1
|
Thet PH, Kaboosaya B. Cephalometric evaluation of skeletal stability and pharyngeal airway changes after mandibular setback surgery: Bioabsorbable versus titanium plate and screw fixation. Imaging Sci Dent 2024; 54:181-190. [PMID: 38948194 PMCID: PMC11211026 DOI: 10.5624/isd.20230269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/15/2024] [Accepted: 03/23/2024] [Indexed: 07/02/2024] Open
Abstract
Purpose This study compared sequential changes in skeletal stability and the pharyngeal airway following mandibular setback surgery involving fixation with either a titanium or a bioabsorbable plate and screws. Materials and Methods Twenty-eight patients with mandibular prognathism undergoing bilateral sagittal split osteotomy by titanium or bioabsorbable fixation were randomly selected in this study. Lateral cephalometric analysis was conducted preoperatively and at 1 week, 3-6 months, and 1 year postoperatively. Mandibular stability was assessed by examining horizontal (BX), vertical (BY), and angular measurements including the sella-nasion to point B angle and the mandibular plane angle (MPA). Pharyngeal airway changes were evaluated by analyzing the nasopharynx, uvula-pharynx, tongue-pharynx, and epiglottis-pharynx (EOP) distances. Mandibular and pharyngeal airway changes were examined sequentially. To evaluate postoperative changes within groups, the Wilcoxon signed-rank test was employed, while the Mann-Whitney U test was used for between-group comparisons. Immediate postoperative changes in the airway were correlated to surgical movements using the Spearman rank test. Results Significant changes in the MPA were observed in both the titanium and bioabsorbable groups at 3-6 months post-surgery, with significance persisting in the bioabsorbable group at 1 year postoperatively (2.29°±2.28°; P<0.05). The bioabsorbable group also exhibited significant EOP changes (-1.21±1.54 mm; P<0.05) at 3-6 months, which gradually returned to non-significant levels by 1 year postoperatively. Conclusion Osteofixation using bioabsorbable plates and screws is comparable to that achieved with titanium in long-term skeletal stability and maintaining pharyngeal airway dimensions. However, a tendency for relapse exists, especially regarding the MPA.
Collapse
Affiliation(s)
- Phu Hnin Thet
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Boosana Kaboosaya
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Chanachol P, Chongruangsri NN, Arunjaroensuk S, Rochanavibhata S, Siriwatana K, Pimkhaokham A. Comparative study of stability between two different fixation systems after orthognathic surgery in mandibular prognathism skeleton. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2023; 124:101431. [PMID: 36914005 DOI: 10.1016/j.jormas.2023.101431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/06/2023] [Indexed: 03/15/2023]
Abstract
OBJECTIVE This study is intended to compare the skeleton stability of bioabsorbable and titanium systems after orthognathic surgery in mandibular prognathism patients. STUDY DESIGN A Retrospective study of 28 mandibular prognathism patients who underwent BSSRO setback surgery at Chulalongkorn University. Both titanium and the bioabsorbable group would take lateral cephalometrics immediately postoperative in 1-week(T0), 3(T1), 6(T2), and 12(T3) months. These radiographs were analyzed with Dolphin imaging programTM. The vertical, horizontal, and angular indices were measured. To compare immediately postoperative and follow-up periods within the group, the Friedman difference was used, and the Man-Whitney U test was used between the two groups. RESULT The measurements within the group presented no statistically significant differences. But this study showed that at T0-T1, there was a statistically significant difference between the two groups in the mean of Me in horizontal linear measurement. T0-T2 found differences between Me in both horizontal and vertical linear measurements, and the difference between ANB. The differences between B-point, Pog, and Me in vertical linear measurements at T0-T3 were also reported. CONCLUSION The significant difference values were within the normal range which indicated that using the bioabsorbable system could be well maintained as well as the titanium system. STATEMENT OF CLINICAL RELEVANCE The second operation for removing titanium plate and screw after conventional orthognathic surgery may leads patient discomforts. While a resorbable system might be the role change if the stability is place on the same level.
