1
|
Korsirikoon C, Techaniyom P, Kettawan A, Rungruang T, Metheetrairut C, Prombutara P, Kettawan AK. Cold-pressed extraction of perilla seed oil enriched with alpha-linolenic acid mitigates tumour progression and restores gut microbial homeostasis in the AOM/DSS mice model of colitis-associated colorectal cancer. PLoS One 2024; 19:e0315172. [PMID: 39652552 PMCID: PMC11627366 DOI: 10.1371/journal.pone.0315172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
The present investigation explores into the influence of dietary nutrients, particularly alpha-linolenic acid (ALA), a plant-derived omega-3 fatty acid abundant in perilla seed oil (PSO), on the development of colitis-associated colorectal cancer (CRC). The study employs a mouse model to scrutinize the effects of ALA-rich PSO in the context of inflammation-driven CRC. Perilla seeds were subjected to oil extraction, and the nutritional composition of the obtained oil was analysed. Male ICR mice, initiated at four weeks of age, were subjected to diets comprising 5%, 10%, or 20% PSO, 10% fish oil, or 5% soybean oil. All groups, with the exception of the control group (5% soybean oil), underwent induction with azoxymethane (AOM) and dextran sulphate sodium (DSS) to instigate CRC. Disease development, colon samples, preneoplastic lesions, dysplasia, and biomarkers were meticulously evaluated. Furthermore, gut microbiota composition was elucidated through 16S rRNA sequencing. The analysis revealed that PSO contained 61.32% ALA and 783.90 mg/kg tocopherols. Mice subjected to diets comprising 5% soybean or 10% fish oil exhibited higher tumour incidence, burden, multiplicity, and aberrant crypt counts. Remarkably, these parameters were significantly reduced in mice fed a 5% PSO diet. Additionally, 5% PSO-fed mice displayed reduced proliferative and pro-inflammatory markers in colon tissues, coupled with an alleviation of AOM/DSS-induced gut dysbiosis. Notably, PSO demonstrated inhibitory effects on colitis-associated CRC in the AOM/DSS mice model, achieved through the suppression of proliferative and pro-inflammatory protein levels, and mitigation of gut dysbiosis, with discernible efficacy observed at a 5% dietary concentration.
Collapse
Affiliation(s)
- Chawin Korsirikoon
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand
| | - Peerapa Techaniyom
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand
| | | | - Thanaporn Rungruang
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanatip Metheetrairut
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pinidphon Prombutara
- OMICS Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
2
|
Permain J, Hock B, Eglinton T, Purcell R. Functional links between the microbiome and the molecular pathways of colorectal carcinogenesis. Cancer Metastasis Rev 2024; 43:1463-1474. [PMID: 39340753 PMCID: PMC11554747 DOI: 10.1007/s10555-024-10215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Colorectal cancer (CRC) is a common cancer, with a concerning rise in early-onset CRC cases, signalling a shift in disease epidemiology. Whilst our understanding of the molecular underpinnings of CRC has expanded, the complexities underlying its initiation remain elusive, with emerging evidence implicating the microbiome in CRC pathogenesis. This review synthesizes current knowledge on the intricate interplay between the microbiome, tumour microenvironment (TME), and molecular pathways driving CRC carcinogenesis. Recent studies have reported how the microbiome may modulate the TME and tumour immune responses, consequently influencing cancer progression, and whilst specific bacteria have been linked with CRC, the underlying mechanisms remains poorly understood. By elucidating the functional links between microbial landscapes and carcinogenesis pathways, this review offers insights into how bacteria orchestrate diverse pathways of CRC development, shedding light on potential therapeutic targets and personalized intervention strategies.
Collapse
Affiliation(s)
- Jessica Permain
- Department of Surgery and Critical Care, University of Otago, Christchurch, New Zealand
| | - Barry Hock
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Timothy Eglinton
- Department of Surgery and Critical Care, University of Otago, Christchurch, New Zealand
| | - Rachel Purcell
- Department of Surgery and Critical Care, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
3
|
Binienda A, Owczarek K, Sałaga M, Fichna J. Synthetic free fatty acid receptor (FFAR) 2 agonist 4-CMTB and FFAR4 agonist GSK13764 inhibit colon cancer cell growth and migration and regulate FFARs expression in in vitro and in vivo models of colorectal cancer. Pharmacol Rep 2024; 76:1403-1414. [PMID: 39432182 PMCID: PMC11582145 DOI: 10.1007/s43440-024-00667-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Free fatty acid receptors (FFARs) are G protein-coupled receptors that divide into 4 subtypes; FFAR2 and FFAR3 are activated by short-chain fatty acids, while FFAR1 and FFAR4 - by long-chain fatty acids. Recent studies show the potential involvement of FFARs in the pathophysiology of colorectal cancer (CRC). A decrease in FFAR2 and FFAR4 gene expression is observed in patients with CRC. The aim of our study was to evaluate the anti-cancer effect of FFAR2 and FFAR4 stimulation by selective synthetic agonists in in vitro and in vivo models of CRC. MATERIALS AND METHODS FFAR2 agonist, 4-CMTB, and FFAR4 agonist, GSK137647 were used. Cell viability (CCD 841 CoN and SW-480) was determined after 48 h incubation with tested compounds using MTT assay. Real-time qPCR and Western Blot were used to identify changes in FFARs expression. Migration and invasion were characterized by commercially available tests. Colitis-associated CRC (CACRC) mouse model was induced by azoxymethane and dextran sodium sulfate. RESULTS 4-CMTB and GSK137647 significantly reduced cancer cell growth as well as migration and invasion capacities. Both synthetic compounds increased FFAR2 and FFAR4 expression in SW-480 cells. Neither 4-CMTB nor GSK137647 influenced the course of AOM/DSS-induced CACRC in mice, however, 4-CMTB elevated FFAR2 protein expression in mouse tissues. CONCLUSION We presented that stimulation of FFAR2 and FFAR4 may inhibit CRC cell viability and migration and that the FFAR2 and FFAR4 expression decreased in CRC can be restored by treatment with respective agonists, indicating new promising pharmacological targets in CRC treatment.
Collapse
Affiliation(s)
- Agata Binienda
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, Łódź, 92-215, Poland
| | - Katarzyna Owczarek
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, Łódź, 92-215, Poland
| | - Maciej Sałaga
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, Łódź, 92-215, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, Łódź, 92-215, Poland.
| |
Collapse
|
4
|
Sun W, Su Y, Zhang Z. Characterizing m6A modification factors and their interactions in colorectal cancer: implications for tumor subtypes and clinical outcomes. Discov Oncol 2024; 15:457. [PMID: 39292326 PMCID: PMC11411059 DOI: 10.1007/s12672-024-01298-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND The study aims to comprehensively combine colorectal cancer data cohorts in order to analyze the effects of various DNA methylation-coding genes on colorectal cancer patients. The annual incidence and mortality of colorectal cancer are very high, and there are no effective treatments for advanced colorectal cancer. DNA methylation is a method widely used to regulate epigenetics in the molecular mechanism study of tumors. METHOD Three single-cell cohorts GSE166555, GSE146771, and EMTAB8107, and five transcriptome cohorts GSE17536, GSE39582, GSE72970, and TCGA-CRC (TCGA-COAD and TCGA-READ) were applied in this study. 2 erasers (ALKBH5 and FTO), There are 7 writers (METTL3, METTL14, WTAP, VIRMA, RBM15, RBM15B, and ZC3H13) and 11 readers (YTHDC1, IGF2BP1, IGF2BP2, IGF2BP3, YTHDF1, YTHDF3, YTHDC2, and HNRNPA2B1, YTHDF2, HNRNPC and RBMX), a total of 20 M6A regulators, were used as the basis of the dataset in this study and were applied to the construction of molecular typing and prognostic models. Drugs that are differentially sensitive in methylation-regulated gene-related prognostic models were identified using the ConsensusClusterPlus package, which was also used to identify distinct methylation regulatory expression patterns in colorectal cancer and to model the relationship between tissue gene expression profiles and drug IC50 values. Finally, TISCH2 assessed which immune cells were significantly expressed with M6A scores. The immunosuppression of M6A methylation is spatially explained. RESULTS This study used data from 583 CRC patients in the TCGA-CRC cohort. Firstly, the mutation frequency and CNV variation frequency of 20 m6A modification-related factors were analyzed, and the corresponding histogram and heat map were drawn. The study next analyzed the expression variations between mutant and wild forms of the VIRMA gene and explored differences in the expression of these variables in tumor and normal tissues. In addition, the samples were divided into different subgroups by molecular clustering method based on m6A modification, and each subgroup's expression and clinicopathological characteristics were analyzed. Finally, we compared prognostic differences, tumor microenvironment (TME) characteristics, immune cell infiltration, and gene function enrichment among different subpopulations. We also developed a colorectal cancer m6A-associated gene signature and validated its prognostic effects across multiple cohorts. Finally, using single-cell RNA sequencing data, we confirmed that tumor cells show elevated expression of m6A-related gene signatures. DISCUSSION This study explored the mutation frequency, expression differences, interactions, molecular clustering, prognostic effect, and association with tumor characteristics of m6A modification-related factors in CRC and validated them at the single-cell level. These results clarify the association between m6A alteration and colorectal cancer (CRC) and offer important insights into the molecular recognition and management of cancer.
Collapse
Affiliation(s)
- Weidong Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Yingchao Su
- Department of Neurology, Xinqiao Hospital, Army Medical University, No. 183 Xinqiao Road, Chongqing, 400037, China
| | - Zhiqiang Zhang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, No. 183 Xinqiao Road, Chongqing, 400037, China.
| |
Collapse
|
5
|
Xie L, Kong Q, Ai M, He A, Yao B, Zhang L, Zhang K, Zhu C, Li Y, Xia L, Tian R, Xu R. Spatial Proteomic Profiling of Colorectal Cancer Revealed Its Tumor Microenvironment Heterogeneity. J Proteome Res 2024; 23:3342-3352. [PMID: 39026393 DOI: 10.1021/acs.jproteome.3c00719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Colorectal cancer is a predominant malignancy with a second mortality worldwide. Despite its prevalence, therapeutic options remain constrained and surgical operation is still the most useful therapy. In this regard, a comprehensive spatially resolved quantitative proteome atlas was constructed to explore the functional proteomic landscape of colorectal cancer. This strategy integrates histopathological analysis, laser capture microdissection, and proteomics. Spatial proteome profiling of 200 tissue section samples facilitated by the fully integrated sample preparation technology SISPROT enabled the identification of more than 4000 proteins on the Orbitrap Exploris 240 from 2 mm2 × 10 μm tissue sections. Compared with normal adjacent tissues, we identified a spectrum of cancer-associated proteins and dysregulated pathways across various regions of colorectal cancer including ascending colon, transverse colon, descending colon, sigmoid colon, and rectum. Additionally, we conducted proteomic analysis on tumoral epithelial cells and paracancerous epithelium from early to advanced stages in hallmark rectum cancer and sigmoid colon cancer. Bioinformatics analysis revealed functional proteins and cell-type signatures associated with different regions of colorectal tumors, suggesting potential clinical implications. Overall, this study provides a comprehensive spatially resolved functional proteome landscape of colorectal cancer, serving as a valuable resource for exploring potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Lifen Xie
- Department of Oncology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), 1017 Dongmen North Road, Shenzhen 518020, China
- The First Affiliated Hospital, Jinan University, 613 Huangpu Avenue West Road, Guangzhou 510632, China
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Qian Kong
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Meiling Ai
- Department of Oncology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), 1017 Dongmen North Road, Shenzhen 518020, China
- The First Affiliated Hospital, Jinan University, 613 Huangpu Avenue West Road, Guangzhou 510632, China
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - An He
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Bin Yao
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Luobin Zhang
- Department of Oncology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), 1017 Dongmen North Road, Shenzhen 518020, China
| | - Keren Zhang
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Chaowei Zhu
- Department of Gastrointestinal Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), 1017 Dongmen North Road, Shenzhen 518020, China
| | - Yangqiu Li
- Department of Hematology, First Affiliated Hospital, Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, 613 Huangpu Avenue West Road, Guangzhou 510632, China
| | - Ligang Xia
- Department of Gastrointestinal Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), 1017 Dongmen North Road, Shenzhen 518020, China
| | - Ruijun Tian
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Ruilian Xu
- Department of Oncology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), 1017 Dongmen North Road, Shenzhen 518020, China
| |
Collapse
|
6
|
Fialková V, Ďúranová H, Borotová P, Klongová L, Grabacka M, Speváková I. Natural Stilbenes: Their Role in Colorectal Cancer Prevention, DNA Methylation, and Therapy. Nutr Cancer 2024; 76:760-788. [PMID: 38950568 DOI: 10.1080/01635581.2024.2364391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024]
Abstract
The resistance of colorectal cancer (CRC) to conventional therapeutic modalities, such as radiation therapy and chemotherapy, along with the associated side effects, significantly limits effective anticancer strategies. Numerous epigenetic investigations have unveiled that naturally occurring stilbenes can modify or reverse abnormal epigenetic alterations, particularly aberrant DNA methylation status, offering potential avenues for preventing or treating CRC. By modulating the activity of the DNA methylation machinery components, phytochemicals may influence the various stages of CRC carcinogenesis through multiple molecular mechanisms. Several epigenetic studies, especially preclinical research, have highlighted the effective DNA methylation modulatory effects of stilbenes with minimal adverse effects on organisms, particularly in combination therapies for CRC. However, the available preclinical and clinical data regarding the effects of commonly encountered stilbenes against CRC are currently limited. Therefore, additional epigenetic research is warranted to explore the preventive potential of these phytochemicals in CRC development and to validate their therapeutic application in the prevention and treatment of CRC. This review aims to provide an overview of selected bioactive stilbenes as potential chemopreventive agents for CRC with a focus on their modulatory mechanisms of action, especially in targeting alterations in DNA methylation machinery in CRC.
