1
|
Zhuang MQ, Zhou HB, Zhou YB. Author's Reply: "Aquaporin 1 in cancer: Oncogene or a tumor suppressor?". Dig Liver Dis 2024; 56:219. [PMID: 38000936 DOI: 10.1016/j.dld.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Affiliation(s)
- Meng-Qi Zhuang
- Department of Hepatobiliary Medicine, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, China
| | - Hua-Bang Zhou
- Department of Hepatobiliary Medicine, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, China
| | - Yu-Bao Zhou
- Department of Digestive Medicine, Second Affiliated Hospital, Anhui Medical College, Anhui 230000, China.
| |
Collapse
|
2
|
Murugesan P, Begum H, Tangutur AD. Inhibitor of DNA binding/differentiation proteins as IDs for pancreatic cancer: Role in pancreatic cancer initiation, development and prognosis. Gene 2023; 853:147092. [PMID: 36464175 DOI: 10.1016/j.gene.2022.147092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
A family of inhibitors of cell differentiation or DNA-binding proteins, known as ID proteins (ID1-4), function as mighty transcription factors in various cellular processes, such as inhibiting differentiation, promoting cell-cycle progression, senescence, angiogenesis, tumorigenesis, and metastasis in cancer. Pancreatic cancer represents the deadliest cancer with the lowest survival rate of 10% due to the diagnosis at an advanced fatal stage and therapeutic resistance. Modestly, the only curative option for this lethal cancer is surgery but is done in less than 15-20% of patients because of the locally aggressive and early metastatic nature. Finding the earliest biomarkers and targeting the various hallmarks of pancreatic cancer can improve the treatment and survival of pancreatic cancer patients. Therefore, herein in this review, we explore in depth the potential roles of ID proteins function in hallmarks of pancreatic cancer, signaling pathways, and its oncogenic and tumor-suppressive effects. Hence, understanding the roles of dysregulated ID proteins would provide new insights into its function in pancreatic cancer tumorigenesis.
Collapse
Affiliation(s)
- Periyasamy Murugesan
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Habeebunnisa Begum
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Anjana Devi Tangutur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
3
|
Ou D, Wu Y. The prognostic and clinical significance of IFI44L aberrant downregulation in patients with oral squamous cell carcinoma. BMC Cancer 2021; 21:1327. [PMID: 34903206 PMCID: PMC8667451 DOI: 10.1186/s12885-021-09058-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022] Open
Abstract
Background It is a basic task in high-throughput gene expression profiling studies to identify differentially expressed genes (DEGs) between two phenotypes. RankComp, an algorithm, could analyze the highly stable within-sample relative expression orderings (REOs) of gene pairs in a particular type of human normal tissue that are widely reversed in the cancer condition, thereby detecting DEGs for individual disease samples measured by a particular platform. Methods In the present study, Gene Expression Omnibus (GEO) Series (GSE) GSE75540, GSE138206 were downloaded from GEO, by analyzing DEGs in oral squamous cell carcinoma based on online datasets using the RankComp algorithm, using the Kaplan-Meier survival analysis and Cox regression analysis to survival analysis, Gene Set Enrichment Analysis (GSEA) to explore the potential molecular mechanisms underlying. Results We identified 6 reverse gene pairs with stable REOs. All the 12 genes in these 6 reverse gene pairs have been reported to be associated with cancers. Notably, lower Interferon Induced Protein 44 Like (IFI44L) expression was associated with poorer overall survival (OS) and Disease-free survival (DFS) in oral squamous cell carcinoma patients, and IFI44L expression showed satisfactory predictive efficiency by receiver operating characteristic (ROC) curve. Moreover, low IFI44L expression was identified as risk factors for oral squamous cell carcinoma patients’ OS. IFI44L downregulation would lead to the activation of the FRS-mediated FGFR1, FGFR3, and downstream signaling pathways, and might play a role in the PI3K-FGFR cascades. Conclusions Collectively, we identified 6 reverse gene pairs with stable REOs in oral squamous cell carcinoma, which might serve as gene signatures playing a role in the diagnosis in oral squamous cell carcinoma. Moreover, high expression of IFI44L, one of the DEGs in the 6 reverse gene pairs, might be associated with favorable prognosis in oral squamous cell carcinoma patients and serve as a tumor suppressor by acting on the FRS-mediated FGFR signaling. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-09058-y.
