PVA porogen compared to the standard, the chi square (χ2) and index of R values were relatively low, validating the acceptable of the data. In addition, HA [Ca10(PO4)6(OH)2] with hexagonal structure and the P63/m space group was successfully obtained. Morphological analysis of HA by SEM found that HA has a spherical shape, and the porosity of HA increases with increasing concentrations of polyvinyl alcohol. The highest porosity was obtained with an addition of 5.0 wt% of PVA porogen (HAP3), reaching 69.53%.
Collapse
Affiliation(s)
- Indrika Novella
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (I.N.); (D.R.E.); (F.S.I.)
| | - Bedah Rupaedah
- Research Center for Applied Microbiology, National Research and Innovation Agency, Jl. Raya Jakarta-Bogor Km. 46, Bogor 16911, Indonesia;
| | - Diana Rakhmawaty Eddy
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (I.N.); (D.R.E.); (F.S.I.)
| | - Suryana
- Department of Biology, Faculty of Mathematics and Natural Sciences, Padjajaran University, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia;
| | - Ferli Septi Irwansyah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (I.N.); (D.R.E.); (F.S.I.)
- Department of Chemistry Education, UIN Sunan Gunung Djati, Bandung Jl. A.H. Nasution No. 105, Bandung 40614, Indonesia
| | - Atiek Rostika Noviyanti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (I.N.); (D.R.E.); (F.S.I.)
| |
Collapse
|
23
|
Cancelliere R, Rea G, Micheli L, Mantegazza P, Bauer EM, El Khouri A, Tempesta E, Altomare A, Capelli D, Capitelli F. Electrochemical and Structural Characterization of Lanthanum-Doped Hydroxyapatite: A Promising Material for Sensing Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4522. [PMID: 37444835 DOI: 10.3390/ma16134522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
In the quest to find powerful modifiers of screen-printed electrodes for sensing applications, a set of rare earth-doped Ca10-xREx(PO4)6(OH)2 (RE = La, Nd, Sm, Eu, Dy, and Tm and x = 0.01, 0.02, 0.10, and 0.20) hydroxyapatite (HAp) samples were subjected to an in-depth electrochemical characterization using electrochemical impedance spectroscopy and cyclic and square wave voltammetry. Among all of these, the inorganic phosphates doped with lanthanum proved to be the most reliable, revealing robust analytical performances in terms of sensitivity, repeatability, reproducibility, and reusability, hence paving the way for their exploitation in sensing applications. Structural data on La-doped HAp samples were also provided by using different techniques, including optical microscopy, X-ray diffraction, Rietveld refinement from X-ray data, Fourier transform infrared, and Raman vibrational spectroscopies, to complement the electrochemical characterization.
Collapse
Affiliation(s)
- Rocco Cancelliere
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Giuseppina Rea
- Institute of Crystallography (IC), National Research Council (CNR), Via Salaria Km 29.300, 00016 Rome, Italy
| | - Laura Micheli
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Pietro Mantegazza
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Elvira Maria Bauer
- Institute of Structure of Matter (ISM), National Research Council (CNR), Via Salaria Km 29.300, 00016 Rome, Italy
| | - Asmaa El Khouri
- Faculté des Sciences Semlalia, BP 2390, Université Cadi Ayyad, Marrakech 40000, Morocco
| | - Emanuela Tempesta
- Institute of Environmental Geology and Geoengineering (IGAG), National Research Council (CNR), Via Salaria Km 29.300, 00016 Rome, Italy
| | - Angela Altomare
- Institute of Crystallography (IC), National Research Council (CNR), Via Amendola 122/o, 70100 Bari, Italy
| | - Davide Capelli
- Institute of Crystallography (IC), National Research Council (CNR), Via Salaria Km 29.300, 00016 Rome, Italy
| | - Francesco Capitelli
- Institute of Crystallography (IC), National Research Council (CNR), Via Salaria Km 29.300, 00016 Rome, Italy
| |
Collapse
|
24
|
Abd El-Aziz AM, Serag E, Kenawy MY, El-Maghraby A, Kandil SH. Hydrothermally reinforcing hydroxyaptatite and bioactive glass on carbon nanofiber scafold for bone tissue engineering. Front Bioeng Biotechnol 2023; 11:1170097. [PMID: 37292092 PMCID: PMC10245555 DOI: 10.3389/fbioe.2023.1170097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
As a bone tissue engineering scaffold, the objective of this study was to design hierarchical bioceramics based on an electrospun composite of carbon nanofibers (CNF) reinforced with hydroxyapatite (HA) and bioactive glasses (BGs) nanoparticles. The performance of the nanofiber as a scaffold for bone tissue engineering was enhanced by reinforcing it with hydroxyapatite and bioactive glass nanoparticles through a hydrothermal process. The influence of HA and BGs on the morphology and biological properties of carbon nanofibers was examined. The prepared materials were evaluated for cytotoxicity in vitro using the water-soluble tetrazolium salt assay (WST-assay) on Osteoblast-like (MG-63) cells, and oste-ocalcin (OCN), alkaline phosphatase (ALP) activity, total calcium, total protein, and tar-trate-resistant acid phosphatase (TRAcP) were measured. The WST-1, OCN, TRAcP, total calcium, total protein, and ALP activity tests demonstrated that scaffolds reinforced with HA and BGs had excellent in vitro biocompatibility (cell viability and proliferation) and were suitable for repairing damaged bone by stimulating bioactivity and biomarkers of bone cell formation.