Collapse
Affiliation(s)
- Veronika Fialková
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Hana Ďúranová
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Petra Borotová
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Lucia Klongová
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Maja Grabacka
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, Cracow, Poland
| | - Ivana Speváková
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| |
Collapse
|
7
|
Adrianto AA, Riwanto I, Sadhana U, Setyawan H, Mahati E, Widyarini S, Wandita AAA, Paramita DK. Morphological Changes and Inflammation Preceded the Pathogenesis of 1,2-Dimethylhydrazine-Induced Colorectal Cancer. Asian Pac J Cancer Prev 2024; 25:2059-2067. [PMID: 38918668 PMCID: PMC11382862 DOI: 10.31557/apjcp.2024.25.6.2059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Indexed: 06/27/2024] Open
Abstract
OBJECTIVE This study examined the morphological changes in the colonic mucosa and the presence of inflammation in rats induced with 1,2-dimethylhydrazine (DMH) 30 mg/kg BW over 9, 11, and 13 weeks without a latency period. METHODS Hematoxylin and eosin staining was performed to assess the morphology and characteristic alteration of the epitheliocytes in the colon. Immunohistochemistry was employed to assess the expression of tumor necrosis factor (TNF)-α and cyclooxygenase-2 (COX-2). The difference in the severity of inflammation and COX-2 expression was examined using one-way analysis of variance. The correlation of COX-2 expression with the severity of inflammation was analyzed using Spearman's rank correlation test. RESULT Until week 13, chronic inflammation and non-hyperplastic and hyperplastic aberrant crypt foci occurred. The severity of inflammation gradually shifted from high moderate to low moderate. TNF-α expression was high in all groups; however, COX-2 expression was gradually lower with longer duration of induction, which corresponded with the severity of inflammation. CONCLUSION DMH induction until week 13 without a latency period caused chronic inflammation without the formation of adenoma or adenocarcinoma. A very strong correlation was established between COX-2 expression and inflammation.
Collapse
Affiliation(s)
- Albertus Ari Adrianto
- Doctoral Study Program of Medical and Health Science, Universitas Diponegoro, Semarang, Indonesia
- Digestive Surgery Department of Medical Faculty Universitas Diponegoro, Semarang, Indonesia
| | - Ignatius Riwanto
- Digestive Surgery Department of Medical Faculty Universitas Diponegoro, Semarang, Indonesia
| | - Udadi Sadhana
- Anatomical Pathology Department of Medical Faculty Universitas Diponegoro, Semarang, Indonesia
| | - Henry Setyawan
- Faculty of Public Health Universitas Diponegoro, Semarang, Indonesia
| | - Endang Mahati
- Pharmacology and Therapeutic Department of Medical Faculty Universitas Diponegoro, Semarang, Indonesia
| | | | - Afranetta Aulya Asri Wandita
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dewi Kartikawati Paramita
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Integrated Research Laboratory, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Study Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
8
|
Zohud O, Midlej K, Lone IM, Nashef A, Abu-Elnaaj I, Iraqi FA. Studying the Effect of the Host Genetic Background of Juvenile Polyposis Development Using Collaborative Cross and Smad4 Knock-Out Mouse Models. Int J Mol Sci 2024; 25:5812. [PMID: 38891999 PMCID: PMC11172477 DOI: 10.3390/ijms25115812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Juvenile polyposis syndrome (JPS) is a rare autosomal dominant disorder characterized by multiple juvenile polyps in the gastrointestinal tract, often associated with mutations in genes such as Smad4 and BMPR1A. This study explores the impact of Smad4 knock-out on the development of intestinal polyps using collaborative cross (CC) mice, a genetically diverse model. Our results reveal a significant increase in intestinal polyps in Smad4 knock-out mice across the entire population, emphasizing the broad influence of Smad4 on polyposis. Sex-specific analyses demonstrate higher polyp counts in knock-out males and females compared to their WT counterparts, with distinct correlation patterns. Line-specific effects highlight the nuanced response to Smad4 knock-out, underscoring the importance of genetic variability. Multimorbidity heat maps offer insights into complex relationships between polyp counts, locations, and sizes. Heritability analysis reveals a significant genetic basis for polyp counts and sizes, while machine learning models, including k-nearest neighbors and linear regression, identify key predictors, enhancing our understanding of juvenile polyposis genetics. Overall, this study provides new information on understanding the intricate genetic interplay in the context of Smad4 knock-out, offering valuable insights that could inform the identification of potential therapeutic targets for juvenile polyposis and related diseases.
Collapse
Affiliation(s)
- Osayd Zohud
- Department of Clinical Microbiology and Immunology, Faculty of Medicine and Health Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; (O.Z.); (K.M.); (I.M.L.)
| | - Kareem Midlej
- Department of Clinical Microbiology and Immunology, Faculty of Medicine and Health Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; (O.Z.); (K.M.); (I.M.L.)
| | - Iqbal M. Lone
- Department of Clinical Microbiology and Immunology, Faculty of Medicine and Health Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; (O.Z.); (K.M.); (I.M.L.)
| | - Aysar Nashef
- Department of Oral and Maxillofacial Surgery, Baruch Padeh Medical Center, Poriya Tebaria 42310, Israel; (A.N.); (I.A.-E.)
- Department of Oral and Maxillofacial Surgery, Meir Medical Center, Faculty of Medicine and Health Sciences, Tel-Aviv University, Kfar-Saba 69978, Israel
| | - Imad Abu-Elnaaj
- Department of Oral and Maxillofacial Surgery, Baruch Padeh Medical Center, Poriya Tebaria 42310, Israel; (A.N.); (I.A.-E.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Tsaft 33241, Israel
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine and Health Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; (O.Z.); (K.M.); (I.M.L.)
| |
Collapse
|
9
|
Singh T, Sharma D, Sharma R, Tuli HS, Haque S, Ramniwas S, Mathkor DM, Yadav V. The Role of Phytonutrient Kaempferol in the Prevention of Gastrointestinal Cancers: Recent Trends and Future Perspectives. Cancers (Basel) 2024; 16:1711. [PMID: 38730663 PMCID: PMC11083332 DOI: 10.3390/cancers16091711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
In recent years, kaempferol, a natural flavonoid present in various fruits and vegetables, has received significant attention in gastrointestinal cancer research due to its varied therapeutic effects. Kaempferol has been proven to alter several molecular mechanisms and pathways, such as the PI3/Akt, mTOR, and Erk/MAPK pathway involved in cancer progression, showing its inhibitory effects on cell proliferation, survival, angiogenesis, metastasis, and migration. Kaempferol is processed in the liver and small intestine, but limited bioavailability has been a major concern in the clinical implications of kaempferol. Nano formulations have been proven to enhance kaempferol's efficacy in cancer prevention. The synergy of nanotechnology and kaempferol has shown promising results in in vitro studies, highlighting the importance for more in vivo research and clinical trials to determine safety and efficacy. This review aims to focus on the role of kaempferol in various types of gastrointestinal cancer and how the combination of kaempferol with nanotechnology helps in improving therapeutic efficacy in cancer treatment.
Collapse
Affiliation(s)
- Tejveer Singh
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi 110007, India; (D.S.); (R.S.)
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences-Defence Research and Development Organization, (INMAS-DRDO) New Delhi, Delhi 110054, India
| | - Deepika Sharma
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi 110007, India; (D.S.); (R.S.)
| | - Rishabh Sharma
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi 110007, India; (D.S.); (R.S.)
- Amity Stem Cell Institute, Amity Medical School, Amity University, Gurugram 122412, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences & Technology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India;
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; (S.H.); (D.M.M.)
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 11022801, Lebanon
| | - Seema Ramniwas
- University Centre for Research & Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali 140413, India;
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; (S.H.); (D.M.M.)
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, SE-20213 Malmö, Sweden
| |
Collapse
|
10
|
Stanojevic A, Spasic J, Marinkovic M, Stojanovic-Rundic S, Jankovic R, Djuric A, Zoidakis J, Fijneman RJA, Castellvi-Bel S, Cavic M. Methylenetetrahydrofolate reductase polymorphic variants C677T and A1298C in rectal cancer in Slavic population: significance for cancer risk and response to chemoradiotherapy. Front Genet 2024; 14:1299599. [PMID: 38288161 PMCID: PMC10822895 DOI: 10.3389/fgene.2023.1299599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/31/2023] [Indexed: 01/31/2024] Open
Abstract
Background: Methylenetetrahydrofolate reductase (MTHFR) single nucleotide polymorphisms (SNPs) have been suggested as risk, prognostic, and predictive factors for colorectal cancer in various populations, but have not been validated so far. The aim of this study was to examine the association of MTHFR C677T (rs1801133) and A1298C (rs1801131) single nucleotide polymorphisms with the risk of rectal cancer as well as the response to neoadjuvant chemoradiotherapy (nCRT) based on 5-Fluorouracil (5-FU)/leucovorin (LV) in the locally advanced setting. Patients and methods: This case-control study included 119 healthy controls and 97 patients with locally advanced rectal cancer (LARC). For MTHFR genotyping, restriction fragment length polymorphism analysis (PCR-RFLP) was employed. Results: In silico analysis highlighted that SNPs C677T and A1298T correlate with MTHFR gene expression, and that gene expression profile correlates with cancer risk and stage. Using dominant and recessive models, it was found that the MTHFR 677CC vs. 677CT+677TT have increased risk of cancer development (odds ratio (OR): 2.27; 95% confidence interval (CI): 1.30-3.95, p = 0.002) as well as 677CC+677CT compared to 677TT (OR: 4.18, 95% CI: 1.16-14.99, p = 0.014). MTHFR 1298AA also shown increased risk for cancer development compared to 1298AC+1298CC (OR:2.0, 95% CI: 1.20-3.59, p = 0.035) Statistical analysis of combined genotypes highlighted the protective role of CT/AC combined genotype (OR: 3.15 95% CI: 1.576-6.279, p = 0.002) while the CC/AA genotype showed an increased risk for rectal cancer development (OR: 2.499, 95% CI: 1.246-5.081, p = 0.016) The carriers of the 677C/1298A haplotype had the highest risk for developing rectal cancer (OR: 1.74; 95% CI: 1.198-2.530, p = 0.002) while the 677T/1298C haplotype seems to provide a protective effect. (OR: 0.44; 95%CI 0.248-0.795, p = 0.003). No significant association with response to chemoradiotherapy was found. Conclusion: Our data point to MTHFR 667C allele and 1298A alleles as low-penetrance risk factors for rectal cancer in our population. To the best of our knowledge, this is the first study of this type performed on the Slavic population in the Western Balkan, as various population-based factors might also be significant our findings can be used for future meta-analyses and the construction of genetic cancer risk prediction panels.
Collapse
Affiliation(s)
- Aleksandra Stanojevic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Jelena Spasic
- Clinic for Medical Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Mladen Marinkovic
- Clinic for Radiation Oncology and Diagnostics, Department of Radiation Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Suzana Stojanovic-Rundic
- Clinic for Radiation Oncology and Diagnostics, Department of Radiation Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Radmila Jankovic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Ana Djuric
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Jerome Zoidakis
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Remond J A Fijneman
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Sergi Castellvi-Bel
- Gastroenterology Department, Fundació Recerca Clínic Barcelona-Institutd'Investigacions Biomèdiques August Pi iSunyer, Centro de Investigación Biomédicaen Red de Enfermedades Hepáticas y Digestivas, Clínic Barcelona, University of Barcelona, Barcelona, Spain
| | - Milena Cavic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| |
Collapse
|
11
|
Kwao-Zigah G, Bediako-Bowan A, Boateng PA, Aryee GK, Abbang SM, Atampugbire G, Quaye O, Tagoe EA. Microbiome Dysbiosis, Dietary Intake and Lifestyle-Associated Factors Involve in Epigenetic Modulations in Colorectal Cancer: A Narrative Review. Cancer Control 2024; 31:10732748241263650. [PMID: 38889965 PMCID: PMC11186396 DOI: 10.1177/10732748241263650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/18/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Background: Colorectal cancer is the second cause of cancer mortality and the third most commonly diagnosed cancer worldwide. Current data available implicate epigenetic modulations in colorectal cancer development. The health of the large bowel is impacted by gut microbiome dysbiosis, which may lead to colon and rectum cancers. The release of microbial metabolites and toxins by these microbiotas has been shown to activate epigenetic processes leading to colorectal cancer development. Increased consumption of a 'Westernized diet' and certain lifestyle factors such as excessive consumption of alcohol have been associated with colorectal cancer.Purpose: In this review, we seek to examine current knowledge on the involvement of gut microbiota, dietary factors, and alcohol consumption in colorectal cancer development through epigenetic modulations.Methods: A review of several published articles focusing on the mechanism of how changes in the gut microbiome, diet, and excessive alcohol consumption contribute to colorectal cancer development and the potential of using these factors as biomarkers for colorectal cancer diagnosis.Conclusions: This review presents scientific findings that provide a hopeful future for manipulating gut microbiome, diet, and alcohol consumption in colorectal cancer patients' management and care.
Collapse
Affiliation(s)
- Genevieve Kwao-Zigah
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Antionette Bediako-Bowan
- Department of Surgery, University of Ghana Medical School, Accra, Ghana
- Department of Surgery, Korle Bu Teaching Hospital, Accra, Ghana
| | - Pius Agyenim Boateng
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Gloria Kezia Aryee
- Department of Medical Laboratory Sciences, University of Ghana, Accra, Ghana
| | - Stacy Magdalene Abbang
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Gabriel Atampugbire
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Osbourne Quaye
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Emmanuel A. Tagoe
- Department of Medical Laboratory Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
12
|
Órdenes P, Carril Pardo C, Elizondo-Vega R, Oyarce K. Current Research on Molecular Biomarkers for Colorectal Cancer in Stool Samples. BIOLOGY 2023; 13:15. [PMID: 38248446 PMCID: PMC10813333 DOI: 10.3390/biology13010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 01/23/2024]
Abstract
Colorectal cancer (CRC) is one of the most diagnosed cancers worldwide, with a high incidence and mortality rate when diagnosed late. Currently, the methods used in healthcare to diagnose CRC are the fecal occult blood test, flexible sigmoidoscopy, and colonoscopy. However, the lack of sensitivity and specificity and low population adherence are driving the need to implement other technologies that can identify biomarkers that not only help with early CRC detection but allow for the selection of more personalized treatment options. In this regard, the implementation of omics technologies, which can screen large pools of biological molecules, coupled with molecular validation, stands out as a promising tool for the discovery of new biomarkers from biopsied tissues or body fluids. This review delves into the current state of the art in the identification of novel CRC biomarkers that can distinguish cancerous tissue, specifically from fecal samples, as this could be the least invasive approach.