Collapse
Affiliation(s)
- Pawaris Chanachol
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | | | - Sirida Arunjaroensuk
- Department of maxillofacial surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Sunisa Rochanavibhata
- Department of maxillofacial surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Kiti Siriwatana
- Department of maxillofacial surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Atiphan Pimkhaokham
- Department of maxillofacial surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
3
|
Karanth D, Puleo D, Dawson D, Holliday LS, Sharab L. Characterization of 3D printed biodegradable piezoelectric scaffolds for bone regeneration. Clin Exp Dent Res 2023; 9:398-408. [PMID: 36779270 PMCID: PMC10098282 DOI: 10.1002/cre2.712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/17/2022] [Accepted: 01/10/2023] [Indexed: 02/14/2023] Open
Abstract
OBJECTIVE The primary objective of this research was to develop a poly(l-lactic acid) (PLLA) scaffold and evaluate critical characteristics essential for its biologic use as a craniofacial implant. MATERIALS AND METHODS PLLA scaffolds were designed and fabricated using fused deposition modeling technology. The surface morphology and microarchitecture were analyzed using scanning electron microscopy (SEM) and microCT, respectively. Crystallography, compressive modulus, and the piezoelectric potential generated upon mechanical distortion were characterized. Hydrolytic degradation was studied. MG63 osteoblast-like cell proliferation and morphology were assessed. RESULTS The porosity of the scaffolds was 73%, with an average pore size of 450 µm and an average scaffold fiber thickness of 130 µm. The average compressive modulus was 244 MPa, and the scaffolds generated an electric potential of 25 mV upon cyclic/repeated loading. The crystallinity reduced from 27.5% to 13.9% during the 3D printing process. The hydrolytic degradation was minimal during a 12-week period. Osteoblast-like cells did not attach to the uncoated scaffold but attached well after coating the scaffold with fibrinogen. They then proliferated to cover the complete scaffold by Day 14. CONCLUSION The PLLA scaffolds were designed and printed, proving the feasibility of 3D printing as a method of fabricating PLLA scaffolds. The elastic modulus was comparable to that of trabecular bone, and the piezoelectric properties of the PLLA were retained after 3D printing. The scaffolds were cytocompatible. These 3D-printed PLLA scaffolds showed promising properties akin to the natural bone, and they warrant further investigation for bone regeneration.
Collapse
Affiliation(s)
- Divakar Karanth
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - David Puleo
- Department of Biomedical Engineering, University of Mississippi, University Park, Mississippi, USA
| | - Dolph Dawson
- Department of Periodontics, University of Kentucky College of Dentistry, Lexington, Kentucky, USA
| | - L S Holliday
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Lina Sharab
- Department of Orthodontics, University of Kentucky College of Dentistry, Lexington, Kentucky, USA
| |
Collapse
|
4
|
Genioplasty in Contemporary Orthognathic Surgery. Oral Maxillofac Surg Clin North Am 2022; 35:97-114. [DOI: 10.1016/j.coms.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Titanium or Biodegradable Osteosynthesis in Maxillofacial Surgery? In Vitro and In Vivo Performances. Polymers (Basel) 2022; 14:polym14142782. [PMID: 35890557 PMCID: PMC9316877 DOI: 10.3390/polym14142782] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 02/06/2023] Open
Abstract
Osteosynthesis systems are used to fixate bone segments in maxillofacial surgery. Titanium osteosynthesis systems are currently the gold standard. However, the disadvantages result in symptomatic removal in up to 40% of cases. Biodegradable osteosynthesis systems, composed of degradable polymers, could reduce the need for removal of osteosynthesis systems while avoiding the aforementioned disadvantages of titanium osteosyntheses. However, disadvantages of biodegradable systems include decreased mechanical properties and possible foreign body reactions. In this review, the literature that focused on the in vitro and in vivo performances of biodegradable and titanium osteosyntheses is discussed. The focus was on factors underlying the favorable clinical outcome of osteosyntheses, including the degradation characteristics of biodegradable osteosyntheses and the host response they elicit. Furthermore, recommendations for clinical usage and future research are given. Based on the available (clinical) evidence, biodegradable copolymeric osteosyntheses are a viable alternative to titanium osteosyntheses when applied to treat maxillofacial trauma, with similar efficacy and significantly lower symptomatic osteosynthesis removal. For orthognathic surgery, biodegradable copolymeric osteosyntheses are a valid alternative to titanium osteosyntheses, but a longer operation time is needed. An osteosynthesis system composed of an amorphous copolymer, preferably using ultrasound welding with well-contoured shapes and sufficient mechanical properties, has the greatest potential as a biocompatible biodegradable copolymeric osteosynthesis system. Future research should focus on surface modifications (e.g., nanogel coatings) and novel biodegradable materials (e.g., magnesium alloys and silk) to address the disadvantages of current osteosynthesis systems.
Collapse
|
6
|
Comparative Evaluation of Stress Distribution and Transverse Displacement of Novel Designs of Miniplates for Sagittal Split Ramus Osteotomy in 10 mm Advancements: A 3-Dimentional Finite Element Analysis. Br J Oral Maxillofac Surg 2022; 60:1266-1272. [DOI: 10.1016/j.bjoms.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/11/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022]
|
7
|
Biocompatible Materials in Otorhinolaryngology and Their Antibacterial Properties. Int J Mol Sci 2022; 23:ijms23052575. [PMID: 35269718 PMCID: PMC8910137 DOI: 10.3390/ijms23052575] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/19/2022] [Accepted: 02/20/2022] [Indexed: 12/29/2022] Open
Abstract
For decades, biomaterials have been commonly used in medicine for the replacement of human body tissue, precise drug-delivery systems, or as parts of medical devices that are essential for some treatment methods. Due to rapid progress in the field of new materials, updates on the state of knowledge about biomaterials are frequently needed. This article describes the clinical application of different types of biomaterials in the field of otorhinolaryngology, i.e., head and neck surgery, focusing on their antimicrobial properties. The variety of their applications includes cochlear implants, middle ear prostheses, voice prostheses, materials for osteosynthesis, and nasal packing after nasal/paranasal sinuses surgery. Ceramics, such as as hydroxyapatite, zirconia, or metals and metal alloys, still have applications in the head and neck region. Tissue engineering scaffolds and drug-eluting materials, such as polymers and polymer-based composites, are becoming more common. The restoration of life tissue and the ability to prevent microbial colonization should be taken into consideration when designing the materials to be used for implant production. The authors of this paper have reviewed publications available in PubMed from the last five years about the recent progress in this topic but also establish the state of knowledge of the most common application of biomaterials over the last few decades.