Collapse
Affiliation(s)
- Asmaa M. Abd El-Aziz
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Eman Serag
- Marine Pollution Department, Environmental Division, National Institute of Oceanography and Fisheries, Alexandria, Egypt
| | - Marwa Y. Kenawy
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Azza El-Maghraby
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Sherif H. Kandil
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
25
|
Hassan M, Khaleel A, Karam SM, Al-Marzouqi AH, ur Rehman I, Mohsin S. Bacterial Inhibition and Osteogenic Potentials of Sr/Zn Co-Doped Nano-Hydroxyapatite-PLGA Composite Scaffold for Bone Tissue Engineering Applications. Polymers (Basel) 2023; 15:polym15061370. [PMID: 36987151 PMCID: PMC10057618 DOI: 10.3390/polym15061370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 03/12/2023] Open
Abstract
Bacterial infection associated with bone grafts is one of the major challenges that can lead to implant failure. Treatment of these infections is a costly endeavor; therefore, an ideal bone scaffold should merge both biocompatibility and antibacterial activity. Antibiotic-impregnated scaffolds may prevent bacterial colonization but exacerbate the global antibiotic resistance problem. Recent approaches combined scaffolds with metal ions that have antimicrobial properties. In our study, a unique strontium/zinc (Sr/Zn) co-doped nanohydroxyapatite (nHAp) and Poly (lactic-co-glycolic acid) -(PLGA) composite scaffold was fabricated using a chemical precipitation method with different ratios of Sr/Zn ions (1%, 2.5%, and 4%). The scaffolds’ antibacterial activity against Staphylococcus aureus were evaluated by counting bacterial colony-forming unit (CFU) numbers after direct contact with the scaffolds. The results showed a dose-dependent reduction in CFU numbers as the Zn concentration increased, with 4% Zn showing the best antibacterial properties of all the Zn-containing scaffolds. PLGA incorporation in Sr/Zn-nHAp did not affect the Zn antibacterial activity and the 4% Sr/Zn-nHAp-PLGA scaffold showed a 99.7% bacterial growth inhibition. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell viability assay showed that Sr/Zn co-doping supported osteoblast cell proliferation with no apparent cytotoxicity and the highest doping percentage in the 4% Sr/Zn-nHAp-PLGA was found to be ideal for cell growth. In conclusion, these findings demonstrate the potential for a 4% Sr/Zn-nHAp-PLGA scaffold with enhanced antibacterial activity and cytocompatibility as a suitable candidate for bone regeneration.
Collapse
Affiliation(s)
- Mozan Hassan
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Abbas Khaleel
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sherif Mohamed Karam
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ali Hassan Al-Marzouqi
- Department of Chemical and Petroleum Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ihtesham ur Rehman
- School of Medicine, University of Central Lancashire, Preston PR1 2HE, UK
| | - Sahar Mohsin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: ; Tel.: +971-3-713-7516
| |
Collapse
|
26
|
Khamkongkaeo A, Jiamprasertboon A, Jinakul N, Srabua P, Tantavisut S, Wongrakpanich A. Antibiotic-loaded hydroxyapatite scaffolds fabricated from Nile tilapia bones for orthopaedics. Int J Pharm X 2023; 5:100169. [PMID: 36861068 PMCID: PMC9969256 DOI: 10.1016/j.ijpx.2023.100169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
This work aimed to develop new antibiotic-coated/ antibiotic-loaded hydroxyapatite (HAp) scaffolds for orthopaedic trauma, specifically to treat the infection after fixation of skeletal fracture. The HAp scaffolds were fabricated from the Nile tilapia (Oreochromis niloticus) bones and fully characterized. The HAp scaffolds were coated with 12 formulations of poly (lactic-co-glycolic acid) (PLGA) or poly (lactic acid) (PLA), blended with vancomycin. The vancomycin release, surface morphology, antibacterial properties, and the cytocompatibility of the scaffolds were conducted. The HAp powder contains elements identical to those found in human bones. This HAp powder is suitable as a starting material to build scaffolds. After the scaffold fabrication, The ratio of HAp to β-TCP changed, and the phase transformation of β-TCP to α-TCP was observed. All antibiotic-coated/ antibiotic-loaded HAp scaffolds can release vancomycin into the phosphate-buffered saline (PBS) solution. PLGA-coated scaffolds obtained faster drug release profiles than PLA-coated scaffolds. The low polymer concentration in the coating solutions (20%w/v) gave a faster drug release profile than the high polymer concentration (40%w/v). All groups showed a trace of surface erosion after being submerged in PBS for 14 days. Most of the extracts can inhibit Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA). The extracts not only caused no cytotoxicity to Saos-2 bone cells but also can increase cell growth. This study demonstrates that it is possible to use these antibiotic-coated/ antibiotic-loaded scaffolds in the clinic as an antibiotic bead replacement.
Collapse
Key Words
- Antibiotic
- Antibiotic-coated
- Antibiotic-loaded
- CLSI, The Clinical and Laboratory Standards Institute
- DI, Deionized water
- DMSO, Dimethyl sulfoxide
- F10[PLGA40-Hvanc], Formulation 10, HAp saffolds containing high concentration of vancomycin, coated with PLGA 40%w/v
- F11[PLA20-Hvanc], Formulation 11, HAp saffolds containing high concentration of vancomycin, coated with PLA 20%w/v
- F12[PLA40-Hvanc], Formulation 12, HAp saffolds containing high concentration of vancomycin, coated with PLA 40%w/v
- F1[V-PLGA20-Lvanc], Formulation 1, HAp saffolds containing low concentration of vancomycin, coated with PLGA 20%w/v blended with vancomycin
- F2[V-PLGA40-Lvanc], Formulation 2, HAp saffolds containing low concentration of vancomycin, coated with PLGA 40%w/v blended with vancomycin
- F3[V-PLA20-Lvanc], Formulation 3, HAp saffolds containing low concentration of vancomycin, coated with PLA 20%w/v blended with vancomycin
- F4[V-PLA40-Lvanc], Formulation 4, HAp saffolds containing low concentration of vancomycin, coated with PLA 40%w/v blended with vancomycin
- F5[PLGA20-Lvanc], Formulation 5, HAp saffolds containing low concentration of vancomycin, coated with PLGA 20%w/v
- F6[PLGA40-Lvanc], Formulation 6, HAp saffolds containing low concentration of vancomycin, coated with PLGA 40%w/v
- F7[PLA20-Lvanc], Formulation 7, HAp saffolds containing low concentration of vancomycin, coated with PLA 20%w/v
- F8[PLA40-Lvanc], Formulation 8, HAp saffolds containing low concentration of vancomycin, coated with PLA 40%w/v
- F9[PLGA20-Hvanc], Formulation 9, HAp saffolds containing high concentration of vancomycin, coated with PLGA 20%w/v
- FDA, Food and Drug Administration
- FTIR, Fourier transforms infrared spectroscopy
- HAp, Hydroxyapatite
- Hydroxyapatite
- IFSF, The infection after fixation of skeletal fracture
- Nile tilapia
- P.U., Polyurethane
- PBS, Phosphate-buffered saline
- PLA, Poly(lactic acid)
- PLGA, Poly(lactic-co-glycolic acid)
- PVA, Polyvinyl alcohol
- SEM, Scanning electron microscopy
- Scaffold
- Vancomycin
- XRD, X-ray diffraction
- XRF, X-ray fluorescence spectroscopy
- α-TCP, α-tricalcium phosphate
- β-TCP, β-tricalcium phosphate
Collapse
Affiliation(s)
- Atchara Khamkongkaeo
- Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Arreerat Jiamprasertboon
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand,Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Nanthawan Jinakul
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Phatraya Srabua
- Scientific and Technological Research Equipment Center (STREC), Chulalongkorn University, Bangkok, Thailand
| | - Saran Tantavisut
- Department of Orthopaedics, Chulalongkorn University, Bangkok, Thailand,Hip Fracture Research Unit, Department of Orthopaedics, Chulalongkorn University, Bangkok, Thailand
| | - Amaraporn Wongrakpanich
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand,Corresponding author.