Collapse
Affiliation(s)
- Patricio Órdenes
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Concepción, Concepción 4030000, Chile; (P.Ó.); (C.C.P.)
| | - Claudio Carril Pardo
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Concepción, Concepción 4030000, Chile; (P.Ó.); (C.C.P.)
| | - Roberto Elizondo-Vega
- Laboratorio de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070386, Chile;
| | - Karina Oyarce
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Concepción, Concepción 4030000, Chile; (P.Ó.); (C.C.P.)
| |
Collapse
|
13
|
Sheikhnia F, Rashidi V, Maghsoudi H, Majidinia M. Potential anticancer properties and mechanisms of thymoquinone in colorectal cancer. Cancer Cell Int 2023; 23:320. [PMID: 38087345 PMCID: PMC10717210 DOI: 10.1186/s12935-023-03174-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 12/04/2023] [Indexed: 10/14/2024] Open
Abstract
Colorectal neoplasms are one of the deadliest diseases among all cancers worldwide. Thymoquinone (TQ) is a natural compound of Nigella sativa that has been used in traditional medicine against a variety of acute/chronic diseases such as asthma, bronchitis, rheumatism, headache, back pain, anorexia, amenorrhea, paralysis, inflammation, mental disability, eczema, obesity, infections, depression, dysentery, hypertension, gastrointestinal, cardiovascular, hepatic, and renal disorders. This review aims to present a detailed report on the studies conducted on the anti-cancer properties of TQ against colorectal cancer, both in vitro and in vivo. TQ stands as a promising natural therapeutic agent that can enhance the efficacy of existing cancer treatments while minimizing the associated adverse effects. The combination of TQ with other anti-neoplastic agents promoted the efficacy of existing cancer treatments. Further research is needed to acquire a more comprehensive understanding of its exact molecular targets and pathways and maximize its clinical usefulness. These investigations may potentially aid in the development of novel techniques to combat drug resistance and surmount the obstacles presented by chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Farhad Sheikhnia
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahid Rashidi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Hossein Maghsoudi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
14
|
Grot N, Kaczmarek-Ryś M, Lis-Tanaś E, Kryszczyńska A, Nowakowska D, Jakubiuk-Tomaszuk A, Paszkowski J, Banasiewicz T, Hryhorowicz S, Pławski A. NTHL1 Gene Mutations in Polish Polyposis Patients-Weighty Player or Vague Background? Int J Mol Sci 2023; 24:14548. [PMID: 37834005 PMCID: PMC10572874 DOI: 10.3390/ijms241914548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Multiple polyposes are heterogeneous diseases with different underlying molecular backgrounds, sharing a common symptom: the presence of transforming into cancerous intestinal polyps. Recent reports have indicated biallelic mutations in the NTHL1 gene, which is involved in base excision repair (BER), as predisposing to an elevated risk of colorectal cancer (CRC). We aimed to evaluate the significance of the p.Q82* truncating variant in predisposition to intestinal polyposis by assessing its frequency in polyposis patients. We genotyped 644 Polish patients and 634 control DNA samples using high-resolution melting analysis (HRM) and Sanger sequencing. We found the p.Q82* variant in four polyposis patients; in three, it was homozygous (OR = 6.90, p value = 0.202). Moreover, the p.R92C mutation was detected in one patient. We also looked more closely at the disease course in patients carrying NTHL1 mutations. Two homozygous patients also presented other neoplasia. In the family case, we noticed the earlier presence of polyps in the proband and early hepatoblastoma in his brother. We cannot univocally confirm the relationship of p.Q82* with an increased risk of CRC. However, homozygous p.Q82* was more frequent by 10-fold in patients without other mutations identified, which makes NTHL1 gene screening in this group reasonable.
Collapse
Affiliation(s)
- Natalia Grot
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (N.G.); (M.K.-R.); (E.L.-T.); (A.K.); (S.H.)
| | - Marta Kaczmarek-Ryś
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (N.G.); (M.K.-R.); (E.L.-T.); (A.K.); (S.H.)
| | - Emilia Lis-Tanaś
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (N.G.); (M.K.-R.); (E.L.-T.); (A.K.); (S.H.)
| | - Alicja Kryszczyńska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (N.G.); (M.K.-R.); (E.L.-T.); (A.K.); (S.H.)
| | - Dorota Nowakowska
- Cancer Genetics Unit, Cancer Prevention Department, The Maria Sklodowska-Curie National Research Institute of Oncology in Warsaw, 02-781 Warsaw, Poland;
| | - Anna Jakubiuk-Tomaszuk
- Department of Pediatric Neurology, Medical University of Bialystok, 15-089 Bialystok, Poland;
- Medical Genetics Unit, Mastermed Medical Center, 15-089 Bialystok, Poland
| | - Jacek Paszkowski
- Department of General and Endocrine Surgery and Gastroenterological Oncology, Poznań University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland; (J.P.); (T.B.)
| | - Tomasz Banasiewicz
- Department of General and Endocrine Surgery and Gastroenterological Oncology, Poznań University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland; (J.P.); (T.B.)
| | - Szymon Hryhorowicz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (N.G.); (M.K.-R.); (E.L.-T.); (A.K.); (S.H.)
| | - Andrzej Pławski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (N.G.); (M.K.-R.); (E.L.-T.); (A.K.); (S.H.)
- Department of General and Endocrine Surgery and Gastroenterological Oncology, Poznań University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland; (J.P.); (T.B.)
| |
Collapse
|
15
|
Zeren S, Seker S, Akgün GA, Okur E, Yerlikaya A. Label-free nLC-MS/MS proteomic analysis reveals significant differences in the proteome between colorectal cancer tissues and normal colon mucosa. Med Oncol 2023; 40:298. [PMID: 37707637 DOI: 10.1007/s12032-023-02173-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/27/2023] [Indexed: 09/15/2023]
Abstract
Despite the discovery of numerous driving and passenger genes that play key roles in cancer characteristics, progress in cancer treatment has not been satisfactory. This is mainly because conventional therapies are neither selective nor targeted. Another important reason is that cancer cells rapidly develop resistance to chemotherapeutic agents due to excessive accumulation of mutations and/or epigenetic changes. In light of this, we believe that the discovery of new targets and key genes/proteins could improve treatment options. In this study, tissue samples (tumor and normal mucosa) were first collected from the colon or rectum by right or left hemicolectomy. Proteomic analysis was then performed using the label-free nLC-MS/MS method. We determined 77 proteins with statistically significant differences in expression levels between cancerous and normal mucosa. While the expression of 76 proteins was decreased in cancer tissues, only one protein (RNA-binding motif protein_X chromosome-RBMX) was increased in colorectal cancer tissues. The bioinformatics portal Metascape was used to determine the biological processes involved. 77 proteins with significantly different expression between cancerous and normal tissues were compared with the UALCAN platform using data from the Clinical Proteomics Tumor Analysis Consortium (CPTAC). The results for 45 of the 77 proteins clearly matched the CPTAC dataset. Western blot studies confirmed that RBMX protein (critical for gene transcription and alternative splicing of various pre-mRNAs) was increased 2.04-fold, while decorin protein (a matrix proteoglycan with tumor suppressor functions) was dramatically decreased by about 6.04-fold in tumor samples compared with normal mucosa.
Collapse
Affiliation(s)
- Sezgin Zeren
- Department of General Surgery, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Semih Seker
- Department of Medical Biology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Gizem Akkaş Akgün
- Department of Pathology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Emrah Okur
- Department of Biology, Faculty of Art and Sciences, Kutahya Dumlupınar University, Kutahya, Turkey
| | - Azmi Yerlikaya
- Department of Medical Biology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey.
| |
Collapse
|
16
|
Alfahed A. Molecular pathology of colorectal cancer: The Saudi situation in perspective. Saudi Med J 2023; 44:836-847. [PMID: 37717975 PMCID: PMC10505285 DOI: 10.15537/smj.2023.44.9.20230257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, and one of the most common causes of cancer deaths. In recent times, significant advancements have been made in elucidating the molecular alterations of the disease, and the results have been an improved understanding of CRC biology, as well as the discovery of biomarkers of diagnostic, prognostic, and therapeutic significance. In this review, an evaluation is carried out of the molecular pathology research of CRC emanating from Saudi Arabia. The verdict is that the data on the molecular alterations in CRC from Saudi patients is at best modest. This dearth of molecular pathology data is aptly reflected in the paucity of molecular markers recommended for testing by the Saudi National Cancer Centre guidelines for CRC management. Large scale multi-institutional and multiregional translational studies are required to generate molecular data that would inform diagnostic, prognostic, and risk-stratification guidelines for Saudi CRC patients.
Collapse
Affiliation(s)
- Abdulaziz Alfahed
- From the Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj, Kingdom of Saudi Arabia
| |
Collapse
|
17
|
Sahli H, Dahlbäck C, Lydrup ML, Buchwald P. Impact of previous diverticulitis on 5-year survival and recurrence rates in patients with colorectal cancer. Scand J Gastroenterol 2023; 58:1280-1285. [PMID: 37296500 DOI: 10.1080/00365521.2023.2221361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Diverticulitis and colorectal cancer (CRC) share epidemiological characteristics, but their relationship remains unknown. It is unclear if prognosis following CRC differ for patients with previous diverticulitis compared to those with sporadic cases and patients with inflammatory bowel disease or hereditary syndromes. AIM The aim was to determine 5-year survival and recurrence after colorectal cancer in patients with previous diverticulitis, inflammatory bowel disease and hereditary colorectal cancer compared to sporadic cases. METHODS Patients <75 years of age diagnosed with colorectal cancer at Skåne University Hospital Malmö, Sweden, between January 1st 2012 and December 31st 2017 were identified through the Swedish colorectal cancer registry. Data was retrieved from the Swedish colorectal cancer registry and chart review. Five-year survival and recurrence in colorectal cancer patients with previous diverticulitis were compared to sporadic cases, inflammatory bowel disease associated and hereditary colorectal cancer. RESULTS The study cohort comprised 1052 patients, 28 (2.7%) with previous diverticulitis, 26 (2.5%) IBD, 4 (1.3%) hereditary syndromes and 984 (93.5%) sporadic cases. Patients with a history of acute complicated diverticulitis had a significantly lower 5-year survival rate (61.1%) and higher recurrence rate (38.9%) compared to sporadic cases (87.5% and 18.8% respectively). CONCLUSION Patients with acute complicated diverticulitis had worse 5-year prognosis compared to sporadic cases. The results emphasize the importance of early detection of colorectal cancer in patients with acute complicated diverticulitis.
Collapse
Affiliation(s)
- Hannah Sahli
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Surgery, Skåne University Hospital, Malmö, Sweden
| | - Cecilia Dahlbäck
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Surgery, Skåne University Hospital, Malmö, Sweden
| | - Marie-Louise Lydrup
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Surgery, Skåne University Hospital, Malmö, Sweden
| | - Pamela Buchwald
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Surgery, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
18
|
Huang CY, Wei PL, Batzorig U, Makondi PT, Lee CC, Chang YJ. Identification of Moesin (MSN) as a Potential Therapeutic Target for Colorectal Cancer via the β-Catenin-RUNX2 Axis. Int J Mol Sci 2023; 24:10951. [PMID: 37446127 DOI: 10.3390/ijms241310951] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
CRC is the second leading cause of cancer-related death. The complex mechanisms of metastatic CRC limit available therapeutic choice. Thus, identifying new CRC therapeutic targets is essential. Moesin (MSN), a member of the ezrin-radixin-moesin family, connects the cell membrane to the actin-based cytoskeleton and regulates cell morphology. We investigated the role of MSN in the progression of CRC. GENT2 and oncomine were used to study MSN expression and CRC patient outcomes. MSN-specific shRNAs or MSN-overexpressed plasmid were used to establish MSN-KD and MSN overexpressed cell lines, respectively. SRB, migration, wound healing, and flow cytometry were used to test cell survival and migration. Propidium iodide and annexin V stain were used to analyze the cell cycle and apoptosis. MSN expression was found to be higher in CRC tissues than in normal tissues. Higher MSN expression is associated with poor overall survival, disease-free survival, and relapse-free survival rates in CRC patients. MSN silencing inhibits cell proliferation, adhesion, migration, and invasion in vitro, whereas MSN overexpression accelerates cell proliferation, adhesion, migration, and invasion. RNA sequencing was used to investigate differentially expressed genes, and RUNX2 was discovered as a possible downstream target for MSN. In CRC patients, RUNX2 expression was significantly correlated with MSN expression. We also found that MSN silencing decreased cytoplasmic and nuclear β-catenin levels. Additionally, pharmacological inhibition of β-catenin in MSN-overexpressed cells led to a reduction of RUNX2, and activating β-catenin signaling by inhibiting GSK3β rescued the RUNX2 downregulation in MSN-KD cells. This confirms that MSN regulates RUNX2 expression via activation of β-catenin signaling. Finally, our result further determined that RUNX2 silencing reduced the ability of MSN overexpression cells to proliferate and migrate. MSN accelerated CRC progression via the β-catenin-RUNX2 axis. As a result, MSN holds the potential to become a new target for CRC treatment.