Collapse
Affiliation(s)
- Deming Ou
- Department of Stomatology, Panyu Central Hospital, Guangzhou, 511400, China.
| | - Ying Wu
- Department of Stomatology, Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China
| |
Collapse
|
4
|
Zhu K, Lin J, Chen S, Xu Q. miR-9-5p Promotes Lung Adenocarcinoma Cell Proliferation, Migration and Invasion by Targeting ID4. Technol Cancer Res Treat 2021; 20:15330338211048592. [PMID: 34723712 PMCID: PMC8564129 DOI: 10.1177/15330338211048592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objectives Evidence reveals that microRNAs (miRNAs) are abnormally
expressed in lung adenocarcinoma (LUAD) tissue and are crucial in LUAD
occurrence. Therefore, this study aims to find the miRNA which could regulate
LUAD and to further explore its regulatory mechanism, thus providing a potential
molecular target for LUAD. Methods miR-9-5p and ID4 expression in
LUAD cells were measured by real-time quantitative PCR and western blot. Cell
functional assays were conducted to detect the biological functions of LUAD
cells. A dual-luciferase reporter assay was utilized to validate the binding
relationship between miR-9-5p and ID4. Results miR-9-5p was highly
expressed whereas ID4 was lowly expressed in LUAD. miR-9-5p facilitated LUAD
cell progression by targeting ID4. Conclusion miR-9-5p promotes
LUAD cell progression by modulating ID4 and may become a potential target for
LUAD.
Collapse
Affiliation(s)
- Kai Zhu
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Jinlan Lin
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Shengjia Chen
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Qian Xu
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
5
|
Broholm M, Degett TH, Furbo S, Fiehn AMK, Bulut M, Litman T, Eriksen JO, Troelsen JT, Gjerdrum LMR, Gögenur I. Colonic Stent as Bridge to Surgery for Malignant Obstruction Induces Gene Expressional Changes Associated with a More Aggressive Tumor Phenotype. Ann Surg Oncol 2021; 28:8519-8531. [PMID: 34467497 DOI: 10.1245/s10434-021-10226-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/25/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Colonic stent is recommended as a bridge to elective surgery for malignant obstruction to improve short-term clinical outcomes for patients with colorectal cancer. However, since the oncological outcomes remain controversial, this study aimed to investigate the impact of self-expandable metallic stent (SEMS) on the tumor microenvironment. METHODS Patients treated with colonic stent as a bridge to surgery from 2010 to 2015 were identified from hospital records. Tumor biopsies and resected tumor samples of the eligible patients were retrieved retrospectively. Gene expression analysis was performed using the NanoString nCounter PanCancer IO 360 gene expression panel. RESULTS Of the 164 patients identified, this study included 21 who underwent colonic stent placement as a bridge to elective surgery. Gene expression analysis revealed 82 differentially expressed genes between pre- and post-intervention specimens, of which 72 were upregulated and 10 downregulated. Among the significantly upregulated genes, 46 are known to have protumor functions, of which 26 are specifically known to induce tumorigenic mechanisms such as proliferation, migration, invasion, angiogenesis, and inflammation. In addition, ten differentially expressed genes were identified that are known to promote antitumor functions. CONCLUSION SEMS induces gene expressional changes in the tumor microenvironment that are associated with tumor progression in colorectal cancer and may potentiate a more aggressive phenotype. Future studies are warranted to establish optimal timing of surgery after SEMS insertion in patients with obstructive colorectal cancer.
