1
|
Han EH, Cho SH, Lee SN, Cho MY, Lee H, Lee SY, Ngoc Thi Tran C, Park HS, Min JY, Kim HM, Park MS, Kim TD, Lim YT, Hong KS. 3D Scaffold-Based Culture System Enhances Preclinical Evaluation of Natural Killer Cell Therapy in A549 Lung Cancer Cells. ACS APPLIED BIO MATERIALS 2024; 7:7194-7206. [PMID: 39392900 DOI: 10.1021/acsabm.4c00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Cell-based immunotherapies have emerged as promising cancer treatment modalities, demonstrating remarkable clinical efficacy. As interest in applying immune cell-based therapies to solid tumors has gained momentum, experimental models that enable long-term monitoring and mimic clinical administration are increasingly necessary. This study explores the potential of scaffold-based cell culture technologies, specifically three-dimensional (3D) extracellular matrix (ECM)-like frameworks, as promising solutions. These frameworks facilitate unhindered immune cell growth and enable continuous cancer cell culture. The three-dimensional (3D) cell culture model was developed using tailored scaffolds for natural killer (NK) cell culture. Within this framework, A549 lung cancer cells were cocultured with NK cells, allowing real-time monitoring for up to 28 days. The expression of critical markers associated with anticancer drug resistance and epithelial-mesenchymal transition (EMT) was evaluated in cancer cells within this 3D culture context. Compared to conventional 2D monolayer cultures, this 3D scaffold-based culture revealed that solid tumor cells, specifically A549 cells, exhibited heightened resistance to anticancer drugs. Additionally, the 3D culture environment upregulated the expression of EMT markers namely vimentin, N-cadherin, and fibronectin, while NK and zEGFR-CAR-NK cells displayed anticancer effects. In the two-dimensional (2D) coculture, only zEGFR-CAR-NK cells exhibited such effects in the 3D coculture system, highlighting an intriguing inconsistency with the 2D culture model, further confirmed by in vivo experiments. This in vitro 3D cell culture model reliably predicts outcomes in NK immunotherapy experiments. Thus, it represents a valuable tool for investigating drug resistance mechanisms and assessing the efficacy of immune cell-based therapies. By bridging the gap between in vitro and in vivo investigations, this model effectively translates potential treatments into animal models and facilitates rigorous preclinical evaluations.
Collapse
Affiliation(s)
- Eun Hee Han
- Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Science, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
- Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Sun-Hee Cho
- Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Science, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Sang Nam Lee
- SKKU Advanced Institute of Nanotechnology (SAINT) and School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mi Young Cho
- Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Science, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT) and School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyunseung Lee
- Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Science, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Soo Yun Lee
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Chau Ngoc Thi Tran
- Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Science, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hye Sun Park
- Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Science, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Jin Young Min
- Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Science, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Hye Min Kim
- Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Science, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
- Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Min Sung Park
- Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Science, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
- Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Tae-Don Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT) and School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kwan Soo Hong
- Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Science, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
2
|
Yang C, Che X, Zhang Y, Gu D, Dai G, Shu J, Yang L. Hybrid FeWO 4-Hyaluronic Acid Nanoparticles as a Targeted Nanotheranostic Agent for Multimodal Imaging-Guided Tumor Photothermal Therapy. Int J Nanomedicine 2023; 18:8023-8037. [PMID: 38164263 PMCID: PMC10758162 DOI: 10.2147/ijn.s432533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024] Open
Abstract
Background Development of versatile nanoplatform still remains a great challenge due to multistep synthesis and complicated compositions. Therefore, it is significant to develop a facile method to synthesize a nanocomposite to achieve multimodal imaging and even imaging-guided cancer therapeutics. Methods and Results In our study, hyaluronic acid-functionalized iron (II) tungstate nanoparticles (HA-FeWO4 NPs) were successfully synthesized as a versatile nanoplatform by a facile one-pot hydrothermal procedure. The formed multifunctional HA-FeWO4 NPs were investigated via a series of characterization techniques, which demonstrated good biocompatibility, excellent dispersion, low cytotoxicity, active tumor-targeting ability and high photothermal efficiency. Furthermore, tumor was clearly visualized by HA-FeWO4 NPs with multimodal imaging of infrared thermal imaging, magnetic resonance imaging, computed tomography imaging in 4T1 tumor bearing mice. More importantly, HA-FeWO4 could achieve multimodal imaging-guided photothermal therapy of 4T1 tumors. Conclusion The constructed HA-FeWO4 NPs have great potential as ideal nanotheranostic agents for multimodal imaging and even imaging-guided cancer theranostics in biological systems.
Collapse
Affiliation(s)
- Chunmei Yang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan Province, People’s Republic of China
| | - Xiaoling Che
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan Province, People’s Republic of China
| | - Yu Zhang
- Department of Radiology, The First People’s Hospital of Yibin, Yibin, 644000, People’s Republic of China
| | - Didi Gu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan Province, People’s Republic of China
| | - Guidong Dai
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan Province, People’s Republic of China
| | - Jian Shu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan Province, People’s Republic of China
| | - Lu Yang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan Province, People’s Republic of China
| |
Collapse
|