| |
Collapse
|
27
|
de Souza AM, Araujo-Silva H, Costa AM, Rossi AL, Rossi AM, Granjeiro JM, Luchiari AC, Batistuzzo de Medeiros SR. Embryotoxicity and visual-motor response of functionalized nanostructured hydroxyapatite-based biomaterials in zebrafish (Danio rerio). CHEMOSPHERE 2023; 313:137519. [PMID: 36502913 DOI: 10.1016/j.chemosphere.2022.137519] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Hydroxyapatite (HA) is a biomaterial widely used in biomedical applications. Many studies have shown that ionic substituents can be incorporated into HA to produce a mineral composition more similar to natural bone tissue with more favorable biological characteristics for application in bone regeneration. However, its potentially toxic effects need to be evaluated before full approval for human use. For this purpose, an embryotoxicity test was performed on zebrafish according to OECD guideline 236. Zebrafish embryos were exposed to 1 or 3 microspheres of alginate containing nanoparticles of HA and carbonate (CHA), strontium (SrHA), and zinc-substituted HA (ZnHA) from 4 to 120 h post-fertilization (hpf). Lethality and developmental endpoints were evaluated. In addition, larval behavior at 168 hpf was also analyzed to observe whether biomaterials adversely affect optomotor and avoidance responses (neurotoxicity), as well as the oxidative stress pattern through qPCR. After 120 h exposure to all microspheres with different patterns of crystallinity, porosity, nanoparticle size, surface area, and degradation behavior, there was no mortality rate greater than 20%, indicating the non-embryotoxic character of these biomaterials. All experimental groups showed positive optomotor and avoidance responses, which means that embryo exposure to the tested biomaterials had no neurotoxic effects. Furthermore, larvae exposed to one SrHA microsphere showed a better optomotor response than the control. Furthermore, the biomaterials did not change the pattern of mRNA levels of genes related to oxidative stress even after 120 hpf. The growing number of new HA-based biomaterials produced should be accompanied by increased studies to understand the biosafety of these compounds, especially in alternative models, such as zebrafish embryos. These results reinforce our hypothesis that ion-substituted HA biomaterials do not impose toxicological effects, cause development and neuromotor impairment, or increase oxidative stress in zebrafish embryos being useful for medical devices and in the process of bone regeneration.
Collapse
Affiliation(s)
- Augusto Monteiro de Souza
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Heloysa Araujo-Silva
- Department of Physiology & Behavior, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Andréa Machado Costa
- Department of Condensed Matter, Applied Physics and Nanoscience, Brazilian Center for Physics Research, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andre Linhares Rossi
- Department of Condensed Matter, Applied Physics and Nanoscience, Brazilian Center for Physics Research, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Malta Rossi
- Department of Condensed Matter, Applied Physics and Nanoscience, Brazilian Center for Physics Research, Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Mauro Granjeiro
- Directory of Life Sciences Applied Metrology, National Institute of Metrology, Quality and Technology, Duque de Caxias, Rio de Janeiro, Brazil
| | - Ana Carolina Luchiari
- Department of Physiology & Behavior, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | |
Collapse
|
28
|
Charczuk N, Nowak N, Wiglusz RJ. Synthesis and Investigation of Physicochemical Properties and Biocompatibility of Phosphate-Vanadate Hydroxyapatite Co-Doped with Tb 3+ and Sr 2+ Ions. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:457. [PMID: 36770418 PMCID: PMC9919158 DOI: 10.3390/nano13030457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Searching for biocompatible materials with proper luminescent properties is of fundamental importance, as they can be applied in fluorescent labeling and regenerative medicine. In this study, we obtained new phosphate-vanadate hydroxyapatites (abbr. HVps) co-doped with Sr2+ and Tb3+ ions via the hydrothermal method. We focused on examining the effect of various annealing temperatures (500, 600 and 700 °C) on the spectroscopic properties and morphology of the obtained HVps. To characterize their morphology, XRPD (X-ray powder diffraction), SEM-EDS (scanning electron microscopy-energy-dispersive spectrometry), FT-IR (Fourier transform infrared) spectroscopy and ICP-OES (inductively coupled plasma-optical emission spectrometry) techniques were used. A further study of luminescent properties and cytocompatibility showed that the obtained HVps co-doped with Sr2+ and Tb3+ ions are highly biocompatible and able to enhance the proliferation process and can therefore be potentially used as fluorescent probes or in regenerative medicine.
Collapse
Affiliation(s)
- Natalia Charczuk
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, PL-50-422 Wroclaw, Poland
| | - Nicole Nowak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, PL-50-422 Wroclaw, Poland
- Department of Animal Biostructure and Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 25, PL-50-375 Wroclaw, Poland
| | - Rafal J. Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, PL-50-422 Wroclaw, Poland
| |
Collapse
|
29
|
Ma Y, Zhang B, Sun H, Liu D, Zhu Y, Zhu Q, Liu X. The Dual Effect of 3D-Printed Biological Scaffolds Composed of Diverse Biomaterials in the Treatment of Bone Tumors. Int J Nanomedicine 2023; 18:293-305. [PMID: 36683596 PMCID: PMC9851059 DOI: 10.2147/ijn.s390500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Bone tumors, including primary bone tumors, invasive bone tumors, metastatic bone tumors, and others, are one of the most clinical difficulties in orthopedics. Once these tumors have grown and developed in the bone system, they will interact with osteocytes and other environmental cells in the bone system's microenvironment, leading to the eventual damage of the bone's physical structure. Surgical procedures for bone tumors may result in permanent defects. The dual-efficacy of tissue regeneration and tumor treatment has made biomaterial scaffolds frequently used in treating bone tumors. 3D printing technology, also known as additive manufacturing or rapid printing prototype, is the transformation of 3D computer models into physical models through deposition, curing, and material fusion of successive layers. Adjustable shape, porosity/pore size, and other mechanical properties are an advantage of 3D-printed objects, unlike natural and synthetic material with fixed qualities. Researchers have demonstrated the significant role of diverse 3D-printed biological scaffolds in the treatment for bone tumors and the regeneration of bone tissue, and that they enhanced various performance of the products. Based on the characteristics of bone tumors, this review synthesized the findings of current researchers on the application of various 3D-printed biological scaffolds including bioceramic scaffold, metal alloy scaffold and nano-scaffold, in bone tumors and discussed the advantages, disadvantages, and future application prospects of various types of 3D-printed biological scaffolds. Finally, the future development trend of 3D-printed biological scaffolds in bone tumor is summarized, providing a theoretical foundation and a larger outlook for the use of biological scaffolds in the treatment of patients with bone tumors.