Collapse
Affiliation(s)
- Malene Broholm
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Denmark. .,Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| | - Thea Helene Degett
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Denmark
| | - Sara Furbo
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Denmark
| | - Anne-Marie Kanstrup Fiehn
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Denmark.,Department of Pathology, Zealand University Hospital, Køge, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mustafa Bulut
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Litman
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jens Ole Eriksen
- Department of Pathology, Zealand University Hospital, Køge, Denmark
| | - Jesper T Troelsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Lise Mette Rahbek Gjerdrum
- Department of Pathology, Zealand University Hospital, Køge, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Id4 Suppresses the Growth and Invasion of Colorectal Cancer HCT116 Cells through CK18-Related Inhibition of AKT and EMT Signaling. JOURNAL OF ONCOLOGY 2021; 2021:6660486. [PMID: 33936204 PMCID: PMC8060092 DOI: 10.1155/2021/6660486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/19/2021] [Accepted: 04/02/2021] [Indexed: 01/05/2023]
Abstract
Id4 is one of the inhibitors of DNA-binding proteins (Id) and involved in the pathogenesis of numerous cancers. The specific mechanism underlying the Id4-mediated regulation of proliferation, invasion, and metastasis of colorectal cancer (CRC) cells is still largely unclear. In the present study, results showed CRC cells had a lower baseline Id4 expression than normal intestinal epithelial NCM460 cells. In order to explore the role of Id4 in the tumorigenicity, CRC HCT116 cells with stable Id4 expression were used, and results showed Id4 overexpression arrested the cell cycle at the G0/G1 phase, inhibited the cell proliferation and the colony formation, as well as suppressed the migration and invasion. In the in vivo model, Id4 overexpression inhibited the tumor growth and metastasis in the nude mice. Furthermore, Id4 overexpression upregulated the expression of proteins associated with cell proliferation, inhibited the PI3K/AKT pathway, and suppressed epithelial-mesenchymal transition (EMT) of HCT116 cells. Moreover, Id4 significantly decreased cytokeratin 18 (CK18) expression, but CK18 overexpression in Id4 expressing HCT116-Id4 cells rescued the activation of AKT, p-AKT, MMP2, MMP7, and E-cadherin. Collectively, our study indicated Id4 may inhibit CRC growth and metastasis through inhibiting the PI3K/AKT pathway in a CK18-dependent manner and suppressing EMT. Id4 may become a target for the treatment of CRC.
Collapse
|
7
|
Garcia-Escolano M, Montoyo-Pujol YG, Ortiz-Martinez F, Ponce JJ, Delgado-Garcia S, Martin TA, Ballester H, Aranda FI, Castellon-Molla E, Sempere-Ortells JM, Peiro G. ID1 and ID4 Are Biomarkers of Tumor Aggressiveness and Poor Outcome in Immunophenotypes of Breast Cancer. Cancers (Basel) 2021; 13:cancers13030492. [PMID: 33514024 PMCID: PMC7865969 DOI: 10.3390/cancers13030492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 01/20/2023] Open
Abstract
Simple Summary Inhibitor of differentiation (ID) proteins are essential to promote proliferation during embryonic development, but they are silenced in most adult tissues. Evidence to date shows ID1 expression in many tumor types, including breast cancer. However, the role of the remaining ID family members, especially ID4, in breast cancer remains unclear. In this work, we aimed to assess the four ID genes expression in breast cancer cell lines and a long series of breast cancer samples and correlate them with clinicopathological features and patients’ survival. We observed a significantly higher expression of ID4 in tumor cell lines than the healthy breast epithelium cell line. We confirmed that the overexpression of ID1 and ID4 correlated with more aggressive phenotypes and poor survival in breast cancer patients’ samples. Our results support the importance of ID proteins as targets for the development of anti-cancer drugs. Abstract Inhibitor of differentiation (ID) proteins are a family of transcription factors that contribute to maintaining proliferation during embryogenesis as they avoid cell differentiation. Afterward, their expression is mainly silenced, but their reactivation and contribution to tumor development have been suggested. In breast cancer (BC), the overexpression of ID1 has been previously described. However, whether the remaining ID genes have a specific role in this neoplasia is still unclear. We studied the mRNA expression of all ID genes by q RT-PCR in BC cell lines and 307 breast carcinomas, including all BC subtypes. Our results showed that ID genes are highly expressed in all cell lines tested. However, ID4 presented higher expression in BC cell lines compared to a healthy breast epithelium cell line. In accordance, ID1 and ID4 were predominantly overexpressed in Triple-Negative and HER2-enriched samples. Moreover, high levels of both genes were associated with larger tumor size, histological grade 3, necrosis and vascular invasion, and poorer patients’ outcomes. In conclusion, ID1 and ID4 may act as biomarkers of tumor aggressiveness and worse prognosis in breast cancer, and they could be used as potential targets for new treatments discover.