Collapse
|
8
|
Whulanza Y, Azadi A, Supriadi S, Rahman S, Chalid M, Irsyad M, Nadhif M, Kreshanti P. Tailoring mechanical properties and degradation rate of maxillofacial implant based on sago starch/polylactid acid blend. Heliyon 2022; 8:e08600. [PMID: 35028440 PMCID: PMC8741438 DOI: 10.1016/j.heliyon.2021.e08600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/21/2021] [Accepted: 12/09/2021] [Indexed: 12/04/2022] Open
Abstract
A polymeric bone implants have a distinctive advantage compared to metal implants due to their degradability in the local bone host. The usage of degradable implant prevents the need for an implant removal surgery especially if they fixated in challenging position such as maxillofacial area. Additionally, this fixation system has been widely applied in fixing maxillofacial fracture in child patients. An ideal degradable implant has a considerable mass degradation rate that proved structural integrity to the healing bone. At this moment, poly(lactic acid) (PLA) or poly(lactic-co-glycolic acid) (PLGA) are the most common materials used as degradable implant. This composition of materials has a degradation rate of more than a year. A long degradation rate increases the long-term biohazard risk for the bone host. Therefore, a faster degradation rate with adequate strength of implant is the focal point of this research. This study tailored the tunable degradability of starch with strength properties of PLA. Blending system of starch and PLA has been reported widely, but none of them were aimed to be utilized as medical implant. Here, various concentrations of sago starch/PLA and Polyethylene glycol (PEG) were composed to meet the requirement of maxillofacial miniplate implant. The implant was realized using an injection molding process to have a six-hole-miniplate with 1.2 mm thick and 34 mm length. The specimens were physiochemically characterized through X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, and Fourier Transform Infrared spectroscopy. It is found that the microstructure and chemical interactions of the starch/PLA/PEG polymers are correlated with the mechanical characteristics of the blends. Compared to a pure PLA miniplate, the sago starch/PLA/PEG blend shows a 60-80% lower tensile strength and stiffness. However, the flexural strength and elongation break are improved. A degradation study was conducted to observe the mass degradation rate of miniplate for 10 weeks duration. It is found that a maximum concentration of 20% sago starch and 10% of PEG in the PLA blending has promising properties as desired. The blends showed a 100-150% higher degradability rate compared to the pure PLA or a commercial miniplate. The numerical simulation was conducted and confirmed that the miniplate in the mandibular area were shown to be endurable with standard applied loading. The mechanical properties resulted from the experimental work was applied in the Finite Element Analysis to find that our miniplate were in acceptable level. Lastly, the in-vitro test showed that implants are safe to human cell with viability more than 80%. These findings shall support the use of this miniplate in rehabilitating mandibular fractures with faster degradation with acceptance level of mechanical characteristic specifically in case of 4-6 weeks bone union.
