1
|
Fischer MT, Xue KS, Costello EK, Dvorak M, Raboisson G, Robaczewska A, Caty SN, Relman DA, O’Connell LA. Effects of parental care on skin microbial community composition in poison frogs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612488. [PMID: 39314287 PMCID: PMC11419107 DOI: 10.1101/2024.09.11.612488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Parent-offspring interactions constitute the first contact of many newborns with their environment, priming community assembly of microbes through priority effects. Early exposure to microbes can have lasting influences on the assembly and functionality of the host's microbiota, leaving a life-long imprint on host health and disease. Studies of the role played by parental care in microbial acquisition have primarily focused on humans and hosts with agricultural relevance. Anuran vertebrates offer the opportunity to examine microbial community composition across life stages as a function of parental investment. In this study, we investigate vertical transmission of microbiota during parental care in a poison frog (Family Dendrobatidae), where fathers transport their offspring piggyback-style from terrestrial clutches to aquatic nurseries. We found that substantial bacterial colonization of the embryo begins after hatching from the vitelline envelope, emphasizing its potential role as microbial barrier during early development. Using a laboratory cross-foster experiment, we demonstrated that poison frogs performing tadpole transport serve as a source of skin microbes for tadpoles on their back. To study how transport impacts the microbial skin communities of tadpoles in an ecologically relevant setting, we sampled frogs and tadpoles of sympatric species that do or do not exhibit tadpole transport in their natural habitat. We found more diverse microbial communities associated with tadpoles of transporting species compared to a non-transporting frog. However, we detected no difference in the degree of similarity between adult and tadpole skin microbiotas, based on whether the frog species exhibits transporting behavior or not. Using a field experiment, we confirmed that tadpole transport can result in the persistent colonization of tadpoles by isolated microbial taxa associated with the caregiver's skin, albeit often at low prevalence. This is the first study to describe vertical transmission of skin microbes in anuran amphibians, showing that offspring transport may serve as a mechanism for transmission of parental skin microbes. Overall, these findings provide a foundation for further research on how vertical transmission in this order impacts host-associated microbiota and physiology.
Collapse
Affiliation(s)
| | - Katherine S. Xue
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Elizabeth K. Costello
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mai Dvorak
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Gaëlle Raboisson
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Anna Robaczewska
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - David A. Relman
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Lauren A. O’Connell
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Institute for Neuroscience, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Wang Y, Chen H, Wang Y, Zhang H, Weng Q, Liu Y, Xu M. Seasonal changes in vitamin A metabolism-related factors in the oviduct of Chinese brown frog (Rana dybowskii). J Steroid Biochem Mol Biol 2024; 243:106583. [PMID: 38992392 DOI: 10.1016/j.jsbmb.2024.106583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024]
Abstract
The oviduct of the Chinese brown frog (Rana dybowskii) expands during pre-brumation rather than the breeding period, exhibiting a special physiological feature. Vitamin A is essential for the proper growth and development of many organisms, including the reproductive system such as ovary and oviduct. Vitamin A is metabolized into retinoic acid, which is crucial for oviduct formation. This study examined the relationship between oviducal expansion and vitamin A metabolism. We observed a significant increase in the weight and diameter of the oviduct in Rana dybowskii during pre-brumation. Vitamin A and its active metabolite, retinoic acid, notably increased during pre-brumation. The mRNA levels of retinol binding protein 4 (rbp4) and its receptor stra6 gene, involved in vitamin A transport, were elevated during pre-brumation compared to the breeding period. In the vitamin A metabolic pathway, the mRNA expression level of retinoic acid synthase aldh1a2 decreased significantly during pre-brumation, while the mRNA levels of retinoic acid α receptor (rarα) and the retinoic acid catabolic enzyme cyp26a1 increased significantly during pre-brumation, but not during the breeding period. Immunohistochemical results showed that Rbp4, Stra6, Aldh1a2, Rarα, and Cyp26a1 were expressed in ampulla region of the oviduct. Western blot results indicated that Aldh1a2 expression was lower, while Rbp4, Stra6, RARα, and Cyp26a1 were higher during pre-brumation compared to the breeding period. Transcriptome analyses further identified differential genes in the oviduct and found enrichment of differential genes in the vitamin A metabolism pathway, providing evidences for our study. These results suggest that the vitamin A metabolic pathway is more active during pre-brumation compared to the breeding period, and retinoic acid may regulate pre-brumation oviductal expansion through Rarα-mediated autocrine/paracrine modulation.
Collapse
Affiliation(s)
- Yankun Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Haohan Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yawei Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Haolin Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qiang Weng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yuning Liu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| | - Meiyu Xu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| |
Collapse
|
3
|
Du B, Zhang J, Gómez RO, Dong L, Zhang M, Lei X, Li A, Dai S. A cretaceous frog with eggs from northwestern China provides fossil evidence for sexual maturity preceding skeletal maturity in anurans. Proc Biol Sci 2024; 291:20232320. [PMID: 38320608 PMCID: PMC10846944 DOI: 10.1098/rspb.2023.2320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
Mesozoic fossils of frogs are rare in the palaeontological record, particularly those exhibiting soft tissues that offer limited insights into early life-history characteristics. Here we report on a skeletally immature frog from the Lower Cretaceous of northwest China, with egg masses in the body and eggs in the oviduct, indicative of a gravid female. CT reconstruction of the specimen allows referral to Gansubatrachus qilianensis and we assign it as a paratype complementing the diagnosis of the type species. The new fossil, which might represent a younger individual than the holotype of Gansubatrachus, shows that sexual maturation occurred before full adulthood in this frog and provides evidence of death linked to mating behaviour. We also discuss other potential sources of variation and life-history traits of Gansubatrachus. The new finding represents the oldest Early Cretaceous frog preserving in situ eggs and provides a glimpse into ancient anuran development during Mesozoic times.