Collapse
Affiliation(s)
- Marta Garcia-Escolano
- Research Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (Y.G.M.-P.); (F.O.-M.); (G.P.)
- Correspondence: ; Tel.: +34-965-913953 (ext. 3952)
| | - Yoel G. Montoyo-Pujol
- Research Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (Y.G.M.-P.); (F.O.-M.); (G.P.)
| | - Fernando Ortiz-Martinez
- Research Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (Y.G.M.-P.); (F.O.-M.); (G.P.)
| | - Jose J. Ponce
- Medical Oncology Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain;
| | - Silvia Delgado-Garcia
- Gynecology and Obstetrics Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (S.D.-G.); (T.A.M.); (H.B.)
| | - Tina A. Martin
- Gynecology and Obstetrics Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (S.D.-G.); (T.A.M.); (H.B.)
| | - Hortensia Ballester
- Gynecology and Obstetrics Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (S.D.-G.); (T.A.M.); (H.B.)
| | - F. Ignacio Aranda
- Pathology Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (F.I.A.); (E.C.-M.)
| | - Elena Castellon-Molla
- Pathology Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (F.I.A.); (E.C.-M.)
| | - J. Miguel Sempere-Ortells
- Biotechnology Department, Immunology Division, University of Alicante, Ctra San Vicente s/n. 03080-San Vicente del Raspeig, 03010 Alicante, Spain;
| | - Gloria Peiro
- Research Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (Y.G.M.-P.); (F.O.-M.); (G.P.)
- Pathology Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (F.I.A.); (E.C.-M.)
| |
Collapse
|
8
|
Yan Z, Yin H, Lin G. CircDDX42 Accelerates the Development of Pancreatic Cancer via miR-613/ID4/PI3K/AKT Axis. Onco Targets Ther 2020; 13:10945-10957. [PMID: 33149610 PMCID: PMC7604853 DOI: 10.2147/ott.s233000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/15/2020] [Indexed: 01/01/2023] Open
Abstract
Background Pancreatic cancer (PC) is one of the fatal cancers globally. CircDEAD-box helicase 42 (circDDX42) has been reported to play an oncogenic role in many cancers. The purpose of our study was to explore the relationship between circDDX42 and PC development and the potential mechanism by which circDDX42 modulating the progression of PC. Methods The enrichment of circDDX42, miR-613 and inhibitor of DNA binding 4 (ID4) was determined by quantitative real-time polymerase chain reaction (qRT-PCR) in PC tissues and cells. The proliferation, apoptosis and metastasis of PC cells were examined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Western blot, flow cytometry and transwell migration and invasion assays, respectively. The binding sites between miR-613 and circDDX42 or ID4 were predicted by Starbase bioinformatic software, and dual-luciferase reporter assay was conducted to verify the combination between miR-613 and circDDX42 or ID4. Western blot was carried out to detect the abundance of ID4, p-phosphatidylinositol 3-kinase (p-PI3K), PI3K, p-AKT serine/threonine kinase (p-AKT) and AKT in PC cells. The in vivo role of circDDX42 was verified through using murine xenograft model. Results The level of circDDX42 was enhanced in PC tissues and cells compared with that in matching normal tissues and HPDE cells. CircDDX42 promoted the proliferation and metastasis and suppressed the apoptosis of PC cells. CircDDX42 could sponge miR-613, and miR-613 was negatively regulated by circDDX42 in PC cells. MiR-613 suppressed the progression of PC. ID4 was a direct target of miR-613. ID4 was inversely modulated by miR-613 and positively regulated by circDDX42 in PC cells. ID4 played an oncogenic role in the tumorigenesis of PC. CircDDX42/miR-613/ID4 axis regulated the activation of PI3K/AKT pathway in PC cells. ID4 facilitated the progression of PC via activating PI3K/AKT signal pathway. CircDDX42 promoted the tumor growth of PC in vivo. Conclusion CircDDX42 accelerated the proliferation and metastasis while impeded the apoptosis of PC cells via circDDX42/miR-613/ID4/PI3K/AKT axis. This axis might be a promising target for PC therapy.
