1
|
Markos A, Kubovciak J, Mikula Mrstakova S, Zitova A, Paces J, Machacova S, Kozmik-Jr Z, Kozmik Z, Kozmikova I. Cell type and regulatory analysis in amphioxus illuminates evolutionary origin of the vertebrate head. Nat Commun 2024; 15:8859. [PMID: 39402029 PMCID: PMC11473876 DOI: 10.1038/s41467-024-52938-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/25/2024] [Indexed: 10/17/2024] Open
Abstract
To shed light on the enigmatic origin of the vertebrate head, our study employs an integrated approach that combines single-cell transcriptomics, perturbations in signaling pathways, and cis-regulatory analysis in amphioxus. As a representative of a basal lineage within the chordate phylum, amphioxus retains many characteristics thought to have been present in the common chordate ancestor. Through cell type characterization, we identify the presence of prechordal plate-like, pre-migratory, and migratory neural crest-like cell populations in the developing amphioxus embryo. Functional analysis establishes conserved roles of the Nodal and Hedgehog signaling pathways in prechordal plate-like populations, and of the Wnt signaling pathway in neural crest-like populations' development. Furthermore, our trans-species transgenic experiments highlight similarities in the regulatory environments that drive neural crest-like and prechordal plate-like developmental programs in both vertebrates and amphioxus. Our findings provide evidence that the key features of vertebrate head development can be traced back to the common ancestor of all chordates.
Collapse
Affiliation(s)
- Anna Markos
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague, Czech Republic
| | - Jan Kubovciak
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague, Czech Republic
| | - Simona Mikula Mrstakova
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague, Czech Republic
| | - Anna Zitova
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague, Czech Republic
| | - Jan Paces
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague, Czech Republic
| | - Simona Machacova
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague, Czech Republic
| | - Zbynek Kozmik-Jr
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague, Czech Republic
| | - Zbynek Kozmik
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague, Czech Republic
| | - Iryna Kozmikova
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague, Czech Republic.
| |
Collapse
|
2
|
Buono L, Annona G, Magri MS, Negueruela S, Sepe RM, Caccavale F, Maeso I, Arnone MI, D’Aniello S. Conservation of cis-Regulatory Syntax Underlying Deuterostome Gastrulation. Cells 2024; 13:1121. [PMID: 38994973 PMCID: PMC11240583 DOI: 10.3390/cells13131121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
Throughout embryonic development, the shaping of the functional and morphological characteristics of embryos is orchestrated by an intricate interaction between transcription factors and cis-regulatory elements. In this study, we conducted a comprehensive analysis of deuterostome cis-regulatory landscapes during gastrulation, focusing on four paradigmatic species: the echinoderm Strongylocentrotus purpuratus, the cephalochordate Branchiostoma lanceolatum, the urochordate Ciona intestinalis, and the vertebrate Danio rerio. Our approach involved comparative computational analysis of ATAC-seq datasets to explore the genome-wide blueprint of conserved transcription factor binding motifs underlying gastrulation. We identified a core set of conserved DNA binding motifs associated with 62 known transcription factors, indicating the remarkable conservation of the gastrulation regulatory landscape across deuterostomes. Our findings offer valuable insights into the evolutionary molecular dynamics of embryonic development, shedding light on conserved regulatory subprograms and providing a comprehensive perspective on the conservation and divergence of gene regulation underlying the gastrulation process.
Collapse
Affiliation(s)
- Lorena Buono
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (G.A.); (R.M.S.); (F.C.); (M.I.A.)
| | - Giovanni Annona
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (G.A.); (R.M.S.); (F.C.); (M.I.A.)
- Department of Research Infrastructure for Marine Biological Resources (RIMAR), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Marta Silvia Magri
- Centro Andaluz de Biología del Desarollo (CABD), Universidad Pablo de Olavide, 41013 Sevilla, Spain;
| | | | - Rosa Maria Sepe
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (G.A.); (R.M.S.); (F.C.); (M.I.A.)