Collapse
Affiliation(s)
- Y. Whulanza
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia
- Research Center on Biomedical Engineering, Universitas Indonesia, Indonesia
| | - A. Azadi
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia
- Indonesian Agency for Agricultural Research and Development, Indonesia
| | - S. Supriadi
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia
- Research Center on Biomedical Engineering, Universitas Indonesia, Indonesia
| | - S.F. Rahman
- Research Center on Biomedical Engineering, Universitas Indonesia, Indonesia
- Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia
| | - M. Chalid
- Department of Metallurgical and Material Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia
| | - M. Irsyad
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia
- Medical Technology Cluster, Indonesian Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Indonesia
| | - M.H. Nadhif
- Medical Technology Cluster, Indonesian Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Indonesia
- Department of Medical Physics, Faculty of Medicine, Universitas Indonesia, Indonesia
| | - P. Kreshanti
- Research Center on Biomedical Engineering, Universitas Indonesia, Indonesia
- Plastic Reconstructive and Aesthetic Surgery Division, Department of Surgery, Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Indonesia
| |
Collapse
|
9
|
Ngo HX, Bai Y, Sha J, Ishizuka S, Toda E, Osako R, Kato A, Morioka R, Ramanathan M, Tatsumi H, Okui T, Kanno T. A Narrative Review of u-HA/PLLA, a Bioactive Resorbable Reconstruction Material: Applications in Oral and Maxillofacial Surgery. MATERIALS (BASEL, SWITZERLAND) 2021; 15:150. [PMID: 35009297 PMCID: PMC8746248 DOI: 10.3390/ma15010150] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022]
Abstract
The advent of bioresorbable materials to overcome limitations and replace traditional bone-reconstruction titanium-plate systems for bone fixation, thus achieving greater efficiency and safety in medical and dental applications, has ushered in a new era in biomaterial development. Because of its bioactive osteoconductive ability and biocompatibility, the forged composite of uncalcined/unsintered hydroxyapatite and poly L-lactic acid (u-HA/PLLA) has attracted considerable interest from researchers in bone tissue engineering, as well as from clinicians, particularly for applications in maxillofacial reconstructive surgery. Thus, various in vitro studies, in vivo studies, and clinical trials have been conducted to investigate the feasibility and weaknesses of this biomaterial in oral and maxillofacial surgery. Various technical improvements have been proposed to optimize its advantages and limit its disadvantages. This narrative review presents an up-to-date, comprehensive review of u-HA/PLLA, a bioactive osteoconductive and bioresorbable bone-reconstruction and -fixation material, in the context of oral and maxillofacial surgery, notably maxillofacial trauma, orthognathic surgery, and maxillofacial reconstruction. It simultaneously introduces new trends in the development of bioresorbable materials that could used in this field. Various studies have shown the superiority of u-HA/PLLA, a third-generation bioresorbable biomaterial with high mechanical strength, biocompatibility, and bioactive osteoconductivity, compared to other bioresorbable materials. Future developments may focus on controlling its bioactivity and biodegradation rate and enhancing its mechanical strength.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Takahiro Kanno
- Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine, Izumo 693-8501, Shimane, Japan; (H.X.N.); (Y.B.); (J.S.); (S.I.); (E.T.); (R.O.); (A.K.); (R.M.); (M.R.); (H.T.); (T.O.)
| |
Collapse
|
10
|
Lifka S, Baumgartner W. A Novel Screw Drive for Allogenic Headless Position Screws for Use in Osteosynthesis-A Finite-Element Analysis. Bioengineering (Basel) 2021; 8:136. [PMID: 34677209 PMCID: PMC8533393 DOI: 10.3390/bioengineering8100136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 11/25/2022] Open
Abstract
Due to their osteoconductive properties, allogenic bone screws made of human cortical bone have advantages regarding rehabilitation compared to other materials such as stainless steel or titanium. Since conventional screw drives like hexagonal or hexalobular drives are difficult to manufacture in headless allogenic screws, an easy-to-manufacture screw drive is needed. In this paper, we present a simple drive for headless allogenic bone screws that allows the screw to be fully inserted. Since the screw drive is completely internal, no threads are removed. In order to prove the mechanical strength, we performed simulations of the new drive using the Finite-Element method (FEM), validated the simulations with a prototype screw, tested the novel screw drive experimentally and compared the simulations with conventional drives. The validation with the prototype showed that our simulations provided valid results. Furthermore, the simulations of the new screw drive showed good performance in terms of mechanical strength in allogenic screws compared to conventional screw drives. The presented screw drive is simple and easy to manufacture and is therefore suitable for headless allogenic bone screws where conventional drives are difficult to manufacture.
Collapse
Affiliation(s)
- Sebastian Lifka
- Institute of Biomedical Mechatronics, Johannes Kepler University Linz, 4040 Linz, Austria;
| | | |
Collapse
|
11
|
Rethi L, Lu L, Huynh VT, Manga YB, Rethi L, Mutalik C, Chen CH, Chuang EY. Bioactive Glass Fiber-Reinforced Plastic Composites Prompt a Crystallographic Lophelia Atoll-Like Skeletal Microarchitecture Actuating Periosteal Cambium. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32226-32241. [PMID: 34210116 DOI: 10.1021/acsami.1c07950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The touchstone for bone replacing or anchoring trauma implants, besides resorption, includes functional ankylosis at a fixation point and replacement by viable functional neo-bone tissues. These parameters redefined the concept of "resorbability" as "bioresorbability." Interference screws are the most commonly used resorbable anchoring implants for anterior cruciate ligament (ACL) reconstruction (surgery). Over the years, the bioresorbable screw fixation armamentarium has amplified countless choices, but instability and postimplantation complications have raised concerns about its reliability and efficacy. Owing to this interest, in this work, bioactive glass fiber-reinforced plastic (BGFP) composites with (BGFPnb5) and without (BGFP5) niobicoxide composing multiplexed network modifiers are reported as bioresorbable bone-anchoring substitutes. These synergistically designed composites have a fabricated structure of continuous, unidirectional BG fibers reinforced in an epoxy resin matrix using "melt-drawing and microfabrication" technology. The BGFP microarchitecture is comprised of multiplexed oxide components that influence bioactive response in a distinctive lophelia atoll-like apatite formation. Furthermore, it assists in the proliferation, adherence, and migration of bone marrow-derived mesenchymal stem cells. It also exhibits superior physicochemical characteristics such as surface roughness, hydrophilic exposure, distinctive flexural strength, and bioresorption. Thus, it induces restorative bone osseointegration and osteoconduction and actuates periosteum function. In addition, the BGFP influences the reduction of DH5-α Escherichia coli in suspension culture, demonstrating potential antibacterial efficacy. In conclusion, the BGFP composite therapeutic efficacy demonstrates distinctive material characteristics aiding in bone regeneration and restoration that could serve as a pioneer in orthopedic regenerative medicine.