Collapse
Affiliation(s)
- Chien-Yu Huang
- School of Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
| | - Uyanga Batzorig
- Department of Dermatology, University of California, San Diego, CA 92093, USA
| | | | - Cheng-Chin Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Jia Chang
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| |
Collapse
|
19
|
Soloveva N, Novikova S, Farafonova T, Tikhonova O, Zgoda V. Proteomic Signature of Extracellular Vesicles Associated with Colorectal Cancer. Molecules 2023; 28:molecules28104227. [PMID: 37241967 DOI: 10.3390/molecules28104227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The proteins of extracellular vesicles (EVs) provide proteomic signatures that reflect molecular features of EV-producing cells, including cancer cells. Detection of cancer cell EV proteins is of great interest due to the development of novel predictive diagnostic approaches. Using targeted mass spectrometry with stable-isotope-labeled peptide standards (SIS), we measured in this study the levels of 34 EV-associated proteins in vesicles and whole lysate derived from the colorectal cancer (CRC) cell lines Caco-2, HT29 and HCT116. We also evaluated the abundance of 13 EV-associated proteins (FN1, TLN1, ITGB3, HSPA8, TUBA4A, CD9, CD63, HSPG2, ITGB1, GNAI2, TSG101, PACSIN2, and CDC42) in EVs isolated from blood plasma samples from 11 CRC patients and 20 healthy volunteers. Downregulation of TLN1, ITGB3, and TUBA4A with simultaneous upregulation of HSPG2 protein were observed in cancer samples compared to healthy controls. The proteomic cargo of the EVs associated with CRC represents a promising source of potential prognostic markers.
Collapse
Affiliation(s)
- Natalia Soloveva
- Orekhovich Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| | - Svetlana Novikova
- Orekhovich Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| | - Tatiana Farafonova
- Orekhovich Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| | - Olga Tikhonova
- Orekhovich Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| | - Victor Zgoda
- Orekhovich Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| |
Collapse
|
20
|
Kerdreux M, Edin S, Löwenmark T, Bronnec V, Löfgren-Burström A, Zingmark C, Ljuslinder I, Palmqvist R, Ling A. Porphyromonas gingivalis in Colorectal Cancer and its Association to Patient Prognosis. J Cancer 2023; 14:1479-1485. [PMID: 37325051 PMCID: PMC10266249 DOI: 10.7150/jca.83395] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/05/2023] [Indexed: 06/17/2023] Open
Abstract
Microbiota dysbiosis may affect both the development and progression of colorectal cancer (CRC). Large metagenomic studies have highlighted specific oral bacteria linked to CRC including Porphyromonas gingivalis. Few studies have however analysed the implications of this bacterium in CRC progression and survival. In this study, we investigated the intestinal presence of P. gingivalis by qPCR in both faecal and mucosal samples from two different patient cohorts, including patients with precancerous dysplasia or CRC, as well as controls. P. gingivalis was detected in 2.6-5.3% of CRC patients and significantly different levels of P. gingivalis were found in faeces of CRC patients compared to controls (P = 0.028). Furthermore, an association was found between the presence of P. gingivalis in faeces and tumour tissue (P < 0.001). Our findings further suggested a potential link between mucosal P. gingivalis and tumours of MSI subtype (P = 0.040). Last but not least, patients with faecal P. gingivalis were found to have a significantly decreased cancer-specific survival (P = 0.040). In conclusion, P. gingivalis could be linked to patients with CRC and to a worse patient prognosis. Further studies are needed to elucidate the role of P. gingivalis in CRC pathogenesis.
Collapse
Affiliation(s)
- Maïwenn Kerdreux
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Sofia Edin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Thyra Löwenmark
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Vicky Bronnec
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | | | - Carl Zingmark
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Ingrid Ljuslinder
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Agnes Ling
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| |
Collapse
|
21
|
Perez-Mayoral J, Gonzalez-Pons M, Centeno-Girona H, Montes-Rodríguez IM, Soto-Salgado M, Suárez B, Rodríguez N, Colón G, Sevilla J, Jorge D, Llor X, Xicola RM, Toro DH, Tous-López L, Torres-Torres M, Reyes JS, López-Acevedo N, Goel A, Rodríguez-Quilichini S, Cruz-Correa M. Molecular and Sociodemographic Colorectal Cancer Disparities in Latinos Living in Puerto Rico. Genes (Basel) 2023; 14:894. [PMID: 37107652 PMCID: PMC10138302 DOI: 10.3390/genes14040894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND The incidence of sporadic colorectal cancer (CRC) among individuals <50 years (early-onset CRC) has been increasing in the United States (U.S.) and Puerto Rico. CRC is currently the leading cause of cancer death among Hispanic men and women living in Puerto Rico (PRH). The objective of this study was to characterize the molecular markers and clinicopathologic features of colorectal tumors from PRH to better understand the molecular pathways leading to CRC in this Hispanic subpopulation. METHODS Microsatellite instability (MSI), CpG island methylator phenotype (CIMP), and KRAS and BRAF mutation status were analyzed. Sociodemographic and clinicopathological characteristics were evaluated using Chi-squared and Fisher's exact tests. RESULTS Of the 718 tumors analyzed, 34.2% (n = 245) were early-onset CRC, and 51.7% were males. Among the tumors with molecular data available (n = 192), 3.2% had MSI, 9.7% had BRAF, and 31.9% had KRAS mutations. The most common KRAS mutations observed were G12D (26.6%) and G13D (20.0%); G12C was present in 4.4% of tumors. A higher percentage of Amerindian admixture was significantly associated with early-onset CRC. CONCLUSIONS The differences observed in the prevalence of the molecular markers among PRH tumors compared to other racial/ethnic groups suggest a distinct molecular carcinogenic pathway among Hispanics. Additional studies are warranted.
Collapse
Affiliation(s)
| | - Maria Gonzalez-Pons
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00936, USA
| | | | | | | | - Belisa Suárez
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00936, USA
| | - Natalia Rodríguez
- School of Medicine, Universidad Central del Caribe, Bayamon, PR 00956, USA
| | - Giancarlo Colón
- School of Medicine, Universidad Central del Caribe, Bayamon, PR 00956, USA
| | - Javier Sevilla
- School of Medicine, Universidad Central del Caribe, Bayamon, PR 00956, USA
| | - Daphne Jorge
- School of Medicine, Ponce Health Sciences University, Ponce, PR 00716, USA
| | - Xavier Llor
- Department of Internal Medicine and Digestive Diseases, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Rosa M. Xicola
- Department of Internal Medicine and Digestive Diseases, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Doris H. Toro
- VA Caribbean Healthcare System, San Juan, PR 00921, USA
| | - Luis Tous-López
- Ashford Presbyterian Community Hospital, San Juan, PR 00907, USA
| | | | - José S. Reyes
- Ashford Presbyterian Community Hospital, San Juan, PR 00907, USA
| | | | - Ajay Goel
- Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | | | - Marcia Cruz-Correa
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00936, USA
- Department of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00935, USA
| |
Collapse
|
22
|
Conte M, Di Mauro A, Capasso L, Montella L, De Simone M, Nebbioso A, Altucci L. Targeting HDAC2-Mediated Immune Regulation to Overcome Therapeutic Resistance in Mutant Colorectal Cancer. Cancers (Basel) 2023; 15:cancers15071960. [PMID: 37046620 PMCID: PMC10093005 DOI: 10.3390/cancers15071960] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/08/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
A large body of clinical and experimental evidence indicates that colorectal cancer is one of the most common multifactorial diseases. Although some useful prognostic biomarkers for clinical therapy have already been identified, it is still difficult to characterize a therapeutic signature that is able to define the most appropriate treatment. Gene expression levels of the epigenetic regulator histone deacetylase 2 (HDAC2) are deregulated in colorectal cancer, and this deregulation is tightly associated with immune dysfunction. By interrogating bioinformatic databases, we identified patients who presented simultaneous alterations in HDAC2, class II major histocompatibility complex transactivator (CIITA), and beta-2 microglobulin (B2M) genes based on mutation levels, structural variants, and RNA expression levels. We found that B2M plays an important role in these alterations and that mutations in this gene are potentially oncogenic. The dysregulated mRNA expression levels of HDAC2 were reported in about 5% of the profiled patients, while other specific alterations were described for CIITA. By analyzing immune infiltrates, we then identified correlations among these three genes in colorectal cancer patients and differential infiltration levels of genetic variants, suggesting that HDAC2 may have an indirect immune-related role in specific subgroups of immune infiltrates. Using this approach to carry out extensive immunological signature studies could provide further clinical information that is relevant to more resistant forms of colorectal cancer.
Collapse
Affiliation(s)
- Mariarosaria Conte
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.D.M.); (L.C.); (A.N.); (L.A.)
- Correspondence: ; Tel.: +39-081-5667564
| | - Annabella Di Mauro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.D.M.); (L.C.); (A.N.); (L.A.)
- Pathology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Lucia Capasso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.D.M.); (L.C.); (A.N.); (L.A.)
| | - Liliana Montella
- ASL NA2 NORD, Oncology Operative Unit, “Santa Maria delle Grazie” Hospital, 80078 Pozzuoli, Italy;
| | - Mariacarla De Simone
- Stem Cell Transplantation Unit, Division of Hematology, Cardarelli Hospital, 80131 Naples, Italy;
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.D.M.); (L.C.); (A.N.); (L.A.)
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.D.M.); (L.C.); (A.N.); (L.A.)
- BIOGEM, Institute of Molecular Biology and Genetics, 83031 Ariano Irpino, Italy
- IEOS, Institute for Endocrinology and Experimental Oncology, CNRs, 80131 Napoli, Italy
| |
Collapse
|
23
|
Colacci A, Corvi R, Ohmori K, Paparella M, Serra S, Da Rocha Carrico I, Vasseur P, Jacobs MN. The Cell Transformation Assay: A Historical Assessment of Current Knowledge of Applications in an Integrated Approach to Testing and Assessment for Non-Genotoxic Carcinogens. Int J Mol Sci 2023; 24:ijms24065659. [PMID: 36982734 PMCID: PMC10057754 DOI: 10.3390/ijms24065659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
The history of the development of the cell transformation assays (CTAs) is described, providing an overview of in vitro cell transformation from its origin to the new transcriptomic-based CTAs. Application of this knowledge is utilized to address how the different types of CTAs, variously addressing initiation and promotion, can be included on a mechanistic basis within the integrated approach to testing and assessment (IATA) for non-genotoxic carcinogens. Building upon assay assessments targeting the key events in the IATA, we identify how the different CTA models can appropriately fit, following preceding steps in the IATA. The preceding steps are the prescreening transcriptomic approaches, and assessment within the earlier key events of inflammation, immune disruption, mitotic signaling and cell injury. The CTA models address the later key events of (sustained) proliferation and change in morphology leading to tumor formation. The complementary key biomarkers with respect to the precursor key events and respective CTAs are mapped, providing a structured mechanistic approach to represent the complexity of the (non-genotoxic) carcinogenesis process, and specifically their capacity to identify non-genotoxic carcinogenic chemicals in a human relevant IATA.
Collapse
Affiliation(s)
- Annamaria Colacci
- Agency for Prevention, Environment and Energy, Emilia-Romagna (Arpae), Via Po 5, I-40139 Bologna, Italy
- Correspondence:
| | - Raffaella Corvi
- European Commission, Joint Research Centre (JRC), I-21027 Ispra, Italy
| | - Kyomi Ohmori
- Chemical Division, Kanagawa Prefectural Institute of Public Health, Chigasaki 253-0087, Japan
- Research Initiatives and Promotion Organization, Yokohama National University, Yokohama 240-8501, Japan
| | - Martin Paparella
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, A-6020 Innbruck, Austria
| | - Stefania Serra
- Agency for Prevention, Environment and Energy, Emilia-Romagna (Arpae), Via Po 5, I-40139 Bologna, Italy
| | | | - Paule Vasseur
- Universite de Lorraine, CNRS UMR 7360 LIEC, Laboratoire Interdisciplinaire des Environnements Continentaux, 57070 Metz, France
| | - Miriam Naomi Jacobs
- Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Harwell Science and Innovation Campus, Chilton OX11 0RQ, UK
| |
Collapse
|
24
|
Kumar R, Mahmoud MM, Tashkandi HM, Haque S, Harakeh S, Ponnusamy K, Haider S. Combinatorial Network of Transcriptional and miRNA Regulation in Colorectal Cancer. Int J Mol Sci 2023; 24:ijms24065356. [PMID: 36982429 PMCID: PMC10048903 DOI: 10.3390/ijms24065356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Colorectal cancer is one of the leading causes of cancer-associated mortality across the worldwide. One of the major challenges in colorectal cancer is the understanding of the regulatory mechanisms of biological molecules. In this study, we aimed to identify novel key molecules in colorectal cancer by using a computational systems biology approach. We constructed the colorectal protein–protein interaction network which followed hierarchical scale-free nature. We identified TP53, CTNBB1, AKT1, EGFR, HRAS, JUN, RHOA, and EGF as bottleneck-hubs. The HRAS showed the largest interacting strength with functional subnetworks, having strong correlation with protein phosphorylation, kinase activity, signal transduction, and apoptotic processes. Furthermore, we constructed the bottleneck-hubs’ regulatory networks with their transcriptional (transcription factor) and post-transcriptional (miRNAs) regulators, which exhibited the important key regulators. We observed miR-429, miR-622, and miR-133b and transcription factors (EZH2, HDAC1, HDAC4, AR, NFKB1, and KLF4) regulates four bottleneck-hubs (TP53, JUN, AKT1 and EGFR) at the motif level. In future, biochemical investigation of the observed key regulators could provide further understanding about their role in the pathophysiology of colorectal cancer.