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton, 80133 Naples, Italy
| | - Filomena Caccavale
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (G.A.); (R.M.S.); (F.C.); (M.I.A.)
| | - Ignacio Maeso
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain;
- Institut de Recerca de la Biodiversitat (IRBio), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Maria Ina Arnone
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (G.A.); (R.M.S.); (F.C.); (M.I.A.)
| | - Salvatore D’Aniello
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (G.A.); (R.M.S.); (F.C.); (M.I.A.)
| |
Collapse
|
3
|
Machacova S, Kozmik Z, Kozmikova I. Identification of Nodal-dependent enhancer of amphioxus Chordin sufficient to drive gene expression into the chordate dorsal organizer. Dev Genes Evol 2022; 232:137-145. [PMID: 36372862 DOI: 10.1007/s00427-022-00698-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022]
Abstract
The core molecular mechanisms of dorsal organizer formation during gastrulation are highly conserved within the chordate lineage. One of the key characteristics is that Nodal signaling is required for the organizer-specific gene expression. This feature appears to be ancestral, as evidenced by the presence in the most basally divergent chordate amphioxus. To provide a better understanding of the evolution of organizer-specific gene regulation in chordates, we analyzed the cis-regulatory sequence of amphioxus Chordin in the context of the vertebrate embryo. First, we generated stable zebrafish transgenic lines, and by using light-sheet fluorescent microscopy, characterized in detail the expression pattern of GFP driven by the cis-regulatory sequences of amphioxus Chordin. Next, we performed a 5'deletion analysis and identified an enhancer sufficient to drive the expression of the reporter gene into a chordate dorsal organizer. Finally, we found that the identified enhancer element strongly depends on Nodal signaling, which is consistent with the well-established role of this pathway in the regulation of the expression of dorsal organizer-specific genes across chordates. The enhancer identified in our study may represent a suitable simple system to study the interplay of the evolutionarily conserved regulatory mechanisms operating during early chordate development.
Collapse
Affiliation(s)
- Simona Machacova
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Videnska, 1083, Czech Republic
| | - Zbynek Kozmik
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Videnska, 1083, Czech Republic
| | - Iryna Kozmikova
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Videnska, 1083, Czech Republic.
| |
Collapse
|
4
|
Meister L, Escriva H, Bertrand S. Functions of the FGF signalling pathway in cephalochordates provide insight into the evolution of the prechordal plate. Development 2022; 149:275365. [PMID: 35575387 PMCID: PMC9188755 DOI: 10.1242/dev.200252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/05/2022] [Indexed: 12/22/2022]
Abstract
The fibroblast growth factor (FGF) signalling pathway plays various roles during vertebrate embryogenesis, from mesoderm formation to brain patterning. This diversity of functions relies on the fact that vertebrates possess the largest FGF gene complement among metazoans. In the cephalochordate amphioxus, which belongs to the chordate clade together with vertebrates and tunicates, we have previously shown that the main role of FGF during early development is the control of rostral somite formation. Inhibition of this signalling pathway induces the loss of these structures, resulting in an embryo without anterior segmented mesoderm, as in the vertebrate head. Here, by combining several approaches, we show that the anterior presumptive paraxial mesoderm cells acquire an anterior axial fate when FGF signal is inhibited and that they are later incorporated in the anterior notochord. Our analysis of notochord formation in wild type and in embryos in which FGF signalling is inhibited also reveals that amphioxus anterior notochord presents transient prechordal plate features. Altogether, our results give insight into how changes in FGF functions during chordate evolution might have participated to the emergence of the complex vertebrate head. Summary: FGF signalling inhibition in cephalochordates induces a loss of anteriormost somites. After FGFR inhibition, the presomitic anterior region cells are incorporated in the anterior notochord which transiently present prechordal plate features.