Collapse
Affiliation(s)
- Lekha Rethi
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Luke Lu
- Taiwan Fiber Optics, Inc., Taipei 10451, Taiwan
| | - Van Tin Huynh
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Interventional Cardiology, Thong Nhat Hospital, Ho Chi Minh City 700000, Vietnam
| | - Yankuba B Manga
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 11031, Taiwan
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Lekshmi Rethi
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chinmaya Mutalik
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Hwa Chen
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Orthopedics, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
- Research Center of Biomedical Device, Taipei Medical University, Taipei 11031, Taiwan
| | - Er-Yuan Chuang
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 116, Taiwan
| |
Collapse
|
12
|
Feasibility of Application of the Newly Developed Nano-Biomaterial, β-TCP/PDLLA, in Maxillofacial Reconstructive Surgery: A Pilot Rat Study. NANOMATERIALS 2021; 11:nano11020303. [PMID: 33503931 PMCID: PMC7912080 DOI: 10.3390/nano11020303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 12/30/2022]
Abstract
This study was performed to examine the applicability of the newly developed nano-biocomposite, β-tricalcium phosphate (β-TCP)/u-HA/poly-d/l-lactide (PDLLA), to bone defects in the oral and maxillofacial area. This novel nano-biocomposite showed several advantages, including biocompatibility, biodegradability, and osteoconductivity. In addition, its optimal plasticity also allowed its utilization in irregular critical bone defect reconstructive surgery. Here, three different nano-biomaterials, i.e., β-TCP/PDLLA, β-TCP, and PDLLA, were implanted into critical bone defects in the right lateral mandible of 10-week-old Sprague–Dawley (SD) rats as bone graft substitutes. Micro-computed tomography (Micro-CT) and immunohistochemical staining for the osteogenesis biomarkers, Runx2, osteocalcin, and the leptin receptor, were performed to investigate and compare bone regeneration between the groups. Although the micro-CT results showed the highest bone mineral density (BMD) and bone volume to total volume (BV/TV) with β-TCP, immunohistochemical analysis indicated better osteogenesis-promoting ability of β-TCP/PDLLA, especially at an early stage of the bone healing process. These results confirmed that the novel nano-biocomposite, β-TCP/PDLLA, which has excellent biocompatibility, bioresorbability and bioactive/osteoconductivity, has the potential to become a next-generation biomaterial for use as a bone graft substitute in maxillofacial reconstructive surgery.
Collapse
|
13
|
Zimina A, Senatov F, Choudhary R, Kolesnikov E, Anisimova N, Kiselevskiy M, Orlova P, Strukova N, Generalova M, Manskikh V, Gromov A, Karyagina A. Biocompatibility and Physico-Chemical Properties of Highly Porous PLA/HA Scaffolds for Bone Reconstruction. Polymers (Basel) 2020; 12:polym12122938. [PMID: 33316955 PMCID: PMC7764020 DOI: 10.3390/polym12122938] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/28/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
The major problem in bone tissue engineering is the development of scaffolds which can simultaneously meet the requirements of porous structure, as well as have the ability to guide the regeneration of damaged tissue by biological fixation. Composites containing biodegradable matrix and bioactive filler are the new hope in this research field. Herein we employed a simple and facile solvent casting particulate-leaching method for producing polylactide acid/hydroxyapatite (PLA/HA) composites at room temperature. FT-IR analysis confirmed the existence of necessary functional groups associated with the PLA/HA composite, whereas energy-dispersive X-ray (EDX) spectra indicated the uniform distribution of hydroxyapatite particles in the polymer matrix. The beehive-like surface morphology of the composites revealed the presence of macropores, ranged from 300 to 400 μm, whereas the thickness of the pores was noticed to be 1-2 μm. The total porosity of the scaffolds, calculated by hydrostatic weighing, was found to be 79%. The water contact angle of pure PLA was decreased from 83.6 ± 1.91° to 62.4 ± 4.17° due to the addition of hydroxyapatite in the polymer matrix. Thus, the wettability of the polymeric biomaterial could be increased by preparing their composites with hydroxyapatite. The adhesion of multipotent mesenchymal stromal cells over the surface of PLA/HA scaffolds was 3.2 times (p = 0.03) higher than the pure PLA sample. Subcutaneous implantation in mice demonstrated a good tolerance of all tested porous scaffolds and widespread ingrowth of tissue into the implant pores. HA-containing scaffolds showed a less pronounced inflammatory response after two weeks of implantation compared to pure PLA. These observations suggest that PLA/HA composites have enormous potential for hard tissue engineering and restoring maxillofacial defects.