Collapse
Affiliation(s)
- Rupesh Kumar
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida 201309, India;
| | - Maged Mostafa Mahmoud
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Molecular Genetics and Enzymology Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Hanaa M. Tashkandi
- Department of General Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 13-5053, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Steve Harakeh
- King Fahd Medical Research Center, and Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kalaiarasan Ponnusamy
- Biotechnology Division, National Centre for Disease Control, New Delhi 110054, India
- Correspondence: (K.P.); (S.H.)
| | - Shazia Haider
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida 201309, India;
- Correspondence: (K.P.); (S.H.)
| |
Collapse
|
25
|
Olguin JE, Mendoza-Rodriguez MG, Sanchez-Barrera CA, Terrazas LI. Is the combination of immunotherapy with conventional chemotherapy the key to increase the efficacy of colorectal cancer treatment? World J Gastrointest Oncol 2023; 15:251-267. [PMID: 36908325 PMCID: PMC9994043 DOI: 10.4251/wjgo.v15.i2.251] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/03/2022] [Accepted: 01/10/2023] [Indexed: 02/14/2023] Open
Abstract
Colorectal cancer (CRC) is among the most prevalent and deadly neoplasms worldwide. According to GLOBOCAN predictions, its incidence will increase from 1.15 million CRC cases in 2020 to 1.92 million cases in 2040. Therefore, a better understanding of the mechanisms involved in CRC development is necessary to improve strategies focused on reducing the incidence, prevalence, and mortality of this oncological pathology. Surgery, chemotherapy, and radiotherapy are the main strategies for treating CRC. The conventional chemotherapeutic agent utilized throughout the last four decades is 5-fluorouracil, notwithstanding its low efficiency as a single therapy. In contrast, combining 5-fluorouracil therapy with leucovorin and oxaliplatin or irinotecan increases its efficiency. However, these treatments have limited and temporary solutions and aggressive side effects. Additionally, most patients treated with these regimens develop drug resistance, which leads to disease progression. The immune response is considered a hallmark of cancer; thus, the use of new strategies and methodologies involving immune molecules, cells, and transcription factors has been suggested for CRC patients diagnosed in stages III and IV. Despite the critical advances in immunotherapy, the development and impact of immune checkpoint inhibitors on CRC is still under investigation because less than 25% of CRC patients display an increased 5-year survival. The causes of CRC are diverse and include modifiable environmental factors (smoking, diet, obesity, and alcoholism), individual genetic mutations, and inflammation-associated bowel diseases. Due to these diverse causes, the solutions likely cannot be generalized. Interestingly, new strategies, such as single-cell multiomics, proteomics, genomics, flow cytometry, and massive sequencing for tumor microenvironment analysis, are beginning to clarify the way forward. Thus, the individual mechanisms involved in developing the CRC microenvironment, their causes, and their consequences need to be understood from a genetic and immunological perspective. This review highlighted the importance of altering the immune response in CRC. It focused on drugs that may modulate the immune response and show specific efficacy and contrasted with evidence that immunosuppression or the promotion of the immune response is the answer to generating effective treatments with combined chemotherapeutic drugs.
Collapse
Affiliation(s)
- Jonadab E Olguin
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Monica G Mendoza-Rodriguez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - C Angel Sanchez-Barrera
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Luis I Terrazas
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico
| |
Collapse
|
26
|
Keane JM, Walsh CJ, Cronin P, Baker K, Melgar S, Cotter PD, Joyce SA, Gahan CGM, Houston A, Hyland NP. Investigation of the gut microbiome, bile acid composition and host immunoinflammatory response in a model of azoxymethane-induced colon cancer at discrete timepoints. Br J Cancer 2023; 128:528-536. [PMID: 36418894 PMCID: PMC9938136 DOI: 10.1038/s41416-022-02062-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Distinct sets of microbes contribute to colorectal cancer (CRC) initiation and progression. Some occur due to the evolving intestinal environment but may not contribute to disease. In contrast, others may play an important role at particular times during the tumorigenic process. Here, we describe changes in the microbiota and host over the course of azoxymethane (AOM)-induced tumorigenesis. METHODS Mice were administered AOM or PBS and were euthanised 8, 12, 24 and 48 weeks later. Samples were analysed using 16S rRNA gene sequencing, UPLC-MS and qRT-PCR. RESULTS The microbiota and bile acid profile showed distinct changes at each timepoint. The inflammatory response became apparent at weeks 12 and 24. Moreover, significant correlations between individual taxa, cytokines and bile acids were detected. One co-abundance group (CAG) differed significantly between PBS- and AOM-treated mice at week 24. Correlation analysis also revealed significant associations between CAGs, bile acids and the bile acid transporter, ASBT. Aberrant crypt foci and adenomas were first detectable at weeks 24 and 48, respectively. CONCLUSION The observed changes precede host hyperplastic transformation and may represent early therapeutic targets for the prevention or management of CRC at specific timepoints in the tumorigenic process.
Collapse
Affiliation(s)
- J M Keane
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - C J Walsh
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - P Cronin
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - K Baker
- Department of Medicine, University College Cork, Cork, Ireland
- Department of Pathology, University College Cork, Cork, Ireland
| | - S Melgar
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - P D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - S A Joyce
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - C G M Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| | - A Houston
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Medicine, University College Cork, Cork, Ireland.
| | - N P Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
27
|
Sultana TN, Chaity NI, Hasan MM, Shrabonee II, Rivu SF, Aziz MA, Sahaba SA, Apu MNH, Nahid NA, Islam MS, Islam MS. TGFβ1 rs1800469 and SMAD4 rs10502913 polymorphisms and genetic susceptibility to colorectal cancer in Bangladeshi population. Mol Biol Rep 2023; 50:1393-1401. [PMID: 36469259 DOI: 10.1007/s11033-022-08146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/22/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND Among Bangladeshi males and females, colorectal cancer is the fourth and fifth most prevalent cancer, respectively. Several studies have shown that the transforming growth factor beta 1 (TGFβ1) gene and SMAD4 gene have a great impact on colorectal cancer. OBJECTIVE The present study aimed to investigate whether TGFβ1 rs1800469 and SMAD4 rs10502913 genetic polymorphisms are associated with susceptibility to colorectal cancer in the Bangladeshi population. METHODS AND MATERIALS This case-control study was performed on 167 colorectal cancer patients and 162 healthy volunteers, and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was employed for genotyping. RESULTS In case of SMAD4 rs10502913 G > A polymorphism, the A allele reduced the colorectal cancer risk significantly (adjusted OR 0.35, 95% CI 0.23-0.52, p < 0.001) when compared to the G allele. It was also found that G/A and A/A genotypes of SMAD4 rs10502913 G > A polymorphism reduced the risk of colorectal cancer in comparison to the G/G genotype (G/A vs. G/G: adjusted OR 0.24, 95% CI 0.12-0.45, p < 0.001 and A/A vs. G/G: adjusted OR 0.06, 95% CI 0.02-0.21, p < 0.001). TGFβ1 rs1800469 C > T polymorphism showed an elevated risk of developing colorectal cancer, although the results were not statistically significant. CONCLUSION This study confirms the association of SMAD4 rs10502913 gene polymorphism with colorectal cancer susceptibility among the Bangladeshi population.
Collapse
Affiliation(s)
- Taposhi Nahid Sultana
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh.,Department of Pharmacy, University of Asia Pacific, Dhaka, 1205, Bangladesh.,Department of Pharmacy, Independent University, Bangladesh, Dhaka, 1229, Bangladesh
| | - Nusrat Islam Chaity
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Mehedi Hasan
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Ishrat Islam Shrabonee
- Department of Medicine, Mymensingh Medical College Hospital, Mymensingh, 2200, Bangladesh
| | - Sanzana Fareen Rivu
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh.,Department of Pharmacy, Faculty of Science and Engineering, East West University, Dhaka, 1212, Bangladesh
| | - Md Abdul Aziz
- Department of Pharmacy, Faculty of Pharmacy and Health Sciences, State University of Bangladesh, Dhaka, 1205, Bangladesh.,Bangladesh Pharmacogenomics Research Network (BD-PGRN), Dhaka, Bangladesh
| | - Shaid All Sahaba
- Department of Pharmacy, Faculty of Pharmacy and Health Sciences, State University of Bangladesh, Dhaka, 1205, Bangladesh
| | - Mohd Nazmul Hasan Apu
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Noor Ahmed Nahid
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Faculty of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh. .,Bangladesh Pharmacogenomics Research Network (BD-PGRN), Dhaka, Bangladesh.
| | - Md Saiful Islam
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
28
|
Spatial and temporal patterns of colorectal cancer in Asia, 1990-2019. Int J Clin Oncol 2023; 28:255-267. [PMID: 36520255 DOI: 10.1007/s10147-022-02274-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Asia accounts for the largest burden of colorectal cancer (CRC) worldwide. This study examines the temporal patterns of CRC in Asia in the last three decades. METHODS The data pertaining to CRC burden measured by incidence, mortality, and disability-adjusted-life-years (DALYs) and its risk factors for 49 countries in the Asian continent were drawn from the Global Burden of Disease 2019 study between 1990 and 2019. Mortality-to-incidence ratio (MIR) was employed as a proxy indicator of 5-year survival rates. RESULTS In Asia, incident cases more than tripled from 270,851 to 1.1 million, deaths tripled from 183,252 to 560,426, and DALYs more than doubled from 5 million to 13.4 million between 1990 and 2019. The age-standardized incidence rate (ASIR) increased from 14.0/100,000 to 23.9/100,000, age-standardized mortality rate (ASMR) increased from 10.1/100,000 to 12.5/100,000, and MIR decreased from 0.68 to 0.50 between 1990 and 2019. ASIR varied 10-folds across countries from 5.6/100,000 in Bangladesh to 62.0/100,000 in Taiwan in 2019 and ASMR from 4.9/1000 in Bangladesh to 30.3/100,000 in Brunei. In 2019, diet low in milk (18.7%) and whole grains (15.2%) and calcium (16.6%) were the major contributory risk factors in CRC DALYs in 2019. CONCLUSION CRC is a fast-rising neoplasm in Asia and its burden can be curtailed by focusing on primary prevention (e.g., diet and physical activity) and secondary prevention through screening. The policy focus and resources must be directed towards capacity building, including cancer infrastructure and quality data availability from cancer registries.
Collapse
|
29
|
Zakaria S, Elsebaey S, Allam S, Abdo W, El-Sisi A. Siah2 inhibitor and the metabolic antagonist Oxamate retard colon cancer progression and downregulate PD1 expression. Recent Pat Anticancer Drug Discov 2023; 19:PRA-EPUB-128869. [PMID: 36650629 DOI: 10.2174/1574892818666230116142606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/31/2022] [Accepted: 11/11/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Solid tumors such as colon cancer are characterized by rapid and sustained cell proliferation, which ultimately results in hypoxia, induction of hypoxia-inducible factor-1α (HIF-1α), and activation of glycolysis to promote tumor survival and immune evasion. We hypothesized that a combinatorial approach of menadione (MEN) as an indirect HIF-1α inhibitor and sodium oxamate (OX) as a glycolysis inhibitor may be a promising treatment strategy for colon cancer. OBJECTIVES We investigated the potential efficacy of this combination for promoting an antitumor immune response and suppressing tumor growth in a rat model of colon cancer. METHODS Colon cancer was induced by once-weekly subcutaneous injection of 20 mg/kg dimethylhydrazine (DMH) for 16 weeks. Control rats received the vehicle and then no further treatment (negative control) or MEN plus OX for 4 weeks (drug control). Dimethylhydrazine-treated rats were then randomly allocated to four groups: DMH alone group and other groups treated with MEN, OX, and a combination of (MEN and OX) for 4 weeks. Serum samples were assayed for the tumor marker carbohydrate antigen (CA19.9), while expression levels of HIF-1α, caspase-3, PHD3, LDH, and PD1 were evaluated in colon tissue samples by immunoassay and qRT-PCR. Additionally, Ki-67 and Siah2 expression levels were examined by immunohistochemistry. RESULTS The combination of MEN plus OX demonstrated a greater inhibitory effect on the expression levels of HIF-1α, Siah2, LDH, Ki-67, and PD1, and greater enhancement of caspase-3 and PHD3 expression in colon cancer tissues than either drug alone. CONCLUSION Simultaneous targeting of hypoxia and glycolysis pathways by a combination of MEN and OX could be a promising therapy for inhibiting colon cancer cell growth and promoting antitumor immunity [1].
Collapse
Affiliation(s)
- Sherin Zakaria
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kaferelsheikh University, 33516, Kaferelsheikh, Egypt
| | - Samar Elsebaey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kaferelsheikh University, 33516, Kaferelsheikh, Egypt
| | - Shady Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Menoufia University, 32511, Menoufia, Egypt
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, 33516 Kaferelsheikh, Egypt
| | - Alaa El-Sisi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, 31512, Tanta, Egypt
| |
Collapse
|
30
|
Bernstein H, Bernstein C. Bile acids as carcinogens in the colon and at other sites in the gastrointestinal system. Exp Biol Med (Maywood) 2023; 248:79-89. [PMID: 36408538 PMCID: PMC9989147 DOI: 10.1177/15353702221131858] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Colon cancer incidence is associated with a high-fat diet. Such a diet is linked to elevated levels of bile acids in the gastrointestinal system and the circulation. Secondary bile acids are produced by microorganisms present at high concentrations in the colon. Recent prospective studies and a retrospective study in humans associate high circulating blood levels of secondary bile acids with increased risk of colon cancer. Feeding mice a diet containing a secondary bile acid, so their feces have the bile acid at a level comparable to that in the feces of humans on a high-fat diet, also causes colon cancer in the mice. Studies using human cells grown in culture illuminate some mechanisms by which bile acids cause cancer. In human cells, bile acids cause oxidative stress leading to oxidative DNA damage. Increased DNA damage increases the occurrence of mutations and epimutations, some of which provide a cellular growth advantage such as apoptosis resistance. Cells with such mutations/epimutations increase by natural selection. Apoptosis, or programmed cell death, is a beneficial process that eliminates cells with unrepaired DNA damage, whereas apoptosis-resistant cells are able to survive DNA damage using inaccurate repair processes. This results in apoptosis-resistant cells having more frequent mutations/epimutations, some of which are carcinogenic. The experiments on cultured human cells have provided a basis for understanding at the molecular level the human studies that recently reported an association of bile acids with colon cancer, and the mouse studies showing directly that bile acids cause colon cancer. Similar, but more limited, findings of an association of dietary bile acids with other cancers of the gastrointestinal system suggest that understanding the role of bile acids in colon carcinogenesis may contribute to understanding carcinogenesis in other organs.