Collapse
Affiliation(s)
- Zhen Yan
- Department of General Surgery, The First Hospital of Qiqihar, Qiqihar 161005, People's Republic of China.,Department of General Surgery, Qiqihar Hospital Affiliated to Southern Medical University, Qiqihar 161005, People's Republic of China
| | - Heliang Yin
- Department of General Surgery, The First Hospital of Qiqihar, Qiqihar 161005, People's Republic of China.,Department of General Surgery, Qiqihar Hospital Affiliated to Southern Medical University, Qiqihar 161005, People's Republic of China
| | - Guoying Lin
- Department of General Surgery, The First Hospital of Qiqihar, Qiqihar 161005, People's Republic of China.,Department of General Surgery, Qiqihar Hospital Affiliated to Southern Medical University, Qiqihar 161005, People's Republic of China
| |
Collapse
|
9
|
Li L, Li F, Xia Y, Yang X, Lv Q, Fang F, Wang Q, Bu W, Wang Y, Zhang K, Wu Y, Shen J, Jiang M. UVB induces cutaneous squamous cell carcinoma progression by de novo ID4 methylation via methylation regulating enzymes. EBioMedicine 2020; 57:102835. [PMID: 32574963 PMCID: PMC7317242 DOI: 10.1016/j.ebiom.2020.102835] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Little is known about whether UVB can directly influence epigenetic regulatory pathways to induce cutaneous squamous cell carcinoma (CSCC). This study aimed to identify epigenetic-regulated signalling pathways through global methylation and gene expression profiling and to elucidate their function in CSCC development. METHODS Global DNA methylation profiling by reduced representation bisulfite sequencing (RRBS) and genome-wide gene expression analysis by RNA sequencing (RNA-seq) in eight pairs of matched CSCC and adjacent normal skin tissues were used to investigate the potential candidate gene(s). Clinical samples, animal models, cell lines, and UVB irradiation were applied to validate the mechanism and function of the genes of interest. FINDINGS We identified the downregulation of the TGF-β/BMP-SMAD-ID4 signalling pathway in CSCC and increased methylation of inhibitor of DNA binding/differentiation 4 (ID4). In normal human and mouse skin tissues and cutaneous cell lines, UVB exposure induced ID4 DNA methylation, upregulated DNMT1 and downregulated ten-eleven translocation (TETs). Similarly, we detected the upregulation of DNMT1 and downregulation of TETs accompanying ID4 DNA methylation in CSCC tissues. Silencing of DNMT1 and overexpression of TET1 and TET2 in A431 and Colo16 cells led to increased ID4 expression. Finally, we showed that overexpression of ID4 reduced cell proliferation, migration, and invasion, and increased apoptosis in CSCC cell lines and reduced tumourigenesis in mouse models. INTERPRETATION The results indicate that ID4 is downregulated by UVB irradiation via DNA methylation. ID4 acts as a tumour suppressor gene in CSCC development. FUNDING CAMS Innovation Fund for Medical Sciences (CIFMS) (2016-I2M-3-021, 2017-I2M-1-017), the Natural Science Foundation of Jiangsu Province (BK20191136), and the Fundamental Research Funds for the Central Universities (3332019104).
