1
|
Kim JY, Kim SG, Garagiola U. Relevant Properties and Potential Applications of Sericin in Bone Regeneration. Curr Issues Mol Biol 2023; 45:6728-6742. [PMID: 37623245 PMCID: PMC10453912 DOI: 10.3390/cimb45080426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023] Open
Abstract
The potential of sericin, a protein derived from silkworms, is explored in bone graft applications. Sericin's biocompatibility, hydrophilic nature, and cost-effectiveness make it a promising candidate for enhancing traditional graft materials. Its antioxidant, anti-inflammatory, and UV-resistant properties contribute to a healthier bone-healing environment, and its incorporation into 3D-printed grafts could lead to personalized medical solutions. However, despite these promising attributes, there are still gaps in our understanding. The precise mechanism through which sericin influences bone cell growth and healing is not fully understood, and more comprehensive clinical trials are needed to confirm its long-term biocompatibility in humans. Furthermore, the best methods for incorporating sericin into existing graft materials are still under investigation, and potential allergic reactions or immune responses to sericin need further study.
Collapse
Affiliation(s)
- Jwa-Young Kim
- Department of Oral and Maxillofacial Surgery, Hallym University Kangnam Sacred Heart Hospital, Hallym University Medical Center, Seoul 07441, Republic of Korea;
| | - Seong-Gon Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung 28644, Republic of Korea
| | - Umberto Garagiola
- Biomedical, Surgical and Oral Sciences Department, Maxillofacial and Dental Unit, School of Dentistry, University of Milan, 20122 Milan, Italy;
| |
Collapse
|
2
|
4-Hexylresorcinol Treatment before Degumming Increases the β-Sheet Structure of Silk Sericin and BMP-2 Expression in RAW264.7 Cells. Int J Mol Sci 2022; 24:ijms24010150. [PMID: 36613594 PMCID: PMC9820107 DOI: 10.3390/ijms24010150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Silk sericin is a degumming product used by the silk industry. The degumming process can affect the protein structure and molecular weight of silk sericin. The present study examined how pretreatment with 4-hexylresorcinol (4HR) affects the biomedical properties of silk sericin. Before the degumming process, silkworm cocoons were treated with 4HR solution. The protein structure of the final degumming product was evaluated by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy. Untreated silk sericin (S) and silk sericin pretreated with 4HR (S+4HR) were added to RAW264.7 cells, and the expression of BMP-2 was determined. The bone-regenerating capacity of S+4HR was evaluated using the critical-sized rat calvarial defect model. Compared with S, S+4HR showed an increase in β-sheet structures. Administration of S+4HR to RAW264.7 cells increased expression of BMP-2, mainly via the TLR-mediated signaling pathway. Bone volume, as measured by micro-computerized tomography, was significantly greater in the S+4HR group than in the S, gelatin alone, and unfilled control groups (p < 0.05 each). Expression of BMP-2 and runx2 in tissue specimens was significantly higher following treatment with S+4HR than with S (p < 0.05). Taken together, these findings show that 4HR pretreatment before the degumming process increased the β-sheet structure of silk sericin, as well as inducing BMP-2 expression and bone regeneration ability.
Collapse
|
3
|
Jo YY, Kweon H, Kim DW, Baek K, Chae WS, Kang YJ, Oh JH, Kim SG, Garagiola U. Silk sericin application increases bone morphogenic protein-2/4 expression via a toll-like receptor-mediated pathway. Int J Biol Macromol 2021; 190:607-617. [PMID: 34508721 DOI: 10.1016/j.ijbiomac.2021.09.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 12/15/2022]
Abstract
Bone morphogenic protein-2/4 (BMP-2/4) is an osteoinductive protein that accelerates osteogenesis when administered to bony defects. Sericin is produced by silkworms, and has a biological activity that differs depending on the degumming method used. Our results indicated that the high molecular weight fraction of silk sericin (MW > 30 kDa) obtained via sonication had a more abundant β-sheet structure than the low molecular weight fraction. Administration of the β-sheet structure silk sericin increased BMP-2/4 expression in a dose-dependent manner in RAW264.7 cells and human monocytes. This sericin increased the expression levels of toll-like receptor (TLR)-2, TLR-3, and TLR-4 in RAW264.7 cells. Application of a TLR-2 antibody or TLR pathway blocker decreased BMP-2/4 expression following sericin administration. In the animal model, the bone volume and BMP-2/4 expression were higher in rats treated with a sericin-incorporated gelatin sponge than in rats treated with a gelatin sponge alone or a sponge-incorporated with denatured sericin. In conclusion, sericin with a more abundant β-sheet structure increased BMP-2/4 expression and bone formation better than sericin with a less abundant β-sheet structure.