Collapse
Affiliation(s)
- Baoxia Du
- School of Earth Sciences and Key Laboratory of Mineral Resources in Western China (Gansu Province), Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jing Zhang
- School of Earth Sciences and Key Laboratory of Mineral Resources in Western China (Gansu Province), Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Raúl Orencio Gómez
- Laboratorio de Morfología Evolutiva y Paleobiología de Vertebrados, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Liping Dong
- Key Laboratory of Vertebrate Evolution and Human Origin of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, People's Republic of China
| | - Mingzhen Zhang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences/Key Laboratory of Petroleum Resources, Lanzhou, Gansu Province 730000, People's Republic of China
| | - Xiangtong Lei
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, Yunnan Province 650000, People's Republic of China
| | - Aijing Li
- School of Earth Sciences and Key Laboratory of Mineral Resources in Western China (Gansu Province), Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Shuang Dai
- School of Earth Sciences and Key Laboratory of Mineral Resources in Western China (Gansu Province), Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
4
|
Otero Y, Calatayud NE, Arcia ID, Mariscal D, Samaniego D, Rodríguez D, Rodríguez K, Guerrel J, Ibáñez R, Della Togna G. Recovery and Characterization of Spermatozoa in a Neotropical, Terrestrial, Direct-Developing Riparian Frog ( Craugastor evanesco) through Hormonal Stimulation. Animals (Basel) 2023; 13:2689. [PMID: 37684953 PMCID: PMC10486684 DOI: 10.3390/ani13172689] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/19/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
The Vanishing Rainfrog (Craugastor evanesco) is an endemic and critically endangered frog species of Panama. It is suspected that 90% of the population has disappeared from the wild. Frogs were collected from the wild and brought to a Captive Breeding Program; however, accomplishing regular reproductive events for this species has been difficult. The objective of this study was to determine the effect of hormonal stimulation on the production and quality of C. evanesco spermatozoa, aiming to develop an efficient and safe sperm collection protocol as a tool to help reproduce this endangered species. Mature males received intra-peritoneal injections with one of six hormone treatments, including des-Gly10, D-Ala6, Pro-NHEt9-GnRH-A, Amphiplex or hCG. Urine samples were collected at 10 different time points post-injection. Quality assessments included sperm concentration, percentage motility, percentage forward progressive motility (FPM), osmolality, pH and morphology analysis. Our results indicate that the optimal treatment for the collection of highly concentrated sperm samples of C. evanesco is 4 µg/gbw GnRH, followed by Amphiplex and 2 µg/gbw GnRH as sub-optimal treatments and finally, 6 µg/gbw GnRH and 5 and 10 IU/gbw hCG as non-optimal treatments. GnRH-A at 4 μg/gbw and Amphiplex stimulated the production of samples with the highest sperm concentrations and quality, despite Amphiplex producing lower percentages of intact acrosome and tail. In contrast, hCG concentrations were not reliable inducers of sperm production, consistently showing lower concentrations, higher percentages of sperm abnormalities and more acidic spermic urine than that induced by Amphiplex and GnRH-A. Morphological assessments revealed that C. evanesco spermatozoa have a filiform shape with a large acrosome on the anterior part of an elongated head, a small midpiece and a long tail with two filaments joined together by an undulating membrane.
Collapse
Affiliation(s)
- Yineska Otero
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
- Facultad de Medicina Veterinaria, Universidad de Panamá, Bella Vista, Apartado 3366, Panama
| | - Natalie E. Calatayud
- San Diego Zoo Wildlife Alliance, Beckman Center for Conservation Research, 15600 San Pasqual Valley Road, Escondido, CA 92025, USA;
| | - Igli D. Arcia
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
| | - Denise Mariscal
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
- Facultad de Medicina Veterinaria, Universidad de Panamá, Bella Vista, Apartado 3366, Panama
| | - Diego Samaniego
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
- Facultad de Medicina Veterinaria, Universidad de Panamá, Bella Vista, Apartado 3366, Panama
| | - Dionel Rodríguez
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
- Facultad de Ciencias Naturales, Exactas y Tecnología, Escuela de Biología, Universidad de Panamá, Bella Vista, Apartado 3366, Panama
| | - Karina Rodríguez
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
- Facultad de Ciencias Naturales, Exactas y Tecnología, Escuela de Biología, Universidad de Panamá, Bella Vista, Apartado 3366, Panama
| | - Jorge Guerrel
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
| | - Roberto Ibáñez
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
- Facultad de Ciencias Naturales, Exactas y Tecnología, Escuela de Biología, Universidad de Panamá, Bella Vista, Apartado 3366, Panama
| | - Gina Della Togna
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
- The Amphibian Survival Alliance, Apartado 0830-00689, Panama
| |
Collapse
|