Collapse
Affiliation(s)
- Liming Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Fengjuan Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Yudong Xia
- MethylGene Tech Co., Ltd. Guangzhou, Guangdong 510000, China
| | - Xueyuan Yang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Qun Lv
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Fang Fang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Qiang Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Wenbo Bu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Yan Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Ke Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Yi Wu
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junfang Shen
- MethylGene Tech Co., Ltd. Guangzhou, Guangdong 510000, China
| | - Mingjun Jiang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China.
| |
Collapse
|
10
|
Cheng D, Fan J, Ma Y, Zhou Y, Qin K, Shi M, Yang J. LncRNA SNHG7 promotes pancreatic cancer proliferation through ID4 by sponging miR-342-3p. Cell Biosci 2019; 9:28. [PMID: 30949340 PMCID: PMC6431029 DOI: 10.1186/s13578-019-0290-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/15/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Small nucleolar RNA host gene 7 (SNHG7) is a novel identified oncogenic gene in tumorigenesis. However, the role that SNHG7 plays in pancreatic cancer (PC) remains unclear. In this study, we aimed to investigate the functional effects of SNHG7 on PC and the possible mechanism. METHODS The expression levels of SNHG7 in tissues and cell lines were measured by RT-qPCR. Cell viability, apoptosis, migration and invasion were examined to explore the function of SNHG7 on PC. Bioinformatics methods were used to predict the target genes. The mechanism was further investigated by transfection with specific si-RNA, miRNA mimics or miRNA inhibitor. Tumor xenograft was carried out to verify the effects of SNHG7 in vivo. RESULTS We found that SNHG7 was overexpressed in both PC tissues and cell lines. High expression level of SNHG7 was correlated with the poor prognosis. SNHG7 knockdown inhibited the proliferation, migration and invasion of PC cells. Moreover, SNHG7 was found to regulate the expression of ID4 via sponging miR-342-3p. Additionally, this finding was supported by in vivo experiments. CONCLUSIONS LncRNA SNHG7 was overexpressed in PC tissues, and knockdown of SNHG7 suppressed PC cell proliferation, migration and invasion via miR-342-3p/ID4 axis. The results indicated that SNHG7 as a potential target for clinical treatment of PC.
Collapse
Affiliation(s)
- Dongfeng Cheng
- Pancreatic Disease Center, Department of General Surgery, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197 Rui Jin Er Road, Shanghai, China
| | | | - Yang Ma
- Pancreatic Disease Center, Department of General Surgery, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197 Rui Jin Er Road, Shanghai, China
| | - Yiran Zhou
- Pancreatic Disease Center, Department of General Surgery, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197 Rui Jin Er Road, Shanghai, China
| | - Kai Qin
- Pancreatic Disease Center, Department of General Surgery, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197 Rui Jin Er Road, Shanghai, China
| | - Minmin Shi
- Research Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jingrui Yang
- Pancreatic Disease Center, Department of General Surgery, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197 Rui Jin Er Road, Shanghai, China
| |
Collapse
|
11
|
Ge S, Wang D, Lv B, Yang S, Liu C, Xu B, Zhao C, Qin Y, Xu J. HCRP1, ID4 and Glypican-3: an optimal panel of biomarkers for diagnosis of hepatocellular carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:5774-5782. [PMID: 31949663 PMCID: PMC6963063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/25/2018] [Indexed: 06/10/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide with high morbidity and mortality. The aim of this study was to assess the diagnostic role of HCC related protein 1 (HCRP1) and inhibitor of DNA Binding 4 (ID4) as novel reliable markers for HCC diagnosis. METHODS Immunohistochemistry for HCRP1, ID4 and Glypican-3 (GPC-3) was performed in 98 cases of HCCs, 15 large regenerative nodules arising in cirrhotic livers, 12 hepatocellular adenomas (HCA), 10 focal nodular hyperplasias (FNH), and 20 specimens of normal liver tissues (NL). RESULTS HCRP1 immunoactivity was decreased in 64 of 98 (65.3%) HCC cases but present in almost all of the benign liver nodules (56/57, 98.2%, P < 0.001). 68 of 98 (69.4%) and 70 of 98 (71.4%) HCC cases were positive for ID4 and GPC-3, respectively, which were much higher than in benign lesions. Even though HCRP1 is highly specific (98.25%) in differentiating well differentiated HCC (WDHCC) from benign liver nodules, it has only a limited value because of its low sensitivity (37.5%), neither for the ID4, GPC-3 alone or combination (P > 0.05). The expression of HCRP1 alone could efficiently distinguish WDHCC from moderate-poorly differentiated HCC (M-PHCC), and the combination of using either two or three markers could notably increase the diagnosis accuracy (P < 0.05). CONCLUSION HCRP1 and ID4 represent potentially novel valuable biomarkers for distinguishing HCC from benign liver nodules, and it is recommended to use the combination of HCRP1, ID4 and GPC-3 as a panel in HCC differentiation estimation.