Collapse
Affiliation(s)
- Yihang Ma
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Boyin Zhang
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Huifeng Sun
- Department of Respiratory Medicine, No.964 Hospital of People's Liberation Army, Changchun, People's Republic of China
| | - Dandan Liu
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Yuhang Zhu
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Qingsan Zhu
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Xiangji Liu
- Department of Spine Surgery, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| |
Collapse
|
30
|
Assad H, Assad A, Kumar A. Recent Developments in 3D Bio-Printing and Its Biomedical Applications. Pharmaceutics 2023; 15:255. [PMID: 36678884 PMCID: PMC9861443 DOI: 10.3390/pharmaceutics15010255] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
The fast-developing field of 3D bio-printing has been extensively used to improve the usability and performance of scaffolds filled with cells. Over the last few decades, a variety of tissues and organs including skin, blood vessels, and hearts, etc., have all been produced in large quantities via 3D bio-printing. These tissues and organs are not only able to serve as building blocks for the ultimate goal of repair and regeneration, but they can also be utilized as in vitro models for pharmacokinetics, drug screening, and other purposes. To further 3D-printing uses in tissue engineering, research on novel, suitable biomaterials with quick cross-linking capabilities is a prerequisite. A wider variety of acceptable 3D-printed materials are still needed, as well as better printing resolution (particularly at the nanoscale range), speed, and biomaterial compatibility. The aim of this study is to provide expertise in the most prevalent and new biomaterials used in 3D bio-printing as well as an introduction to the associated approaches that are frequently considered by researchers. Furthermore, an effort has been made to convey the most pertinent implementations of 3D bio-printing processes, such as tissue regeneration, etc., by providing the most significant research together with a comprehensive list of material selection guidelines, constraints, and future prospects.
Collapse
Affiliation(s)
- Humira Assad
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Punjab 144001, India
| | - Arvina Assad
- Bibi Halima College of Nursing and Medical Technology, Srinagar 190010, India
| | - Ashish Kumar
- Nalanda College of Engineering, Department of Science and Technology, Government of Bihar, Patna 803108, India
| |
Collapse
|
31
|
Kaseem M, Choe HC. Synchronized Improvements in the Protective and Bioactive Properties of Plasma-Electrolyzed Layers via Cellulose Microcrystalline. ACS Biomater Sci Eng 2023; 9:197-210. [PMID: 36576437 DOI: 10.1021/acsbiomaterials.2c01198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This study reports synchronized improvements in the protective and bioactive properties of Ti-6Al-4V alloy through the formation of titania-based inorganic layers by considering the role of cellulose microcrystalline (CMC) additive into account. Acetate-phosphate-based electrolyte with cellulose CMC is formulated for the first time to modify the porous structure of the oxide layers made via plasma electrolysis of Ti-6Al-4V alloy. The presence of CMC (0, 1, 2, 3 g/L) changed the characteristics of plasma discharges where porous oxide layers with different pore sizes and surface roughness were obtained. A rough oxide layer with large pores was found in the 3 g/L CMC, while a slightly smoother oxide layer with smaller pores was obtained in the case of 2 g/L CMC. The -OH groups in CMC would facilitate the formation of an adsorption layer on the substrate surface, affecting the sparking behavior during plasma electrolysis (PE). Due to a synergy between controlled microstructure, surface roughness, and the insertion of bioactive phases, the coated samples in CMC-containing electrolytes displayed protective and bioactive properties simultaneously. Based on the obtained results, the samples coated in CMC-containing electrolytes can be used as safe implants to replace missing teeth in dental applications.
Collapse
Affiliation(s)
- Mosab Kaseem
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul05006, South Korea
| | - Han-Choel Choe
- Advanced Functional Surface and Bio-materials Research Laboratory, Department of Dental Materials and Research Center of Surface Control for Oral Tissue Regeneration (BRL Center of NRF), College of Dentistry, Chosun University, Gwangju61452, South Korea
| |
Collapse
|
32
|
Nowak N, Czekanowska D, Reeks JM, Wiglusz RJ. Structural, Spectroscopic, and Biological Characterization of Novel Rubidium(I) and Europium(III) Co-Doped Nano-Hydroxyapatite Materials and Their Potential Use in Regenerative Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4475. [PMID: 36558328 PMCID: PMC9784849 DOI: 10.3390/nano12244475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
This research investigates hydrothermally synthesized hydroxyapatite nanoparticles doped with rubidium(I) and europium(III) ions. Investigation focused on establishing the influence of co-doped Eu3+ and Rb+ ions on hydroxyapatite lattice. Therefore, structural, and morphological properties were characterized via using X-ray powder diffraction (XRPD), infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM), as well as transmission electron microscopy (TEM) techniques. Furthermore, this investigation evaluates the impact of various Rb+ ion doping concentrations on the distinct red emission of co-doped Eu3+ ions. Hence, luminescence properties of the obtained materials were evaluated by measuring emission excitation, emission spectra, and luminescence decays. As established by numerous studies, synthetic hydroxyapatite has excellent application in biomedical field, as it is fully biocompatible. Its biocompatible makes it highly useful in the biomedical field as a bone fracture filler or hydroxyapatite coated dental implant. By the incorporation of Eu3+ ions and Rb+ ions we established the impact these co-doped ions have on the biocompatibility of hydroxyapatite powders. Therefore, biocompatibility toward a ram's red blood cells was evaluated to exclude potential cytotoxic features of the synthesized compounds. Additionally, experimental in vitro bioactive properties of hydroxyapatite nanoparticles doped with Rb+ and Eu3+ ions were established using a mouse osteoblast model. These properties are discussed in detail as they contribute to a novel method in regenerative medicine.