Collapse
Affiliation(s)
- Lydvina Meister
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650 Banyuls-sur-Mer, France
| | - Hector Escriva
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650 Banyuls-sur-Mer, France
| | - Stéphanie Bertrand
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650 Banyuls-sur-Mer, France
| |
Collapse
|
5
|
Ozernyuk ND, Isaeva VV. Early Stages of Animal Mesoderm Evolution. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422020096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Gil-Gálvez A, Jiménez-Gancedo S, Pérez-Posada A, Franke M, Acemel RD, Lin CY, Chou C, Su YH, Yu JK, Bertrand S, Schubert M, Escrivá H, Tena JJ, Gómez-Skarmeta JL. Gain of gene regulatory network interconnectivity at the origin of vertebrates. Proc Natl Acad Sci U S A 2022; 119:e2114802119. [PMID: 35263228 PMCID: PMC8931241 DOI: 10.1073/pnas.2114802119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/21/2022] [Indexed: 12/18/2022] Open
Abstract
SignificanceIn this manuscript, we address an essential question in developmental and evolutionary biology: How have changes in gene regulatory networks contributed to the invertebrate-to-vertebrate transition? To address this issue, we perturbed four signaling pathways critical for body plan formation in the cephalochordate amphioxus and in zebrafish and compared the effects of such perturbations on gene expression and gene regulation in both species. Our data reveal that many developmental genes have gained response to these signaling pathways in the vertebrate lineage. Moreover, we show that the interconnectivity between these pathways is much higher in zebrafish than in amphioxus. We conclude that this increased signaling pathway complexity likely contributed to vertebrate morphological novelties during evolution.
Collapse
Affiliation(s)
- Alejandro Gil-Gálvez
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, 41013 Seville, Spain
| | - Sandra Jiménez-Gancedo
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, 41013 Seville, Spain
| | - Alberto Pérez-Posada
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, 41013 Seville, Spain
| | - Martin Franke
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, 41013 Seville, Spain
| | - Rafael D. Acemel
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, 41013 Seville, Spain
| | - Che-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Cindy Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, 11529 Taipei, Taiwan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 26242 Yilan, Taiwan
| | - Stephanie Bertrand
- Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Sorbonne Université, CNRS, 66650 Banyuls-sur-Mer, France
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Héctor Escrivá
- Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Sorbonne Université, CNRS, 66650 Banyuls-sur-Mer, France
| | - Juan J. Tena
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, 41013 Seville, Spain
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, 41013 Seville, Spain
| |
Collapse
|
7
|
Abstract
The field of molecular embryology started around 1990 by identifying new genes and analyzing their functions in early vertebrate embryogenesis. Those genes encode transcription factors, signaling molecules, their regulators, etc. Most of those genes are relatively highly expressed in specific regions or exhibit dramatic phenotypes when ectopically expressed or mutated. This review focuses on one of those genes, Lim1/Lhx1, which encodes a transcription factor. Lim1/Lhx1 is a member of the LIM homeodomain (LIM-HD) protein family, and its intimate partner, Ldb1/NLI, binds to two tandem LIM domains of LIM-HDs. The most ancient LIM-HD protein and its partnership with Ldb1 were innovated in the metazoan ancestor by gene fusion combining LIM domains and a homeodomain and by creating the LIM domain-interacting domain (LID) in ancestral Ldb, respectively. The LIM domain has multiple interacting interphases, and Ldb1 has a dimerization domain (DD), the LID, and other interacting domains that bind to Ssbp2/3/4 and the boundary factor, CTCF. By means of these domains, LIM-HD-Ldb1 functions as a hub protein complex, enabling more intricate and elaborate gene regulation. The common, ancestral role of LIM-HD proteins is neuron cell-type specification. Additionally, Lim1/Lhx1 serves crucial roles in the gastrula organizer and in kidney development. Recent studies using Xenopus embryos have revealed Lim1/Lhx1 functions and regulatory mechanisms during development and regeneration, providing insight into evolutionary developmental biology, functional genomics, gene regulatory networks, and regenerative medicine. In this review, we also discuss recent progress at unraveling participation of Ldb1, Ssbp, and CTCF in enhanceosomes, long-distance enhancer-promoter interactions, and trans-interactions between chromosomes.