Collapse
Affiliation(s)
- You-Young Jo
- Sericultural and Apicultural Materials Division, National Institute of Agricultural Sciences, RDA, Wanju 55365, Republic of Korea.
| | - HaeYong Kweon
- Sericultural and Apicultural Materials Division, National Institute of Agricultural Sciences, RDA, Wanju 55365, Republic of Korea.
| | - Dae-Won Kim
- Department of Oral Biochemistry, College of Dentistry, Gangneung-Wonju National University, Gangneung 28644, Republic of Korea.
| | - Kyunghwa Baek
- Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangneung 28644, Gangwondo, Republic of Korea.
| | - Weon-Sik Chae
- Daegu Center, Korea Basic Science Institute, Daegu 41566, Republic of Korea.
| | - Yei-Jin Kang
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung 28644, Republic of Korea.
| | - Ji-Hyeon Oh
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung 28644, Republic of Korea.
| | - Seong-Gon Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung 28644, Republic of Korea.
| | - Umberto Garagiola
- Biomedical, Surgical and Oral Sciences Department, Maxillofacial and Dental Unit, School of Dentistry, University of Milan, Milan, Italy.
| |
Collapse
|
4
|
Wu L, Gao S, Zhao T, Tian K, Zheng T, Zhang X, Xiao L, Ding Z, Lu Q, Kaplan DL. Pressure-driven spreadable deferoxamine-laden hydrogels for vascularized skin flaps. Biomater Sci 2021; 9:3162-3170. [PMID: 33881061 PMCID: PMC8096535 DOI: 10.1039/d1bm00053e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The development of hydrogels that support vascularization to improve the survival of skin flaps, yet establishing homogeneous angiogenic niches without compromising the ease of use in surgical settings remains a challenge. Here, pressure-driven spreadable hydrogels were developed utilizing beta-sheet rich silk nanofiber materials. These silk nanofiber-based hydrogels exhibited excellent spreading under mild pressure to form a thin coating to cover all the regions of the skin flaps. Deferoxamine (DFO) was loaded onto the silk nanofibers to support vascularization and these DFO-laden hydrogels were implanted under skin flaps in rats to fill the interface between the wound bed and the flap using the applied pressure. The thickness of the spread hydrogels was below 200 μm, minimizing the physical barrier effects from the hydrogels. The distribution of the hydrogels provided homogeneous angiogenic stimulation, accelerating rapid blood vessel network formation and significantly improving the survival of the skin flaps. The hydrogels also modulated the immune reactions, further facilitating the regeneration of the skin flaps. Considering the homogeneous distribution at the wound sites, improved vascularization, reduced barrier effects and low inflammation, these hydrogels appear to be promising candidates for use in tissue repair where a high blood supply is in demand. The pressure-driven spreading properties should simplify the use of the hydrogels in surgical settings to facilitate clinical translation.
Collapse
Affiliation(s)
- Lijun Wu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China. and Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P. R. China
| | - Suyue Gao
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P. R. China and Department of Dermatology and Cosmetic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, Jiangsu, China
| | - Tianlan Zhao
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P. R. China
| | - Kai Tian
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P. R. China
| | - Tingyu Zheng
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P. R. China
| | - Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China.
| | - Liying Xiao
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China.
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China.
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| |
Collapse
|
5
|
Abstract
Sericin is a 10-to-400 kDa hydrophilic protein with high serine content and is a silk constituent together with fibroin. It is produced in the middle silk gland of the silkworm and encoded by four sericin genes. The molecular weight of sericin and its biological activity vary depending on the extraction method employed. Its chemical structure, in terms of random coil and β-sheet conformations, also differs with the extraction method, thereby extending its applications in various fields. Sericin, which was discarded in the textile industry in the past, is being applied and developed in the biomedical field, owing to its biological properties. In particular, many studies are underway in the field of tissue engineering, evaluating its applicability in burn dressing, drug delivery, bone regeneration, cartilage regeneration, and nerve regeneration.
Collapse
|
6
|
Zakeri Siavashani A, Mohammadi J, Maniura-Weber K, Senturk B, Nourmohammadi J, Sadeghi B, Huber L, Rottmar M. Silk based scaffolds with immunomodulatory capacity: anti-inflammatory effects of nicotinic acid. Biomater Sci 2020; 8:148-162. [DOI: 10.1039/c9bm00814d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Here we show that 3D silk scaffolds loaded with nicotinic acid have great potential for tissue engineering due to their excellent cytocompatibility and ability to decrease the expression of proinflammatory markers in a concentration dependent manner.