Collapse
Affiliation(s)
- Nicole Nowak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland
- Department of Animal Biostructure and Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland
| | - Dominika Czekanowska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland
| | - John M. Reeks
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland
| | - Rafal J. Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland
| |
Collapse
|
33
|
Mechanical Characteristics and Bioactivity of Nanocomposite Hydroxyapatite/Collagen Coated Titanium for Bone Tissue Engineering. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120784. [PMID: 36550990 PMCID: PMC9774233 DOI: 10.3390/bioengineering9120784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/26/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
In the present study, we have analyzed the mechanical characteristics and bioactivity of titanium coating with hydroxyapatite/bovine collagen. Hydroxyapatite (HAp) was synthesized from a Pinctada maxima shell and has a stoichiometry (Ca/P) of 1.72 and a crystallinity of 92%, suitable for coating materials according to ISO and Food and Drug Administration (FDA) standards. Titanium (Ti) substrate coatings were fabricated at HAp concentrations of 1% (Ti/HAp-1) and 3% (Ti/HAp-3) and a bovine collagen concentration of 1% (Ti/HAp/Coll) by the electrophoresis deposition (EPD) method. The compressive strength of Ti/HAp-1 and Ti/HAp-3 was 87.28 and 86.19 MPa, respectively, and it increased significantly regarding the control/uncoated Ti (46.71 MPa). Furthermore, the Ti/HAp-coll (69.33 MPa) has lower compressive strength due to collagen substitution (1%). The bioactivity of Ti substrates after the immersion into simulated body fluids (SBF) for 3-10 days showed a high apatite growth (Ca2+ and PO43-), according to XRD, FTIR, and SEM-EDS results, significantly on the Ti/HAp-coll.
Collapse
|
34
|
Biomimetic Calcium Phosphate Coated Macro-Microporous Poly(ε-caprolactone)/Silk Fibroin (PCL/SF) Scaffold for Bone Tissue Engineering. Macromol Res 2022. [DOI: 10.1007/s13233-022-0090-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Paladini F, Pollini M. Novel Approaches and Biomaterials for Bone Tissue Engineering: A Focus on Silk Fibroin. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6952. [PMID: 36234293 PMCID: PMC9572978 DOI: 10.3390/ma15196952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 05/16/2023]
Abstract
Bone tissue engineering (BTE) represents a multidisciplinary research field involving many aspects of biology, engineering, material science, clinical medicine and genetics to create biological substitutes to promote bone regeneration. The definition of the most appropriate biomaterials and structures for BTE is still a challenge for researchers, aiming at simultaneously combining different features such as tissue generation properties, biocompatibility, porosity and mechanical strength. In this scenario, among the biomaterials for BTE, silk fibroin represents a valuable option for the development of functional devices because of its unique biological properties and the multiple chances of processing. This review article aims at providing the reader with a general overview of the most recent progresses in bone tissue engineering in terms of approaches and materials with a special focus on silk fibroin and the related mechanisms involved in bone regeneration, and presenting interesting results obtained by different research groups, which assessed the great potential of this protein for bone tissue engineering.
Collapse
Affiliation(s)
- Federica Paladini
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Caresilk S.r.l.s., Via Monteroni c/o Technological District DHITECH, 73100 Lecce, Italy
| | - Mauro Pollini
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Caresilk S.r.l.s., Via Monteroni c/o Technological District DHITECH, 73100 Lecce, Italy
| |
Collapse
|
36
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4)-Based Bioceramics: Preparation, Properties, and Applications. COATINGS 2022; 12:1380. [DOI: 10.3390/coatings12101380] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Various types of materials have been traditionally used to restore damaged bones. In the late 1960s, a strong interest was raised in studying ceramics as potential bone grafts due to their biomechanical properties. A short time later, such synthetic biomaterials were called bioceramics. Bioceramics can be prepared from diverse inorganic substances, but this review is limited to calcium orthophosphate (CaPO4)-based formulations only, due to its chemical similarity to mammalian bones and teeth. During the past 50 years, there have been a number of important achievements in this field. Namely, after the initial development of bioceramics that was just tolerated in the physiological environment, an emphasis was shifted towards the formulations able to form direct chemical bonds with the adjacent bones. Afterwards, by the structural and compositional controls, it became possible to choose whether the CaPO4-based implants would remain biologically stable once incorporated into the skeletal structure or whether they would be resorbed over time. At the turn of the millennium, a new concept of regenerative bioceramics was developed, and such formulations became an integrated part of the tissue engineering approach. Now, CaPO4-based scaffolds are designed to induce bone formation and vascularization. These scaffolds are usually porous and harbor various biomolecules and/or cells. Therefore, current biomedical applications of CaPO4-based bioceramics include artificial bone grafts, bone augmentations, maxillofacial reconstruction, spinal fusion, and periodontal disease repairs, as well as bone fillers after tumor surgery. Prospective future applications comprise drug delivery and tissue engineering purposes because CaPO4 appear to be promising carriers of growth factors, bioactive peptides, and various types of cells.