Collapse
Affiliation(s)
- Yuuri Yasuoka
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| | - Masanori Taira
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
8
|
Kumar V, Umair Z, Kumar S, Lee U, Kim J. Smad2 and Smad3 differentially modulate chordin transcription via direct binding on the distal elements in gastrula Xenopus embryos. Biochem Biophys Res Commun 2021; 559:168-175. [PMID: 33945994 DOI: 10.1016/j.bbrc.2021.04.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022]
Abstract
Transforming growth factor (TGF)β/activin superfamily regulates diverse biological processes including germ layer specification and axis patterning in vertebrates. TGFβ/activin leads to phosphorylation of Smad2 and Smad3, followed by regulation of their target genes. Activin treatment also induces the essential organizer gene chordin (chrd). The involvement of Smad2/3 in chrd expression has been unclear as to whether Smad2/3 involvement is direct or indirect and whether any cis-acting response elements for Smad2/3 are present in the proximal or distal regions of its promoter. In the present study, we isolated the -2250 bps portion of the chrd promoter, showing that it contained Smad2/3 direct binding sites at its distal portion, separate from the proximal locations of other organizer genes, goosecoid and cerberus. The pattern of transcription activation for the promoter (-2250 bps) was indistinguishable from that of the endogenous chrd in gastrula Xenopus embryos. Reporter gene assays and site-directed mutagenesis analysis of the chrd promoter mapped two active activin/Smad response elements (ARE1 and ARE2) for Smad2 and Smad3. For a differential chrd induction, Smad2 acted on both ARE1 and ARE2, but Smad3 was only active for ARE2. Collectively, the results demonstrate that the distal region of chrd promoter contains the direct binding cis-acting elements for Smad2 and Smad3, which differentially modulate chrd transcription in gastrula Xenopus embryos.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do, 24252, Republic of Korea
| | - Zobia Umair
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do, 24252, Republic of Korea; Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Shiv Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do, 24252, Republic of Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon, Gangwon-Do, 24252, Republic of Korea.
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do, 24252, Republic of Korea.
| |
Collapse
|
9
|
Yasuoka Y. Enhancer evolution in chordates: Lessons from functional analyses of cephalochordate cis‐regulatory modules. Dev Growth Differ 2020; 62:279-300. [DOI: 10.1111/dgd.12684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Yuuri Yasuoka
- Laboratory for Comprehensive Genomic Analysis RIKEN Center for Integrative Medical Sciences Tsurumi‐ku Japan
| |
Collapse
|
10
|
Kozmikova I, Kozmik Z. Wnt/β-catenin signaling is an evolutionarily conserved determinant of chordate dorsal organizer. eLife 2020; 9:56817. [PMID: 32452768 PMCID: PMC7292647 DOI: 10.7554/elife.56817] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
Deciphering the mechanisms of axis formation in amphioxus is a key step to understanding the evolution of chordate body plan. The current view is that Nodal signaling is the only factor promoting the dorsal axis specification in the amphioxus, whereas Wnt/β-catenin signaling plays no role in this process. Here, we re-examined the role of Wnt/βcatenin signaling in the dorsal/ventral patterning of amphioxus embryo. We demonstrated that the spatial activity of Wnt/β-catenin signaling is located in presumptive dorsal cells from cleavage to gastrula stage, and provided functional evidence that Wnt/β-catenin signaling is necessary for the specification of dorsal cell fate in a stage-dependent manner. Microinjection of Wnt8 and Wnt11 mRNA induced ectopic dorsal axis in neurulae and larvae. Finally, we demonstrated that Nodal and Wnt/β-catenin signaling cooperate to promote the dorsal-specific gene expression in amphioxus gastrula. Our study reveals high evolutionary conservation of dorsal organizer formation in the chordate lineage.
Collapse
Affiliation(s)
- Iryna Kozmikova
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zbynek Kozmik
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|