Collapse
Affiliation(s)
| | - Javad Mohammadi
- Faculty of New Sciences and Technologies
- University of Tehran
- Tehran
- Iran
| | - Katharina Maniura-Weber
- Empa
- Swiss Federal Laboratories for Materials Science and Technology
- Biointerfaces
- St.Gallen
- Switzerland
| | - Berna Senturk
- Empa
- Swiss Federal Laboratories for Materials Science and Technology
- Biointerfaces
- St.Gallen
- Switzerland
| | | | - Behnam Sadeghi
- Translational Cell therapy Research (TCR)
- Department of CLINTEC
- Karolinska Institutet
- Stockholm
- Sweden
| | - Lukas Huber
- Empa
- Swiss Federal Laboratories for Materials Science and Technology
- Laboratory for Building Energy Materials and Components
- Dübendorf
- Switzerland
| | - Markus Rottmar
- Empa
- Swiss Federal Laboratories for Materials Science and Technology
- Biointerfaces
- St.Gallen
- Switzerland
| |
Collapse
|
7
|
Comparison of the Physical Properties and in vivo Bioactivities of Flatwise-Spun Silk Mats and Cocoon-Derived Silk Mats for Guided Bone Regeneration. Macromol Res 2019. [DOI: 10.1007/s13233-020-8026-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Clinical Study for Silk Mat Application into Extraction Socket: A Split-Mouth, Randomized Clinical Trial. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9061208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Silk mat originates from the cocoon of the silkworm and is prepared by a simple method. The material has been used for guided bone regeneration (GBR) in animal models. In this study, the silk mat used for a clinical application was compared with a commercially available membrane for GBR. A prospective split-mouth, randomized clinical trial was conducted with 25 patients who had bilaterally impacted lower third molars. High-density polytetrafluoroethylene (dPTFE) membrane or silk mat was applied in the extraction socket randomly. Probing depth (PD), clinical attachment level (CAL), and bone gain (BG) were measured at the time of extraction (T0) and then at three months (T1) and six months after extraction (T2). There was no missing case. GBR with silk mat was non-inferior to GBR with dPTFE for PD reduction at T1 and T2 (pnon-inferiority < 0.001). PD and CAL were significantly decreased at T1 and T2 when compared with those at T0 in both membrane groups (p < 0.001). BG at T2 was 3.61 ± 3.33 mm and 3.56 ± 3.30 mm in the silk mat group and dPTFE group, respectively. There was no significant complication from the use of silk mat for the patients. The results for patients undergoing GBR with silk mat for third-molar surgery were non-inferior to GBR with dPTFE for PD reduction.
Collapse
|
9
|
Angioplasty Using 4-Hexylresorcinol-Incorporated Silk Vascular Patch in Rat Carotid Defect Model. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8122388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to evaluate and compare the efficacy of 4-hexylresorcinol (4-HR)-incorporated silk as a vascular patch scaffold to that of the commercial polytetrafluoroethylene (PTFE) vascular patch (GORE® ACUSEAL). The expression of the vascular endothelial cell growth factor-A (VEGF-A) after application of 4-HR was studied in RAW264.7 and HUVEC cells. In the animal study, a carotid artery defect was modeled in Sprague Dawley rats (n = 30). The defect was directly closed in the control group (n = 10), or repaired with the PTFE or 4-HR silk patch in the experimental groups (n = 10 per group). Following patch angioplasty, angiography was performed and the peak systolic velocity (PSV) was measured to evaluate the artery patency. The application of 4-HR was shown to increase the expression of VEGF-A in RAW264.7 and HUVEC cells. The successful artery patency rate was 80% for the 4-HR silk group, 30% for the PTFE group, and 60% for the control group. The PSV of the 4-HR silk group was significantly different from that of the control group at one week and three weeks post-angioplasty (p = 0.005 and 0.024). Histological examination revealed new regeneration of the arterial wall, and that the arterial diameter was well maintained in the 4-HR silk group in the absence of an immune reaction. In contrast, an overgrowth of endothelium was observed in the PTFE group. In this study, the 4-HR silk patch was successfully used as a vascular patch, and achieved a higher vessel patency rate and lower PSV than the PTFE patch.
Collapse
|