Collapse
Affiliation(s)
- Anna Zimina
- Center for Composite Materials, National University of Science and Technology “MISIS”, Leninskiy Pr. 4, 119049 Moscow, Russia; (F.S.); (R.C.); (E.K.); (N.A.); (M.K.)
- Correspondence:
| | - Fedor Senatov
- Center for Composite Materials, National University of Science and Technology “MISIS”, Leninskiy Pr. 4, 119049 Moscow, Russia; (F.S.); (R.C.); (E.K.); (N.A.); (M.K.)
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, 123098 Moscow, Russia; (P.O.); (N.S.); (M.G.); (V.M.); (A.G.); (A.K.)
| | - Rajan Choudhary
- Center for Composite Materials, National University of Science and Technology “MISIS”, Leninskiy Pr. 4, 119049 Moscow, Russia; (F.S.); (R.C.); (E.K.); (N.A.); (M.K.)
| | - Evgeniy Kolesnikov
- Center for Composite Materials, National University of Science and Technology “MISIS”, Leninskiy Pr. 4, 119049 Moscow, Russia; (F.S.); (R.C.); (E.K.); (N.A.); (M.K.)
| | - Natalya Anisimova
- Center for Composite Materials, National University of Science and Technology “MISIS”, Leninskiy Pr. 4, 119049 Moscow, Russia; (F.S.); (R.C.); (E.K.); (N.A.); (M.K.)
- N. N. Blokhin National Medical Research Centre of oncology of the Health Ministry of Russia, Kashirskoye sh. 24, 115478 Moscow, Russia
| | - Mikhail Kiselevskiy
- Center for Composite Materials, National University of Science and Technology “MISIS”, Leninskiy Pr. 4, 119049 Moscow, Russia; (F.S.); (R.C.); (E.K.); (N.A.); (M.K.)
- N. N. Blokhin National Medical Research Centre of oncology of the Health Ministry of Russia, Kashirskoye sh. 24, 115478 Moscow, Russia
| | - Polina Orlova
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, 123098 Moscow, Russia; (P.O.); (N.S.); (M.G.); (V.M.); (A.G.); (A.K.)
| | - Natalia Strukova
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, 123098 Moscow, Russia; (P.O.); (N.S.); (M.G.); (V.M.); (A.G.); (A.K.)
| | - Mariya Generalova
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, 123098 Moscow, Russia; (P.O.); (N.S.); (M.G.); (V.M.); (A.G.); (A.K.)
| | - Vasily Manskikh
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, 123098 Moscow, Russia; (P.O.); (N.S.); (M.G.); (V.M.); (A.G.); (A.K.)
- A. N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Alexander Gromov
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, 123098 Moscow, Russia; (P.O.); (N.S.); (M.G.); (V.M.); (A.G.); (A.K.)
| | - Anna Karyagina
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, 123098 Moscow, Russia; (P.O.); (N.S.); (M.G.); (V.M.); (A.G.); (A.K.)
- A. N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia
| |
Collapse
|
14
|
Kim SG. Immunomodulation for maxillofacial reconstructive surgery. Maxillofac Plast Reconstr Surg 2020; 42:5. [PMID: 32206664 PMCID: PMC7058765 DOI: 10.1186/s40902-020-00249-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Immunomodulation is a technique for the modulation of immune responses against graft material to improve surgical success rates. The main target cell for the immunomodulation is a macrophage because it is the reaction site of the graft and controls the healing process. Macrophages can be classified into M1 and M2 types. Most immunomodulation techniques focus on the rapid differentiation of M2-type macrophage. An M2 inducer, 4-hexylresorcinol, has been recently identified and is used for bone grafts and dental implant coatings.
Collapse
Affiliation(s)
- Seong-Gon Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung, Jukhyun-gil 25457 South Korea
| |
Collapse
|
15
|
Arya S, Bhatt K, Bhutia O, Roychoudhury A. Efficacy of bioresorbable plates in the osteosynthesis of linear mandibular fractures. Natl J Maxillofac Surg 2020; 11:98-105. [PMID: 33041585 PMCID: PMC7518487 DOI: 10.4103/njms.njms_54_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/12/2019] [Accepted: 05/05/2020] [Indexed: 11/18/2022] Open
Abstract
Background and Objectives: There are limited evidences available about the performance of biodegradable system in the treatment of linear mandibular fractures without the aid of postoperative maxillomandibular fixation (MMF). Hence, the present study was planned to evaluate the treatment outcomes in mandibular fractures, using 2.5 mm bioresorbable plates and screws without postoperative MMF. Methodology: This cohort study compares both prospective and retrospective data. The prospective study treated 20 adult patients with linear mandibular fracture using bioresorbable plates and screws, without using postoperative MMF (Group 1). Retrospective data were collected from a previous published study in which patients were treated with bioresorbable plates and screws with 2 weeks postoperative MMF (Group 2) and those treated with metal plates and screws without postoperative MMF (Group 3). Group 1 patients were followed up at 2 and 4 months to evaluate the functional outcomes in terms of fracture mobility, malocclusion, pain, and soft-tissue deformity and compared with its preoperative findings. Further, the treatment outcomes of Group 1, Group 2, and Group 3 were compared among themselves at 2-month follow-up. Results: Group 1 patients showed a significant improvement in the treatment outcomes at 2 and 4-month follow-up. In addition, when 2 months postoperative outcomes were compared among the three groups, no statistically significant difference was observed in the treatment outcomes. Conclusion: Endpoint osteosynthesis can be achieved with the bioresorbable fixation system when used in the treatment of un-displaced linear mandibular fractures, without postoperative MMF. A minor modification of using a lower size osteotomy drill can prevent screw loosening.