Collapse
|
37
|
Yousefi Talouki P, Tamimi R, Zamanlui Benisi S, Goodarzi V, Shojaei S, Hesami tackalou S, Samadikhah HR. Polyglycerol sebacate (PGS)-based composite and nanocomposites: properties and applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2097681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Pardis Yousefi Talouki
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Reyhaneh Tamimi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Soheila Zamanlui Benisi
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
- Stem cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran 13185/768, Iran
| | - Vahabodin Goodarzi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 19945-546, Tehran, Iran
| | - Shahrokh Shojaei
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
- Stem cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran 13185/768, Iran
| | | | | |
Collapse
|
38
|
Suzuki S, Venkataiah VS, Yahata Y, Kitagawa A, Inagaki M, Njuguna MM, Nozawa R, Kakiuchi Y, Nakano M, Handa K, Yamada M, Egusa H, Saito M. Correction of large jawbone defect in the mouse using immature osteoblast-like cells and a 3D polylactic acid scaffold. PNAS NEXUS 2022; 1:pgac151. [PMID: 36714858 PMCID: PMC9802318 DOI: 10.1093/pnasnexus/pgac151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/30/2022] [Accepted: 08/03/2022] [Indexed: 02/01/2023]
Abstract
Bone tissue engineering has been developed using a combination of mesenchymal stem cells (MSCs) and calcium phosphate-based scaffolds. However, these complexes cannot regenerate large jawbone defects. To overcome this limitation of MSCs and ceramic scaffolds, a novel bone regeneration technology must be developed using cells possessing high bone forming ability and a scaffold that provides space for vertical bone augmentation. To approach this problem in our study, we developed alveolar bone-derived immature osteoblast-like cells (HAOBs), which have the bone regenerative capacity to correct a large bone defect when used as a grafting material in combination with polylactic acid fibers that organize the 3D structure and increase the strength of the scaffold material (3DPL). HAOB-3DPL constructs could not regenerate bone via xenogeneic transplantation in a micromini pig alveolar bone defect model. However, the autogenic transplantation of mouse calvaria-derived immature osteoblast-like cells (MCOBs) isolated using the identical protocol for HAOBs and mixed with 3DPL scaffolds successfully regenerated the bone in a large jawbone defect mouse model, compared to the 3DPL scaffold alone. Nanoindentation analysis indicated that the regenerated bone had a similar micromechanical strength to native bone. In addition, this MCOB-3DPL regenerated bone possesses osseointegration ability wherein a direct structural connection is established with the titanium implant surface. Hence, a complex formed between a 3DPL scaffold and immature osteoblast-like cells such as MCOBs represents a novel bone tissue engineering approach that enables the formation of vertical bone with the micromechanical properties required to treat large bone defects.
Collapse
Affiliation(s)
| | | | - Yoshio Yahata
- Division of Operative Dentistry, Department of Ecological Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Akira Kitagawa
- Division of Operative Dentistry, Department of Ecological Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi 980-8575, Japan,OsteRenatos Ltd. Sendai Capital Tower 2F, 4-10-3 Central, Aoba-ku, Sendai, Miyagi 980-0021, Japan
| | - Masahiko Inagaki
- National Institute of Advanced Industrial Science and Technology, 2266-98 Anagahora, Nagoya, Aichi 463-8560, Japan
| | - Mary M Njuguna
- Division of Operative Dentistry, Department of Ecological Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Risako Nozawa
- Division of Operative Dentistry, Department of Ecological Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Yusuke Kakiuchi
- Division of Operative Dentistry, Department of Ecological Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Masato Nakano
- Division of Operative Dentistry, Department of Ecological Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Keisuke Handa
- Division of Operative Dentistry, Department of Ecological Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi 980-8575, Japan,Department of Oral Science, Division of Oral Biochemistry, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Kanagawa 238-8580, Japan
| | - Masahiro Yamada
- Division of Molecular and Regenerative Prosthodontics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | | |
Collapse
|
39
|
Bruschi M, Vanzolini T, Sahu N, Balduini A, Magnani M, Fraternale A. Functionalized 3D scaffolds for engineering the hematopoietic niche. Front Bioeng Biotechnol 2022; 10:968086. [PMID: 36061428 PMCID: PMC9428512 DOI: 10.3389/fbioe.2022.968086] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Hematopoietic stem cells (HSCs) reside in a subzone of the bone marrow (BM) defined as the hematopoietic niche where, via the interplay of differentiation and self-renewal, they can give rise to immune and blood cells. Artificial hematopoietic niches were firstly developed in 2D in vitro cultures but the limited expansion potential and stemness maintenance induced the optimization of these systems to avoid the total loss of the natural tissue complexity. The next steps were adopted by engineering different materials such as hydrogels, fibrous structures with natural or synthetic polymers, ceramics, etc. to produce a 3D substrate better resembling that of BM. Cytokines, soluble factors, adhesion molecules, extracellular matrix (ECM) components, and the secretome of other niche-resident cells play a fundamental role in controlling and regulating HSC commitment. To provide biochemical cues, co-cultures, and feeder-layers, as well as natural or synthetic molecules were utilized. This review gathers key elements employed for the functionalization of a 3D scaffold that demonstrated to promote HSC growth and differentiation ranging from 1) biophysical cues, i.e., material, topography, stiffness, oxygen tension, and fluid shear stress to 2) biochemical hints favored by the presence of ECM elements, feeder cell layers, and redox scavengers. Particular focus is given to the 3D systems to recreate megakaryocyte products, to be applied for blood cell production, whereas HSC clinical application in such 3D constructs was limited so far to BM diseases testing.
Collapse
Affiliation(s)
- Michela Bruschi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
- *Correspondence: Michela Bruschi,
| | - Tania Vanzolini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Neety Sahu
- Department of Orthopedic Surgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | | |
Collapse
|
40
|
Recent advances in 3D-printed polylactide and polycaprolactone-based biomaterials for tissue engineering applications. Int J Biol Macromol 2022; 218:930-968. [PMID: 35896130 DOI: 10.1016/j.ijbiomac.2022.07.140] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 01/10/2023]
Abstract
The three-dimensional printing (3DP) also known as the additive manufacturing (AM), a novel and futuristic technology that facilitates the printing of multiscale, biomimetic, intricate cytoarchitecture, function-structure hierarchy, multi-cellular tissues in the complicated micro-environment, patient-specific scaffolds, and medical devices. There is an increasing demand for developing 3D-printed products that can be utilized for organ transplantations due to the organ shortage. Nowadays, the 3DP has gained considerable interest in the tissue engineering (TE) field. Polylactide (PLA) and polycaprolactone (PCL) are exemplary biomaterials with excellent physicochemical properties and biocompatibility, which have drawn notable attraction in tissue regeneration. Herein, the recent advancements in the PLA and PCL biodegradable polymer-based composites as well as their reinforcement with hydrogels and bio-ceramics scaffolds manufactured through 3DP are systematically summarized and the applications of bone, cardiac, neural, vascularized and skin tissue regeneration are thoroughly elucidated. The interaction between implanted biodegradable polymers, in-vivo and in-vitro testing models for possible evaluation of degradation and biological properties are also illustrated. The final section of this review incorporates the current challenges and future opportunities in the 3DP of PCL- and PLA-based composites that will prove helpful for biomedical engineers to fulfill the demands of the clinical field.