Collapse
Affiliation(s)
- Harris Bernstein
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ 85724-5044, USA
| | - Carol Bernstein
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ 85724-5044, USA
| |
Collapse
|
31
|
Corsale AM, Di Simone M, Lo Presti E, Dieli F, Meraviglia S. γδ T cells and their clinical application in colon cancer. Front Immunol 2023; 14:1098847. [PMID: 36793708 PMCID: PMC9923022 DOI: 10.3389/fimmu.2023.1098847] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/11/2023] [Indexed: 02/03/2023] Open
Abstract
In recent years, research has focused on colorectal cancer to implement modern treatment approaches to improve patient survival. In this new era, γδ T cells constitute a new and promising candidate to treat many types of cancer because of their potent killing activity and their ability to recognize tumor antigens independently of HLA molecules. Here, we focus on the roles that γδ T cells play in antitumor immunity, especially in colorectal cancer. Furthermore, we provide an overview of small-scale clinical trials in patients with colorectal cancer employing either in vivo activation or adoptive transfer of ex vivo expanded γδ T cells and suggest possible combinatorial approaches to treat colon cancer.
Collapse
Affiliation(s)
- Anna Maria Corsale
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neuroscience and Advanced Diagnosis (Bi.N.D.) University of Palermo, Palermo, Italy
| | - Marta Di Simone
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neuroscience and Advanced Diagnosis (Bi.N.D.) University of Palermo, Palermo, Italy
| | - Elena Lo Presti
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR)I, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neuroscience and Advanced Diagnosis (Bi.N.D.) University of Palermo, Palermo, Italy
| | - Serena Meraviglia
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neuroscience and Advanced Diagnosis (Bi.N.D.) University of Palermo, Palermo, Italy
| |
Collapse
|
32
|
Vital M, Carusso F, Vergara C, Neffa F, Della Valle A, Esperón P. Genetic and epigenetic characteristics of patients with colorectal cancer from Uruguay. Pathol Res Pract 2023; 241:154264. [PMID: 36495761 DOI: 10.1016/j.prp.2022.154264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC), the 3rd most frequent cancer worldwide, affects both men and women. This pathology arises from the progressive accumulation of genetic and epigenetic alterations. In this study, KRAS, NRAS, PIK3CA, and BRAF gene mutations, mismatch repair (MMR) genes methylation profile, microsatellite instability (MSI) and CpG Island Methylator Phenotype (CIMP) status were assessed. The associations of these molecular features with clinicopathological data were also investigated. A hundred and eight unselected CRC samples and their histological and clinical data, were gathered between 2017 and 2020. The prevalence of KRAS, NRAS and BRAF gene mutations was similar to that described in other populations. 28.7% of tumors were KRAS-mutated, mostly in men, distal location, with a CIMP-negative status. BRAFV600E frequency was 6.5% and associated with MSI (p = 0.048), MLH1-methylated (p < 0.001) and CIMP-High (p < 0.001) status. We also confirmed that BRAFV600E tumors were more prevalent in older women and proximal location. A striking different result was the lack of most common variants in the PIK3CA gene. A complete absence of PIK3CA-mutated tumors in a population has not been previously reported. Among MMR genes, the only with an aberrant methylation pattern was MLH1 gene. Its frequency was 9.25%, lower than previously reported. Methylated tumors were most frequent in patients older than 70 years old and proximal tumor location. Finally, CIMP-High status was mainly observed in moderately differentiated tumors with a rate of 15.7%. Our findings were consistent with previous reports in other populations, but also showed some features unique to our cohort. This study is the first to report the analysis of a large number molecular biomarkers of CRC in Uruguay and one of the few performed in Latin-America.
Collapse
Affiliation(s)
- Marcelo Vital
- Molecular Genetic Unit, School of Chemistry, Universidad de la República, General Flores 2124, CP1800 Montevideo, Uruguay.
| | - Florencia Carusso
- Uruguayan Collaborative Group, Dirección Nacional de Sanidad de las Fuerzas Armadas, 8 de Octubre 3020, CP1600 Montevideo, Uruguay.
| | - Carolina Vergara
- Uruguayan Collaborative Group, Dirección Nacional de Sanidad de las Fuerzas Armadas, 8 de Octubre 3020, CP1600 Montevideo, Uruguay.
| | - Florencia Neffa
- Uruguayan Collaborative Group, Dirección Nacional de Sanidad de las Fuerzas Armadas, 8 de Octubre 3020, CP1600 Montevideo, Uruguay.
| | - Adriana Della Valle
- Uruguayan Collaborative Group, Dirección Nacional de Sanidad de las Fuerzas Armadas, 8 de Octubre 3020, CP1600 Montevideo, Uruguay.
| | - Patricia Esperón
- Molecular Genetic Unit, School of Chemistry, Universidad de la República, General Flores 2124, CP1800 Montevideo, Uruguay; Uruguayan Collaborative Group, Dirección Nacional de Sanidad de las Fuerzas Armadas, 8 de Octubre 3020, CP1600 Montevideo, Uruguay; Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain.
| |
Collapse
|
33
|
Ngalim SH, Yusoff N, Johnson RR, Abdul Razak SR, Chen X, Hobbs JK, Lee YY. A review on mechanobiology of cell adhesion networks in different stages of sporadic colorectal cancer to explain its tumorigenesis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:63-72. [PMID: 36116549 DOI: 10.1016/j.pbiomolbio.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Sporadic colorectal cancer (CRC) is strongly linked to extraneous factors, like poor diet and lifestyle, but not to inherent factors like familial genetics. The changes at the epigenomics and signalling pathways are known across the sporadic CRC stages. The catch is that temporal information of the onset, the feedback loop, and the crosstalk of signalling and noise are still unclear. This makes it challenging to diagnose and treat colon cancer effectively with no relapse. Various microbial cells and native cells of the colon, contribute to sporadic CRC development. These cells secrete autocrine and paracrine for their bioenergetics and communications with other cell types. Imbalances of the biochemicals affect the epithelial lining of colon. One side of this epithelial lining is interfacing the dense colon tissue, while the other side is exposed to microbiota and excrement from the lumen. Hence, the epithelial lining is prone to tumorigenesis due to the influence of both biochemical and mechanical cues from its complex surrounding. The role of physical transformations in tumorigenesis have been limitedly discussed. In this context, cellular and tissue structures, and force transductions are heavily regulated by cell adhesion networks. These networks include cell anchoring mechanism to the surrounding, cell structural integrity mechanism, and cell effector molecules. This review will focus on the progression of the sporadic CRC stages that are governed by the underlaying cell adhesion networks within the epithelial cells. Additionally, current and potential technologies and therapeutics that target cell adhesion networks for treatments of sporadic CRC will be incorporated.
Collapse
Affiliation(s)
- Siti Hawa Ngalim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia (USM) Bertam, 13200 Kepala Batas, Penang, Malaysia.
| | - Norwahida Yusoff
- School of Mechanical Engineering, Universiti Sains Malaysia (USM) Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| | - Rayzel Renitha Johnson
- Advanced Medical and Dental Institute, Universiti Sains Malaysia (USM) Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Siti Razila Abdul Razak
- Advanced Medical and Dental Institute, Universiti Sains Malaysia (USM) Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Xinyue Chen
- Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, United Kingdom
| | - Jamie K Hobbs
- Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, United Kingdom
| | - Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains Malaysia (USM) Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
34
|
Kumar A, Singh AK, Singh H, Thareja S, Kumar P. Regulation of thymidylate synthase: an approach to overcome 5-FU resistance in colorectal cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:3. [PMID: 36308643 DOI: 10.1007/s12032-022-01864-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/29/2022] [Indexed: 01/17/2023]
Abstract
Thymidylate synthase is the rate-limiting enzyme required for DNA synthesis and overexpression of this enzyme causes resistance to cancer cells. Long treatments with 5-FU cause resistance to Thymidylate synthase targeting drugs. We have also compiled different mechanisms of drug resistance including autophagy and apoptosis, drug detoxification and ABC transporters, drug efflux, signaling pathways (AKT/PI3K, RAS-MAPK, WNT/β catenin, mTOR, NFKB, and Notch1 and FOXM1) and different genes associated with resistance in colorectal cancer. We can overcome 5-FU resistance in cancer cells by regulating thymidylate synthase by natural products (Coptidis rhizoma), HDAC inhibitors, mTOR inhibitors, Folate antagonists, and several other drugs which have been used in combination with TS inhibitors. This review is a compilation of different approaches reported for the regulation of thymidylate synthase to overcome resistance in colorectal cancer cells.
Collapse
Affiliation(s)
- Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151401, India.
| |
Collapse
|
35
|
Nejabati HR, Roshangar L. Kaempferol: A potential agent in the prevention of colorectal cancer. Physiol Rep 2022; 10:e15488. [PMID: 36259115 PMCID: PMC9579739 DOI: 10.14814/phy2.15488] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 04/18/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer in relation to incidence and mortality rate and its incidence is considerably increasing annually due to the change in the dietary habit and lifestyle of the world population. Although conventional therapeutic options, such as surgery, chemo- and radiotherapy have profound impacts on the treatment of CRC, dietary therapeutic agents, particularly natural products have been regarded as the safest alternatives for the treatment of CRC. Kaempferol (KMP), a naturally derived flavonol, has been shown to reduce the production of reactive oxygen species (ROS), such as superoxide ions, hydroxyl radicals, and reactive nitrogen species (RNS), especially peroxynitrite. Furthermore, this flavonol inhibits xanthine oxidase (XO) activity and increases the activities of catalase, heme oxygenase-1 (HO), and superoxide dismutase (SOD) in a wide range of cancer and non-cancer cells. Based on several studies, KMP is also a hopeful anticancer which carries out its anticancer action via suppression of angiogenesis, stimulation of apoptosis, and cell cycle arrest. Due to various applications of KMP as an anticancer flavonol, this review article aims to highlight the current knowledge regarding the role of KMP in CRC.
Collapse
Affiliation(s)
| | - Leila Roshangar
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
36
|
Islam F, Mitra S, Emran TB, Khan Z, Nath N, Das R, Sharma R, Awadh AAA, Park MN, Kim B. Natural Small Molecules in Gastrointestinal Tract and Associated Cancers: Molecular Insights and Targeted Therapies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175686. [PMID: 36080453 PMCID: PMC9457641 DOI: 10.3390/molecules27175686] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 12/22/2022]
Abstract
Gastric cancer is one of the most common cancers of the gastrointestinal tract. Although surgery is the primary treatment, serious maladies that dissipate to other parts of the body may require chemotherapy. As there is no effective procedure to treat stomach cancer, natural small molecules are a current focus of research interest for the development of better therapeutics. Chemotherapy is usually used as a last resort for people with advanced stomach cancer. Anti-colon cancer chemotherapy has become increasingly effective due to drug resistance and sensitivity across a wide spectrum of drugs. Naturally-occurring substances have been widely acknowledged as an important project for discovering innovative medications, and many therapeutic pharmaceuticals are made from natural small molecules. Although the beneficial effects of natural products are as yet unknown, emerging data suggest that several natural small molecules could suppress the progression of stomach cancer. Therefore, the underlying mechanism of natural small molecules for pathways that are directly involved in the pathogenesis of cancerous diseases is reviewed in this article. Chemotherapy and molecularly-targeted drugs can provide hope to colon cancer patients. New discoveries could help in the fight against cancer, and future stomach cancer therapies will probably include molecularly formulated drugs.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Correspondence: (T.B.E.); (B.K.)
| | - Zidan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Nikhil Nath
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Moon Nyeo Park
- Department of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 05254, Korea
| | - Bonglee Kim
- Department of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 05254, Korea
- Correspondence: (T.B.E.); (B.K.)
| |
Collapse
|
37
|
Gong T, Jaratlerdsiri W, Jiang J, Willet C, Chew T, Patrick SM, Lyons RJ, Haynes AM, Pasqualim G, Brum IS, Stricker PD, Mutambirwa SBA, Sadsad R, Papenfuss AT, Bornman RMS, Chan EKF, Hayes VM. Genome-wide interrogation of structural variation reveals novel African-specific prostate cancer oncogenic drivers. Genome Med 2022; 14:100. [PMID: 36045381 PMCID: PMC9434886 DOI: 10.1186/s13073-022-01096-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND African ancestry is a significant risk factor for advanced prostate cancer (PCa). Mortality rates in sub-Saharan Africa are 2.5-fold greater than global averages. However, the region has largely been excluded from the benefits of whole genome interrogation studies. Additionally, while structural variation (SV) is highly prevalent, PCa genomic studies are still biased towards small variant interrogation. METHODS Using whole genome sequencing and best practice workflows, we performed a comprehensive analysis of SVs for 180 (predominantly Gleason score ≥ 8) prostate tumours derived from 115 African, 61 European and four ancestrally admixed patients. We investigated the landscape and relationship of somatic SVs in driving ethnic disparity (African versus European), with a focus on African men from southern Africa. RESULTS Duplication events showed the greatest ethnic disparity, with a 1.6- (relative frequency) to 2.5-fold (count) increase in African-derived tumours. Furthermore, we found duplication events to be associated with CDK12 inactivation and MYC copy number gain, and deletion events associated with SPOP mutation. Overall, African-derived tumours were 2-fold more likely to present with a hyper-SV subtype. In addition to hyper-duplication and deletion subtypes, we describe a new hyper-translocation subtype. While we confirm a lower TMPRSS2-ERG fusion-positive rate in tumours from African cases (10% versus 33%), novel African-specific PCa ETS family member and TMPRSS2 fusion partners were identified, including LINC01525, FBXO7, GTF3C2, NTNG1 and YPEL5. Notably, we found 74 somatic SV hotspots impacting 18 new candidate driver genes, with CADM2, LSAMP, PTPRD, PDE4D and PACRG having therapeutic implications for African patients. CONCLUSIONS In this first African-inclusive SV study for high-risk PCa, we demonstrate the power of SV interrogation for the identification of novel subtypes, oncogenic drivers and therapeutic targets. Identifying a novel spectrum of SVs in tumours derived from African patients provides a mechanism that may contribute, at least in part, to the observed ethnic disparity in advanced PCa presentation in men of African ancestry.