Collapse
Affiliation(s)
- Satyavrat Arya
- Department of Dental Surgery, Medanta Medicity, Gurugram, Haryana, India
| | - Krushna Bhatt
- Department of Dental Surgery, AIIMS, Gorakhpur, Uttar Pradesh, India
| | - Ongkila Bhutia
- Department of Oral and Maxillofacial Surgery, CDER, AIIMS, New Delhi, India
| | - Ajoy Roychoudhury
- Department of Oral and Maxillofacial Surgery, CDER, AIIMS, New Delhi, India
| |
Collapse
|
16
|
On SW, Cho SW, Byun SH, Yang BE. Bioabsorbable Osteofixation Materials for Maxillofacial Bone Surgery: A Review on Polymers and Magnesium-Based Materials. Biomedicines 2020; 8:biomedicines8090300. [PMID: 32825692 PMCID: PMC7555479 DOI: 10.3390/biomedicines8090300] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 01/24/2023] Open
Abstract
Clinical application of osteofixation materials is essential in performing maxillofacial surgeries requiring rigid fixation of bone such as trauma surgery, orthognathic surgery, and skeletal reconstruction. In addition to the use of titanium plates and screws, clinical applications and attempts using bioabsorbable materials for osteofixation surgery are increasing with demands to avoid secondary surgery for the removal of plates and screws. Synthetic polymeric plates and screws were developed, reaching satisfactory physical properties comparable to those made with titanium. Although these polymeric materials are actively used in clinical practice, there remain some limitations to be improved. Due to questionable physical strength and cumbersome molding procedures, interests in resorbable metal materials for osteofixation emerged. Magnesium (Mg) gained attention again in the last decade as a new metallic alternative, and numerous animal studies to evaluate the possibility of clinical application of Mg-based materials are being conducted. Thanks to these researches and studies, vascular application of Mg-based biomaterials was successful; however, further studies are required for the clinical application of Mg-based biomaterials for osteofixation, especially in the facial skeleton. The review provides an overview of bioabsorbable osteofixation materials in maxillofacial bone surgery from polymer to Mg.
Collapse
Affiliation(s)
- Sung-Woon On
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong 18450, Korea;
- Graduated School of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea; (S.-W.C.); (S.-H.B.)
- Institute of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea
| | - Seoung-Won Cho
- Graduated School of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea; (S.-W.C.); (S.-H.B.)
- Institute of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea
- Division of Oral and Maxillofacial Surgery, Hallym University Sacred Heart Hospital, Anyang 14066, Korea
| | - Soo-Hwan Byun
- Graduated School of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea; (S.-W.C.); (S.-H.B.)
- Institute of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea
- Division of Oral and Maxillofacial Surgery, Hallym University Sacred Heart Hospital, Anyang 14066, Korea
| | - Byoung-Eun Yang
- Graduated School of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea; (S.-W.C.); (S.-H.B.)
- Institute of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea
- Division of Oral and Maxillofacial Surgery, Hallym University Sacred Heart Hospital, Anyang 14066, Korea
- Correspondence: ; Tel.: +82-380-3870
| |
Collapse
|
17
|
Burns B, Fields JM, Farinas A, Pollins A, Perdikis G, Thayer W. Comparing maximal forces in resorbable poly-L-lactic acid and titanium plates for mandibular fracture fixation. Heliyon 2020; 6:e03705. [PMID: 32274434 PMCID: PMC7132074 DOI: 10.1016/j.heliyon.2020.e03705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/13/2020] [Accepted: 03/26/2020] [Indexed: 11/15/2022] Open
Abstract
Treatment for mandibular fractures is commonly performed via open reduction fixation with mini titanium or resorbable plates and screws. The investigators hypothesized differences in maximum mechanical stress forces and deflection with each plating material; however, it was proposed that the experimental forces withstood by the resorbable system would be enough to withstand normal forces produced during mastication. The sample was composed of fresh cadaver mandibles that were harvested, fractured, and fixated with plates and screws. The predictor variable was fracture fixation and included a titanium plating or resorbable poly-L-lactide plating system. The primary outcome measure was maximum load withstood before plating failure measured in Newtons (N). Descriptive and bivariate statistics were computed, P value was set at .05. The sample was composed of six mandibles with and grouped by type of fixation modality, Titanium (T) (n = 3) and Resorbable (n = 3). There was a statistically significant correlation between the T group and increased maximum load (N) before failure as compared to the R group, (P = 0.023). The results suggest that fracture fixation with titanium plates and screws can withstand greater maximum forces before failure; however, the resorbable plating system withstood forces similar to/or greater than the maximum forces produced during normal mastication.