Collapse
Affiliation(s)
- Shujian Ge
- Department of Science and Education, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan, Shandong, PR China
| | - Dan Wang
- Department of Science and Education, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan, Shandong, PR China
| | - Beibei Lv
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan, Shandong, PR China
| | - Shuping Yang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan, Shandong, PR China
| | - Chunmei Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan, Shandong, PR China
| | - Bin Xu
- Department of Pathology, Shengli Oil Field Central HospitalDongying, Shandong Province, PR China
| | - Chunming Zhao
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan, Shandong, PR China
| | - Yejun Qin
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan, Shandong, PR China
| | - Jiawen Xu
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan, Shandong, PR China
| |
Collapse
|
12
|
Luo D, Xu X, Li J, Chen C, Chen W, Wang F, Xie Y, Li F. The PDK1/c‑Jun pathway activated by TGF‑β induces EMT and promotes proliferation and invasion in human glioblastoma. Int J Oncol 2018; 53:2067-2080. [PMID: 30106127 DOI: 10.3892/ijo.2018.4525] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/23/2018] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant tumor affecting the human brain. Despite improvements in therapeutic technologies, patients with GBM have a poor clinical result and the molecular mechanisms responsible for the development of GBM have not yet been fully elucidated. 3-phosphoinositide dependent protein kinase 1 (PDK1) is upregulated in various tumors and promotes tumor invasion. In glioma, transforming growth factor-β (TGF‑β) promotes cell invasion; however, whether TGF‑β directly regulates PDK1 protein and promotes proliferation and invasion is not yet clear. In this study, PDK1 levels were measured in glioma tissues using tissue microarray (TMA) by immunohistochemistry (IHC) and RT‑qPCR. Kaplan-Meier analyses were used to calculate the survival rate of patients with glioma. In vitro, U251 and U87 glioma cell lines were used for functional analyses. Cell proliferation and invasion were analyzed using siRNA transfection, MTT assay, RT‑qPCR, western blot analysis, flow cytometry and invasion assay. In vivo, U251 glioma cell xenografts were established. The results revealed that PDK1 protein was significantly upregulated in glioma tissues compared with non-tumorous tissues. Furthermore, the higher PDK1 levels were associated with a large tumor size (>5.0 cm), a higher WHO grade and a shorter survival of patients with GBM. Univariate and multivariate analyses indicated that PDK1 was an independent prognostic factor. In vivo, PDK1 promoted glioma tumor xenograft growth. In vitro, functional analyses confirmed that TGF‑β upregulated PDK1 protein expression and PDK1 promoted cell migration and invasion, and functioned as an oncogene in GBM, by upregulating c‑Jun protein and inducing epithelial-mesenchymal transition (EMT). c‑Jun protein were overexpressed in glioma tissues and positively correlated with PDK1 levels. Moreover, our findings were further validated by the online Oncomine database. On the whole, the findings of this study indicate that in GBM, PDK1 functions as an oncogene, promoting proliferation and invasion.
Collapse
Affiliation(s)
- Dingyuan Luo
- Department of Vascular and Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Xinke Xu
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Junliang Li
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Cheng Chen
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Wei Chen
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Fangyu Wang
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Yanping Xie
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Fangcheng Li
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|