Collapse
|
41
|
George SM, Nayak C, Singh I, Balani K. Multifunctional Hydroxyapatite Composites for Orthopedic Applications: A Review. ACS Biomater Sci Eng 2022; 8:3162-3186. [PMID: 35838237 DOI: 10.1021/acsbiomaterials.2c00140] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Being a bioactive material, hydroxyapatite (HAp) is regarded as one of the most attractive ceramic biomaterials for bone and hard-tissue replacement and regeneration. Despite its substantial biocompatibility, osteoconductivity, and compositional similarity to that of bone, the employment of HAp is still limited in orthopedic applications due to its poor mechanical (low fracture toughness and bending strength) and antibacterial properties. These significant challenges lead to the notion of developing novel HAp-based composites via different fabrication routes. HAp, when efficaciously combined with functionally graded materials and antibacterial agents, like Ag, ZnO, Co, etc., form composites that render remarkable crack resistance and toughening, as well as enhance its bactericidal efficacy. The addition of different materials and a fabrication method, like 3D printing, greatly influence the porosity of the structure and, in turn, control cell adhesion, thereby enabling biological fixation of the material. This article encompasses an elaborate discussion on different multifunctional HAp composites developed for orthopedic applications with particular emphasis on the incorporation of functionally graded materials and antibacterial agents. The influence of 3D printing on the fabrication of HAp-based scaffolds, and the different in vitro and in vivo studies conducted on these, have all been included here. Furthermore, the present review not only provides insights and broad understanding by elucidating recent advancements toward 4D printing but also directs the reader to future research directions in design and application of HAp-based composite coatings and scaffolds.
Collapse
Affiliation(s)
- Suchi Mercy George
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Chinmayee Nayak
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Indrajeet Singh
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Kantesh Balani
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.,Advanced Centre for Materials Science, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
42
|
Arokiasamy P, Al Bakri Abdullah MM, Abd Rahim SZ, Luhar S, Sandu AV, Jamil NH, Nabiałek M. Synthesis methods of hydroxyapatite from natural sources: A review. CERAMICS INTERNATIONAL 2022; 48:14959-14979. [DOI: 10.1016/j.ceramint.2022.03.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
43
|
Zhou C, Luo C, Liu S, Jiang S, Liu X, Li J, Zhang X, Wu X, Sun J, Wang Z. Pearl-inspired graphene oxide-collagen microgel with multi-layer mineralization through microarray chips for bone defect repair. Mater Today Bio 2022; 15:100307. [PMID: 35706502 PMCID: PMC9189211 DOI: 10.1016/j.mtbio.2022.100307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/12/2022] [Accepted: 05/25/2022] [Indexed: 12/04/2022] Open
Abstract
Biomineralization of natural polymers in simulated body fluid (SBF) can significantly improve its biocompatibility, osteoconductivity, and osteoinductivity because of the hydroxyapatite (HAp) deposition. Nevertheless, the superficial HAp crystal deposition hamper the deep inorganic ions exchange in porous microgels, thus gradually leading to a nonuniform regeneration effect. Inspired by the pearl forming process, this article uses the microarray chips to fabricate the multi-layer mineralized graphene oxide (GO)-collagen (Col)-hydroxyapatite (HAp) microgel, denoted as MMGCH. These fabricated MMGCH microgels exhibit porous structure and uniform HAp distribution. Furthermore, the suitable microenvironment offered by microgel promotes the time-dependent proliferation and osteogenic differentiation of stem cells, which resulted in upregulated osteogenesis-related genes and proteins, such as alkaline phosphatase, osteocalcin, and collagen-1. Finally, the MMGCH microgels possess favorable bone regeneration capacities both in cranial bone defects and mandibular bone defects via providing a suitable microenvironment for host-derived cells to form new bone tissues. This work presents a biomimetic means aiming to achieve full-thickness and uniform HAp deposition in hydrogel for bone defect repair.
Collapse
Affiliation(s)
- Chuchao Zhou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Chao Luo
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shaokai Liu
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shangxuan Jiang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xin Liu
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jialun Li
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinyue Zhang
- Department of Pediatric, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoyan Wu
- Department of Pediatric, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
44
|
Bone Regeneration and Oxidative Stress: An Updated Overview. Antioxidants (Basel) 2022; 11:antiox11020318. [PMID: 35204201 PMCID: PMC8868092 DOI: 10.3390/antiox11020318] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 11/17/2022] Open
Abstract
Bone tissue engineering is a complex domain that requires further investigation and benefits from data obtained over past decades. The models are increasing in complexity as they reveal new data from co-culturing and microfluidics applications. The in vitro models now focus on the 3D medium co-culturing of osteoblasts, osteoclasts, and osteocytes utilizing collagen for separation; this type of research allows for controlled medium and in-depth data analysis. Oxidative stress takes a toll on the domain, being beneficial as well as destructive. Reactive oxygen species (ROS) are molecules that influence the differentiation of osteoclasts, but over time their increasing presence can affect patients and aid the appearance of diseases such as osteoporosis. Oxidative stress can be limited by using antioxidants such as vitamin K and N-acetyl cysteine (NAC). Scaffolds and biocompatible coatings such as hydroxyapatite and bioactive glass are required to isolate the implant, protect the zone from the metallic, ionic exchange, and enhance the bone regeneration by mimicking the composition and structure of the body, thus enhancing cell proliferation. The materials can be further functionalized with growth factors that create a better response and higher chances of success for clinical use. This review highlights the vast majority of newly obtained information regarding bone tissue engineering, such as new co-culturing models, implant coatings, scaffolds, biomolecules, and the techniques utilized to obtain them.