Collapse
Affiliation(s)
- Brady Burns
- Meharry Medical College, Nashville, TN, USA.,Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Angel Farinas
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alonda Pollins
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Galen Perdikis
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wesley Thayer
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
18
|
Dong QN, Kanno T, Bai Y, Sha J, Hideshima K. Bone Regeneration Potential of Uncalcined and Unsintered Hydroxyapatite/Poly l-lactide Bioactive/Osteoconductive Sheet Used for Maxillofacial Reconstructive Surgery: An In Vivo Study. MATERIALS 2019; 12:ma12182931. [PMID: 31514283 PMCID: PMC6766281 DOI: 10.3390/ma12182931] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/21/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022]
Abstract
Uncalcined and unsintered hydroxyapatite/poly l-lactide (u-HA/PLLA) material has osteoconductive characteristics and is available for use as a maxillofacial osteosynthetic reconstruction device. However, its bone regeneration ability in the maxillofacial region has not been fully investigated. This study is the first to assess the bone regenerative potential of osteoconductive u-HA/PLLA material when it is used for repairing maxillofacial bone defects. A total of 21 Sprague-Dawley male rats were divided into three groups—the u-HA/PLLA, PLLA, or sham control groups. A critical size defect of 4 mm was created in the mandible of each rat. Then, the defect was covered with either a u-HA/PLLA or PLLA sheet on the buccal side. The rats in each group were sacrificed at 2, 4, or 8 weeks. The rats’ mandibles were sampled for histological analysis with hematoxylin and eosin staining, histomorphometry, and immunohistochemistry with Runx2 and osteocalcin (OCN) antibody. The amount of newly formed bone in the u-HA/PLLA group was significantly higher than that of the PLLA group. The expression of Runx2 and OCN in the u-HA/PLLA group was also significantly higher. These results demonstrate that the u-HA/PLLA material has excellent bone regenerative ability and confirm its applicability as a reconstructive device in maxillofacial surgery.
Collapse
Affiliation(s)
- Quang Ngoc Dong
- Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan.
| | - Takahiro Kanno
- Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan.
| | - Yunpeng Bai
- Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan.
| | - Jingjing Sha
- Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan.
| | - Katsumi Hideshima
- Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan.
| |
Collapse
|
19
|
Moura Neto FND, Fialho ACV, Moura WLD, Rosa AGF, Matos JMED, Reis FDS, Mendes MTDA, Sales ESD. Castor polyurethane used as osteosynthesis plates: microstructural and thermal analysis. POLIMEROS 2019. [DOI: 10.1590/0104-1428.02418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Advancements in Maxillofacial Trauma: A Historical Perspective. J Oral Maxillofac Surg 2018; 76:2256-2270. [DOI: 10.1016/j.joms.2018.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 11/20/2022]
|
21
|
Overview of innovative advances in bioresorbable plate systems for oral and maxillofacial surgery. JAPANESE DENTAL SCIENCE REVIEW 2018; 54:127-138. [PMID: 30128060 PMCID: PMC6094489 DOI: 10.1016/j.jdsr.2018.03.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 02/17/2018] [Accepted: 03/10/2018] [Indexed: 11/09/2022] Open
Abstract
Maxillofacial osteosynthetic surgeries require stable fixation for uneventful boney healing and optimal remodeling. Although conventional titanium plates and screws for osteofixation are considered the gold standard for rigid fixation in maxillofacial surgeries, bioresorbable implants of plates and screw systems are commonly used for various maxillofacial osteosynthetic surgeries such as orthognathic surgery, maxillofacial fractures, and reconstructive surgery. Titanium plates are limited by their palpability, mutagenic effects, and interference with imaging, which may lead to the need for subsequent removal; the use of a biologically resorbable osteofixation system could potentially address these limitations. However, several problems remain including fundamental issues involving decreased mechanical strength and stability, slow biodegradation, complex procedures, and the available bioresorbable implant materials. Major advances in bioresorbable plate systems have been made with the use of bioactive/resorbable osteoconductive materials and an accelerator of bioresorption, such as polyglycolic acid. This report presents an overview of currently available resorbable implant materials and their applications, with a focus on recent innovative advances and new developments in this field.
Collapse
|
22
|
Park YW. Biodegradable osteofixation in bimaxillary orthognathic surgery. J Korean Assoc Oral Maxillofac Surg 2018; 43:361-362. [PMID: 29333364 PMCID: PMC5756791 DOI: 10.5125/jkaoms.2017.43.6.361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Young-Wook Park
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung, Korea
| |
Collapse
|