Collapse
Affiliation(s)
- Tingting Gong
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Weerachai Jaratlerdsiri
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Jue Jiang
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Cali Willet
- Sydney Informatics Hub, University of Sydney, Sydney, NSW, Australia
| | - Tracy Chew
- Sydney Informatics Hub, University of Sydney, Sydney, NSW, Australia
| | - Sean M Patrick
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Ruth J Lyons
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Anne-Maree Haynes
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Gabriela Pasqualim
- Endocrine and Tumor Molecular Biology Laboratory, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Genetics, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Ilma Simoni Brum
- Endocrine and Tumor Molecular Biology Laboratory, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Phillip D Stricker
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Department of Urology, St. Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Shingai B A Mutambirwa
- Department of Urology, Sefako Makgatho Health Science University, Dr George Mukhari Academic Hospital, Medunsa, Ga-Rankuwa, South Africa
| | - Rosemarie Sadsad
- Sydney Informatics Hub, University of Sydney, Sydney, NSW, Australia
| | - Anthony T Papenfuss
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Riana M S Bornman
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Eva K F Chan
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- NSW Health Pathology, Sydney, Australia
| | - Vanessa M Hayes
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.
- Faculty of Health Sciences, University of Limpopo, Turfloop Campus, Mankweng, South Africa.
| |
Collapse
|
38
|
Modulating the Siah2-PHD3-HIF1α axis and/or autophagy potentially retard colon cancer proliferation possibly, due to the damping of colon cancer stem cells. Biomed Pharmacother 2022; 154:113562. [PMID: 35994813 DOI: 10.1016/j.biopha.2022.113562] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Hypoxic microenvironment of colon cancer is associated with HIF-1α upregulation. HIF-1α response elements are responsible for autophagy induction that promotes tumor proliferation. Moreover, HIF-1α induces tumor cell proliferation via maintaining cancer stem cells (CSCs) survival. Siah2 is E3 ubiquitin ligase that indirectly stabilizes HIF-1α. We hypothesized that dual inhibition of Siah2 as well as autophagy could be a promising approach that may inhibit CSCs growth. AIM OF THE WORK This study investigated the possible effect of vitamin K3 as a Siah2 inhibitor and hydroxychloroquine as an autophagy inhibitor in colon cancer management. The effect (if any) of these agents on CSCs growth will be also manipulated. METHODS Colon cancer was induced by dimethylhydrazine. MDA and GSH were selected as oxidative stress markers, Expression of HIF-1α, Caspase-3, VEGF, MMP-9, EpCAM, SCF, and CA19.9 were assayed using immunoassay. The Western blot technique was used to assess LC3Ⅰ, CD44, and CD133 whereas RT-PCR was used to investigate PHD3 and CD44 in colon tissues. Additionally, Ki-67 and Siah2 were detected immunohistochemically. RESULTS vitamin K3 and hydroxychloroquine either alone or in combination downregulated the expression of Siah2 and HIF-1α through upregulating PHD3 in colon tissues. This combination significantly downregulated MDA, Ki-67, VEGF, and MMP-9 expression and upregulated the expression of GSH and caspase-3. LC3Ⅰ was also upregulated. Interestingly, these therapeutic options were correlated with down-regulation of the cancer stem cell marker such as CD44 and EpCAM. CONCLUSION Our results suggested that suppression of both Siah2-PHD3-HIF-1α axis and autophagy retard colon cancer proliferation and dampened CSCs.
Collapse
|
39
|
Parmar S, Easwaran H. Genetic and epigenetic dependencies in colorectal cancer development. Gastroenterol Rep (Oxf) 2022; 10:goac035. [PMID: 35975243 PMCID: PMC9373935 DOI: 10.1093/gastro/goac035] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/24/2022] [Accepted: 05/22/2022] [Indexed: 11/12/2022] Open
Abstract
Recent studies have mapped key genetic changes in colorectal cancer (CRC) that impact important pathways contributing to the multistep models for CRC initiation and development. In parallel with genetic changes, normal and cancer tissues harbor epigenetic alterations impacting regulation of critical genes that have been shown to play profound roles in the tumor initiation. Cumulatively, these molecular changes are only loosely associated with heterogenous transcriptional programs, reflecting the heterogeneity in the various CRC molecular subtypes and the paths to CRC development. Studies from mapping molecular alterations in early CRC lesions and use of experimental models suggest that the intricate dependencies of various genetic and epigenetic hits shape the early development of CRC via different pathways and its manifestation into various CRC subtypes. We highlight the dependency of epigenetic and genetic changes in driving CRC development and discuss factors affecting epigenetic alterations over time and, by extension, risk for cancer.
Collapse
Affiliation(s)
- Sehej Parmar
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hariharan Easwaran
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
40
|
Salita T, Rustam YH, Mouradov D, Sieber OM, Reid GE. Reprogrammed Lipid Metabolism and the Lipid-Associated Hallmarks of Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14153714. [PMID: 35954376 PMCID: PMC9367418 DOI: 10.3390/cancers14153714] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Colorectal cancer (CRC) is the third-most diagnosed cancer and the second-leading cause of cancer-related deaths worldwide. Limitations in early and accurate diagnosis of CRC gives rise to poor patient survival. Advancements in analytical techniques have improved our understanding of the cellular and metabolic changes occurring in CRC and potentiate avenues for improved diagnostic and therapeutic strategies. Lipids are metabolites with important biological functions; however, their role in CRC is poorly understood. Here, we provide an in-depth review of the recent literature concerning lipid alterations in CRC and propose eight lipid metabolism-associated hallmarks of CRC. Abstract Lipids have diverse structures, with multifarious regulatory functions in membrane homeostasis and bioenergetic metabolism, in mediating functional protein–lipid and protein–protein interactions, as in cell signalling and proliferation. An increasing body of evidence supports the notion that aberrant lipid metabolism involving remodelling of cellular membrane structure and changes in energy homeostasis and signalling within cancer-associated pathways play a pivotal role in the onset, progression, and maintenance of colorectal cancer (CRC) and their tumorigenic properties. Recent advances in analytical lipidome analysis technologies have enabled the comprehensive identification and structural characterization of lipids and, consequently, our understanding of the role they play in tumour progression. However, despite progress in our understanding of cancer cell metabolism and lipidomics, the key lipid-associated changes in CRC have yet not been explicitly associated with the well-established ‘hallmarks of cancer’ defined by Hanahan and Weinberg. In this review, we summarize recent findings that highlight the role of reprogrammed lipid metabolism in CRC and use this growing body of evidence to propose eight lipid metabolism-associated hallmarks of colorectal cancer, and to emphasize their importance and linkages to the established cancer hallmarks.
Collapse
Affiliation(s)
- Timothy Salita
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia; (T.S.); (Y.H.R.)
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
| | - Yepy H. Rustam
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia; (T.S.); (Y.H.R.)
| | - Dmitri Mouradov
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
| | - Oliver M. Sieber
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Correspondence: (O.M.S.); (G.E.R.)
| | - Gavin E. Reid
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia; (T.S.); (Y.H.R.)
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia
- Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (O.M.S.); (G.E.R.)
| |
Collapse
|
41
|
Krasteva N, Georgieva M. Promising Therapeutic Strategies for Colorectal Cancer Treatment Based on Nanomaterials. Pharmaceutics 2022; 14:pharmaceutics14061213. [PMID: 35745786 PMCID: PMC9227901 DOI: 10.3390/pharmaceutics14061213] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a global health problem responsible for 10% of all cancer incidences and 9.4% of all cancer deaths worldwide. The number of new cases increases per annum, whereas the lack of effective therapies highlights the need for novel therapeutic approaches. Conventional treatment methods, such as surgery, chemotherapy and radiotherapy, are widely applied in oncology practice. Their therapeutic success is little, and therefore, the search for novel technologies is ongoing. Many efforts have focused recently on the development of safe and efficient cancer nanomedicines. Nanoparticles are among them. They are uniquewith their properties on a nanoscale and hold the potential to exploit intrinsic metabolic differences between cancer and healthy cells. This feature allows them to induce high levels of toxicity in cancer cells with little damage to the surrounding healthy tissues. Graphene oxide is a promising 2D material found to play an important role in cancer treatments through several strategies: direct killing and chemosensitization, drug and gene delivery, and phototherapy. Several new treatment approaches based on nanoparticles, particularly graphene oxide, are currently under research in clinical trials, and some have already been approved. Here, we provide an update on the recent advances in nanomaterials-based CRC-targeted therapy, with special attention to graphene oxide nanomaterials. We summarise the epidemiology, carcinogenesis, stages of the CRCs, and current nanomaterials-based therapeutic approaches for its treatment.
Collapse
Affiliation(s)
- Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., bl. 21, 1113 Sofia, Bulgaria
- Correspondence: (N.K.); (M.G.); Tel.: +359-889-577-074 (N.K.); +359-896-833-604 (M.G.)
| | - Milena Georgieva
- Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., bl. 21, 1113 Sofia, Bulgaria
- Correspondence: (N.K.); (M.G.); Tel.: +359-889-577-074 (N.K.); +359-896-833-604 (M.G.)
| |
Collapse
|
42
|
Microbiome Analysis in Patients with Colorectal Cancer by 16S Ribosomal RNA Sequencing in the Southeast of Iran. Jundishapur J Microbiol 2022. [DOI: 10.5812/jjm-121119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background: Colorectal cancer (CRC) is the third most common malignant tumor worldwide. Emerging evidence suggests that dysbiosis of the colon microbiome may be involved in CRC development. Objectives: The present study aimed to compare the composition and diversity of the colon microbiome by high-throughput 16S ribosomal RNA (rRNA) sequencing between CRC patients and healthy controls. Microbiome composition and diversity were also examined based on gender. Methods: The colon microbiome richness and diversity of samples from 17 CRC patients and 13 healthy controls were analyzed by 16S rRNA sequencing. Alpha and beta diversity were calculated to determine the differences in colon microbiome diversity. Results: Alpha and beta diversity showed significant differences between the CRC and healthy control groups regarding the microbiome. Our results showed that CRC samples had the highest richness and diversity. The total number (P ≤ 0.01), phylogenetic diversity (P ≤ 0.01), Chao1 (P ≤ 0.01), Shannon (P ≤ 0.05), and Simpson (P ≤ 0.01) indices were significantly higher in the CRC group than in the healthy control group. In addition, the comparison between females and males showed that the microbiome diversity was higher in the CRC female (CRC-F) group than in other groups. Prevotella, Fusobacterium, Akkermansia, Leptotrichia, Streptococcus, and ParaBacteroides were more commonly observed in the CRC group, while Bacteroides, Enterobacteriaceae (unknown genus), Ruminococcus, and Campylobacter were more commonly observed in the healthy control group. Conclusions: This study showed differences between the CRC and healthy control groups regarding the diversity and composition of the colon microbiome, suggesting a contribution of the microbiome in the development and progression of CRC.
Collapse
|
43
|
Serrated Colorectal Lesions: An Up-to-Date Review from Histological Pattern to Molecular Pathogenesis. Int J Mol Sci 2022; 23:ijms23084461. [PMID: 35457279 PMCID: PMC9032676 DOI: 10.3390/ijms23084461] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 12/10/2022] Open
Abstract
Until 2010, colorectal serrated lesions were generally considered as harmless lesions and reported as hyperplastic polyps (HPs) by pathologists and gastroenterologists. However, recent evidence showed that they may bear the potential to develop into colorectal carcinoma (CRC). Therefore, the World Health Organization (WHO) classification has identified four categories of serrated lesions: hyperplastic polyps (HPs), sessile serrated lesions (SSLs), traditional serrated adenoma (TSAs) and unclassified serrated adenomas. SSLs with dysplasia and TSAs are the most common precursors of CRC. CRCs arising from serrated lesions originate via two different molecular pathways, namely sporadic microsatellite instability (MSI) and the CpG island methylator phenotype (CIMP), the latter being considered as the major mechanism that drives the serrated pathway towards CRC. Unlike CRCs arising through the adenoma-carcinoma pathway, APC-inactivating mutations are rarely shown in the serrated neoplasia pathway.
Collapse
|
44
|
Youssef ASED, Abdel-Fattah MA, Lotfy MM, Nassar A, Abouelhoda M, Touny AO, Hassan ZK, Mohey Eldin M, Bahnassy AA, Khaled H, Zekri ARN. Multigene Panel Sequencing Reveals Cancer-Specific and Common Somatic Mutations in Colorectal Cancer Patients: An Egyptian Experience. Curr Issues Mol Biol 2022; 44:1332-1352. [PMID: 35723313 PMCID: PMC8947625 DOI: 10.3390/cimb44030090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022] Open
Abstract
This study aims at identifying common pathogenic somatic mutations at different stages of colorectal carcinogenesis in Egyptian patients. Our cohort included colonoscopic biopsies collected from 120 patients: 20 biopsies from patients with inflammatory bowel disease, 38 from colonic polyp patients, and 62 from patients with colorectal cancer. On top of this, the cohort included 20 biopsies from patients with non-specific mild to moderated colitis. Targeted DNA sequencing using a customized gene panel of 96 colorectal related genes running on the Ion Torrent NGS technology was used to process the samples. Our results revealed that 69% of all cases harbored at least one somatic mutation. Fifty-seven genes were found to carry 232 somatic non-synonymous variants. The most frequently pathogenic somatic mutations were localized in TP53, APC, KRAS, and PIK3CA. In total, 16 somatic mutations were detected in the CRC group and in either the IBD or CP group. In addition, our data showed that 51% of total somatic variants were CRC-specific variants. The average number of CRC-specific variants per sample is 2.4. The top genes carrying CRC-specific mutations are APC, TP53, PIK3CA, FBXW7, ATM, and SMAD4. It seems obvious that TP53 and APC genes were the most affected genes with somatic mutations in all groups. Of interest, 85% and 28% of the APC and TP53 deleterious somatic mutations were located in Exon 14 and Exon 3, respectively. Besides, 37% and 28% of the total somatic mutations identified in APC and TP53 were CRC-specific variants, respectively. Moreover, we identified that, in 29 somatic mutations in 21 genes, their association with CRC patients was unprecedented. Ten detected variants were likely to be novel: six in PIK3CA and four variants in FBXW7. The detected P53, Wnt/βcatenin, Angiogenesis, EGFR, TGF-β and Interleukin signaling pathways were the most altered pathways in 22%, 16%, 12%, 10%, 9% and 9% of the CRC patients, respectively. These results would contribute to a better understanding of the colorectal cancer and in introducing personalized therapies for Egyptian CRC patients.