Collapse
|
45
|
Patty DJ, Nugraheni AD, Ana ID, Yusuf Y. In vitro bioactivity of 3D microstructure hydroxyapatite/collagen based-egg white as an antibacterial agent. J Biomed Mater Res B Appl Biomater 2022; 110:1412-1424. [PMID: 35040555 DOI: 10.1002/jbm.b.35009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/13/2021] [Accepted: 12/28/2021] [Indexed: 12/28/2022]
Abstract
The present study aims to design 3D scaffold hydroxyapatite (HA)/collagen (Coll) based egg-white (EW) as antibacterial properties. The calcium source in HA synthesis derived from the Pinctada maxima shell cultivated on Bali Island has proven biocompatibility, and the compressive strength exceeded human bone. HA synthesis by precipitation with heat treatment in oven-dried at 80°C (HA-80) and annealed at 900°C (HA-900), has crystallinity 48% and 85%, respectively, were used for scaffold design. The physicochemical properties of X-ray diffractometer spectra showed that increasing temperature affected the crystallinity and HA phase formed. Furthermore, the crystal structure of HA changed in nanocomposite due to the substitution of Coll and EW, and the Fourier transform infrared spectroscopy spectra confirmed that the absorption peak of the phosphate group (1027-1029 cm-1 ) decreased intensity, presumably by protein binding of EW and Coll. The cell viability of HA/Coll/EW in 24, 48, and 72 h incubation period was 112.34 ± 4.36, 104.89 ± 3.41, 72.88 ± 6.85, respectively. The decreases of cell viability due to high cell density and reduced nutrients in wells. Antibacterial activity of HA/Col/EW exhibited a strong zone of inhibition against bacteria causing periodontitis; Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, and Staphylococcus aureus.
Collapse
Affiliation(s)
- Diana Julaidy Patty
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta, Indonesia.,Department of Physics, Faculty of Mathematics and Natural Science, Universitas Pattimura, Ambon, Indonesia
| | - Ari Dwi Nugraheni
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yusril Yusuf
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
46
|
Aminatun A, Suciati T, Sari YW, Sari M, . Alamsyah KA, Purnamasari W, Yusuf Y. Biopolymer-based polycaprolactone-hydroxyapatite scaffolds for bone tissue engineering. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.2018315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Tri Suciati
- Department of Pharmaceutics, Institut Teknologi Bandung, Bandung, Indonesia
| | | | - Mona Sari
- Department of Physics, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Kartika A . Alamsyah
- Master of Biomedical Engineering, Department of Physics, Universitas Airlangga, Surabaya, Indonesia
| | - Wulan Purnamasari
- Master of Biomedical Engineering, Department of Physics, Universitas Airlangga, Surabaya, Indonesia
| | - Yusril Yusuf
- Department of Physics, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
47
|
Zhao X, Zhu L, Fan C. Sequential alendronate delivery by hydroxyapatite-coated maghemite for enhanced bone fracture healing. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Hydrothermal synthesis of zirconia-based nanocomposite powder reinforced by graphene and its application for bone scaffold with 3D printing. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.103406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
49
|
Hurtuková K, Juřicová V, Fajstavrová K, Fajstavr D, Slepičková Kasálková N, Rimpelová S, Švorčík V, Slepička P. Cytocompatibility of Polymethyl Methacrylate Honeycomb-like Pattern on Perfluorinated Polymer. Polymers (Basel) 2021; 13:polym13213663. [PMID: 34771220 PMCID: PMC8587905 DOI: 10.3390/polym13213663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we present a simple approach for developing a biocompatible polymer scaffold with a honeycomb-like micropattern. We aimed to combine a plasma treatment of fluorinated ethylene propylene (FEP) substrate with an improved phase separation technique. The plasma exposure served for modification of the polymer surface properties, such as roughness, surface chemistry, and wettability. The treated FEP substrate was applied for the growth of a honeycomb-like pattern from a solution of polymethyl methacrylate (PMMA). The properties of the pattern were strongly dependent on the conditions of plasma exposure of the FEP substrate. The physico-chemical properties of the prepared pattern, such as changes in wettability, aging, morphology, and surface chemistry, were determined. Further, we have examined the cellular response of human osteoblasts (U-2 OS) on the modified substrates. The micropattern prepared with a selected combination of surface activation and amount of PMMA for honeycomb construction showed a positive effect on U-2 OS cell adhesion and proliferation. Samples with higher PMMA content (3 and 4 g) formed more periodic hexagonal structures on the surface compared to its lower amount (1 and 2 g), which led to a significant increase in the pattern cytocompatibility compared to pristine or plasma-treated FEP.
Collapse
Affiliation(s)
- Klaudia Hurtuková
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (V.J.); (K.F.); (D.F.); (N.S.K.); (V.Š.)
| | - Veronika Juřicová
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (V.J.); (K.F.); (D.F.); (N.S.K.); (V.Š.)
| | - Klára Fajstavrová
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (V.J.); (K.F.); (D.F.); (N.S.K.); (V.Š.)
| | - Dominik Fajstavr
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (V.J.); (K.F.); (D.F.); (N.S.K.); (V.Š.)
| | - Nikola Slepičková Kasálková
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (V.J.); (K.F.); (D.F.); (N.S.K.); (V.Š.)
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic;
| | - Václav Švorčík
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (V.J.); (K.F.); (D.F.); (N.S.K.); (V.Š.)
| | - Petr Slepička
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (V.J.); (K.F.); (D.F.); (N.S.K.); (V.Š.)
- Correspondence: ; Tel.: +420-220-445-162
| |
Collapse
|
50
|
Porous Carbonated Hydroxyapatite-Based Paraffin Wax Nanocomposite Scaffold for Bone Tissue Engineering: A Physicochemical Properties and Cell Viability Assay Analysis. COATINGS 2021. [DOI: 10.3390/coatings11101189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Porosity is one of the parameters of scaffold pore structure that must be developed using paraffin wax as a synthetic polymer for making porous bioceramics carbonated hydroxyapatite (CHA). This study fabricated CHA based on abalone mussel shells (Halioitis asinina); CHA/paraffin wax nanocomposite scaffolds were synthesized using paraffin wax with concentration variations of 10, 20, and 30 wt.%. The energy-dispersive X-ray spectroscopy (EDS) results showed that the Ca/P molar ratio of CHA was 1.72, which approaches the natural bone. The addition of paraffin wax in all concentration variation treatments caused the crystallographic properties of the CHA/paraffin wax nanocomposite scaffolds to decrease. The results of pore analysis suggest that the high concentration of paraffin wax in the CHA suspension is involved in the formation of more pores on the surface of the scaffold, but only CHA/paraffin wax 30 wt.% had a scaffold with potential to be used in media with a cellular growth orientation. The micropore analysis was also supported by the cell viability assay results for CHA/paraffin wax 30 wt.% nanocomposite scaffold, where serial doses of scaffold concentrations to mouse osteoblast cells were secure. Overall, based on this analysis, the CHA/paraffin wax scaffold can be a candidate for bone tissue engineering.
Collapse
|