Collapse
Affiliation(s)
- Amira Salah El-Din Youssef
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt; (M.M.L.); (A.N.); (Z.K.H.)
| | | | - Mai M. Lotfy
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt; (M.M.L.); (A.N.); (Z.K.H.)
| | - Auhood Nassar
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt; (M.M.L.); (A.N.); (Z.K.H.)
| | | | - Ahmed O. Touny
- Surgical Oncology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Zeinab K. Hassan
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt; (M.M.L.); (A.N.); (Z.K.H.)
| | - Mohammed Mohey Eldin
- Tropical Medicine Department, El Kasr Al-Aini, Cairo University, Cairo 11562, Egypt;
| | - Abeer A. Bahnassy
- Molecular Pathology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Hussein Khaled
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Abdel Rahman N. Zekri
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt; (M.M.L.); (A.N.); (Z.K.H.)
| |
Collapse
|
45
|
A Comprehensive View on the Quercetin Impact on Colorectal Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061873. [PMID: 35335239 PMCID: PMC8953922 DOI: 10.3390/molecules27061873] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022]
Abstract
Colorectal cancer (CRC) represents the third type of cancer in incidence and second in mortality worldwide, with the newly diagnosed case number on the rise. Among the diagnosed patients, approximately 70% have no hereditary germ-line mutations or family history of pathology, thus being termed sporadic CRC. Diet and environmental factors are to date considered solely responsible for the development of sporadic CRC; therefore; attention should be directed towards the discovery of preventative actions to combat the CRC initiation, promotion, and progression. Quercetin is a polyphenolic flavonoid plant secondary metabolite with a well-characterized antioxidant activity. It has been extensively reported as an anti-carcinogenic agent in the scientific literature, and the modulated targets of quercetin have been also characterized in the context of CRC, mainly in original research publications. In this fairly comprehensive review, we summarize the molecular targets of quercetin reported to date in in vivo and in vitro CRC models, while also giving background information about the signal transduction pathways that it up- and downregulates. Among the most relevant modulated pathways, the Wnt/β-catenin, PI3K/AKT, MAPK/Erk, JNK, or p38, p53, and NF-κB have been described. With this work, we hope to encourage further quests in the elucidation of quercetin anti-carcinogenic activity as single agent, as dietary component, or as pharmaconutrient delivered in the form of plant extracts.
Collapse
|
46
|
Yang L, Zhang W, Li M, Dam J, Huang K, Wang Y, Qiu Z, Sun T, Chen P, Zhang Z, Zhang W. Evaluation of the Prognostic Relevance of Differential Claudin Gene Expression Highlights Claudin-4 as Being Suppressed by TGFβ1 Inhibitor in Colorectal Cancer. Front Genet 2022; 13:783016. [PMID: 35281827 PMCID: PMC8907593 DOI: 10.3389/fgene.2022.783016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Claudins (CLDNs) are a family of closely related transmembrane proteins that have been linked to oncogenic transformation and metastasis across a range of cancers, suggesting that they may be valuable diagnostic and/or prognostic biomarkers that can be used to evaluate patient outcomes. However, CLDN expression patterns associated with colorectal cancer (CRC) remain to be defined.Methods: The mRNA levels of 21 different CLDN family genes were assessed across 20 tumor types using the Oncomine database. Correlations between these genes and patient clinical outcomes, immune cell infiltration, clinicopathological staging, lymph node metastasis, and mutational status were analyzed using the GEPIA, UALCAN, Human Protein Atlas, Tumor Immune Estimation Resource, STRING, Genenetwork, cBioportal, and DAVID databases in an effort to clarify the potential functional roles of different CLDN protein in CRC. Molecular docking analyses were used to probe potential interactions between CLDN4 and TGFβ1. Levels of CLDN4 and CLDN11 mRNA expression in clinical CRC patient samples and in the HT29 and HCT116 cell lines were assessed via qPCR. CLDN4 expression levels in these 2 cell lines were additionally assessed following TGFβ1 inhibitor treatment.Results: These analyses revealed that COAD and READ tissues exhibited the upregulation of CLDN1, CLDN2, CLDN3, CLDN4, CLDN7, and CLDN12 as well as the downregulation of CLDN5 and CLDN11 relative to control tissues. Higher CLDN11 and CLDN14 expression as well as lower CLDN23 mRNA levels were associated with poorer overall survival (OS) outcomes. Moreover, CLDN2 and CLDN3 or CLDN11 mRNA levels were significantly associated with lymph node metastatic progression in COAD or READ lower in COAD and READ tissues. A positive correlation between the expression of CLDN11 and predicted macrophage, dendritic cell, and CD4+ T cell infiltration was identified in CRC, with CLDN12 expression further being positively correlated with CD4+ T cell infiltration whereas a negative correlation was observed between such infiltration and the expression of CLDN3 and CLDN15. A positive correlation between CLDN1, CLDN16, and neutrophil infiltration was additionally detected, whereas neutrophil levels were negatively correlated with the expression of CLDN3 and CLDN15. Molecular docking suggested that CLDN4 was able to directly bind via hydrogen bond with TGFβ1. Relative to paracancerous tissues, clinical CRC tumor tissue samples exhibited CLDN4 and CLDN11 upregulation and downregulation, respectively. LY364947 was able to suppress the expression of CLDN4 in both the HT29 and HCT116 cell lines.Conclusion: Together, these results suggest that the expression of different CLDN family genes is closely associated with CRC tumor clinicopathological staging and immune cell infiltration. Moreover, CLDN4 expression is closely associated with TGFβ1 in CRC, suggesting that it and other CLDN family members may represent viable targets for antitumor therapeutic intervention.
Collapse
Affiliation(s)
- Linqi Yang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Wenqi Zhang
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Meng Li
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jinxi Dam
- College of Natural Science, Michigan State University, East Lansing, MI, United States
| | - Kai Huang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yihan Wang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhicong Qiu
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Tao Sun
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Pingping Chen
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
- *Correspondence: Wei Zhang, ; Pingping Chen, ; Zhenduo Zhang,
| | - Zhenduo Zhang
- Shijiazhuang People’s Hospital, Shijiazhuang, China
- *Correspondence: Wei Zhang, ; Pingping Chen, ; Zhenduo Zhang,
| | - Wei Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
- *Correspondence: Wei Zhang, ; Pingping Chen, ; Zhenduo Zhang,
| |
Collapse
|
47
|
The Application of Metabolomics in Recent Colorectal Cancer Studies: A State-of-the-Art Review. Cancers (Basel) 2022; 14:cancers14030725. [PMID: 35158992 PMCID: PMC8833341 DOI: 10.3390/cancers14030725] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/16/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Colorectal Cancer (CRC) is one of the leading causes of cancer-related death in the United States. Current diagnosis techniques are either highly invasive or lack sensitivity, suggesting the need for alternative techniques for biomarker detection. Metabolomics represents one such technique with great promise in identifying CRC biomarkers with high sensitivity and specificity, but thus far is rarely employed in a clinical setting. In order to provide a framework for future clinical usage, we characterized dysregulated metabolites across recent literature, identifying metabolites dysregulated across a variety of biospecimens. We additionally put special focus on the interplay of the gut microbiome and perturbed metabolites in CRC. We were able to identify many metabolites showing consistent dysregulation in CRC, demonstrating the value of metabolomics as a promising diagnostic technique. Abstract Colorectal cancer (CRC) is a highly prevalent disease with poor prognostic outcomes if not diagnosed in early stages. Current diagnosis techniques are either highly invasive or lack sufficient sensitivity. Thus, identifying diagnostic biomarkers of CRC with high sensitivity and specificity is desirable. Metabolomics represents an analytical profiling technique with great promise in identifying such biomarkers and typically represents a close tie with the phenotype of a specific disease. We thus conducted a systematic review of studies reported from January 2012 to July 2021 relating to the detection of CRC biomarkers through metabolomics to provide a collection of knowledge for future diagnostic development. We identified thirty-seven metabolomics studies characterizing CRC, many of which provided metabolites/metabolic profile-based diagnostic models with high sensitivity and specificity. These studies demonstrated that a great number of metabolites can be differentially regulated in CRC patients compared to healthy controls, adenomatous polyps, or across stages of CRC. Among these metabolite biomarkers, especially dysregulated were certain amino acids, fatty acids, and lysophosphatidylcholines. Additionally, we discussed the contribution of the gut bacterial population to pathogenesis of CRC through their modulation to fecal metabolite pools and summarized the established links in the literature between certain microbial genera and altered metabolite levels in CRC patients. Taken together, we conclude that metabolomics presents itself as a promising and effective method of CRC biomarker detection.
Collapse
|
48
|
Yang H, Yue GGL, Leung PC, Wong CK, Lau CBS. A review on the molecular mechanisms, the therapeutic treatment including the potential of herbs and natural products, and target prediction of obesity-associated colorectal cancer. Pharmacol Res 2021; 175:106031. [PMID: 34896542 DOI: 10.1016/j.phrs.2021.106031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer death worldwide. Obesity has been proven to be closely related to colorectal carcinogenesis. This review summarized the potential underlying mechanisms linking obesity to CRC in different aspects, including energy metabolism, inflammation, activities of adipokines and hormones. Furthermore, the potential therapeutic targets of obesity-associated CRC were predicted using network-based target analysis, with total predicted pathways not only containing previously reported pathways, but also putative signaling pathways pending for investigation. In addition, the current conventional therapeutic treatment options, plus the potential use of herbs and natural products in the management of obesity-associated CRC were also discussed. Taken together, the aim of this review article is to provide strong theoretical basis for future drug development, particularly herbs and natural products, in obesity-associated CRC.
Collapse
Affiliation(s)
- Huihai Yang
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Grace Gar Lee Yue
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Ping Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Chun Kwok Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Clara Bik San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| |
Collapse
|
49
|
Soomro FH, Razzaq A, Qaisar R, Ansar M, Kazmi T. Enhanced Recovery After Surgery: Are Benefits Demonstrated in International Studies Replicable in Pakistan? Cureus 2021; 13:e19624. [PMID: 34804754 PMCID: PMC8597665 DOI: 10.7759/cureus.19624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 11/14/2022] Open
Abstract
Objectives To determine the efficacy of enhanced recovery after surgery (ERAS) protocols in terms of frequency of surgical site infection (SSI) and length of hospital stay in patients undergoing colorectal surgeries for colorectal carcinoma. Study design Quasi-experimental study. Setting/Duration of study Department of Surgery, Shifa International Hospital, Islamabad, from May 7, 2019 to November 6, 2019. Methodology A total of 120 patients with colorectal carcinomas who fulfilled that sample selection criteria were studied. After randomization, patients were divided into two equal groups; one group received management under ERAS while the second group received conventional management. All patients were recorded for length of hospital stay and the development of SSIs. Data were analyzed using SPSS 26.0. Results The mean age was 42.34 ± 14.45 years, with a male majority, i.e., 72 (60%). The mean duration of in-patient stay was 3.45 ± 1.73 days with ERAS and 8.25 ± 1.58 days with conventional management (p < 0.001). A total of 28 (23.3%) SSIs developed, of which nine (7.5%) SSIs occurred with ERAS, while 19 (15.8%) occurred with traditional management (p = 0.031). Conclusion ERAS protocols have been demonstrated to be effective, cheap, and safe. There is a tangible reduction in length of hospital stay and incidence of SSIs which translates into reduced utilization of resources and financial costs. However, strict adherence to the protocol may be necessary to obtain the aforementioned benefits, which may be difficult to do in the face of professional, institutional, and personal inertia. Intensive efforts are required to make these protocols more convenient and attractive to implement, so as to facilitate conversion to this management approach.
Collapse
Affiliation(s)
- Faiza H Soomro
- General Surgery, The Dudley Group NHS Foundation Trust, Dudley, GBR
| | - Aneela Razzaq
- Surgery, Shifa International Hospital Islamabad, Islamabad, PAK
| | | | - Mehwish Ansar
- General Surgery, Pakistan Institute of Medical Sciences, Islamabad, PAK
| | - Tehreem Kazmi
- General Surgery, Shifa International Hospital Islamabad, Islamabad, PAK
| |
Collapse
|
50
|
Alzahrani SM, Al Doghaither HA, Al-Ghafari AB. General insight into cancer: An overview of colorectal cancer (Review). Mol Clin Oncol 2021; 15:271. [PMID: 34790355 DOI: 10.3892/mco.2021.2433] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer is currently among the leading causes of mortality globally. Colorectal cancer (CRC) ranks second among the most common types of cancer in terms of mortality worldwide. This type of cancer arises from mutations in the colonic and rectal epithelial tissues that target oncogenes, tumor suppressor genes and genes related to DNA repair mechanisms. The aim of the present review was to provide an explanation of CRC classification, which is carried out according to the histological subtype, location and molecular pathways implicated in its development. The pathogenic mechanisms implicated in CRC may involve one of three different molecular pathways: Chromosomal instability, microsatellite instability and cytosine preceding guanine island methylator phenotype. In addition, a variety of mutated genes associated with CRC, which affect certain signaling pathways, including DNA mismatch repair, cell cycle checkpoints and apoptotic pathways, were discussed. Moreover, a brief description of the risk factors and the symptoms associated with CRC was also provided. Finally, the treatment approaches to CRC were outlined.
Collapse
Affiliation(s)
| | | | - Ayat Badr Al-Ghafari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|