1
|
L'Abbate D, Prescott K, Geraghty B, Kearns VR, Steel DHW. Biomechanical considerations for optimising subretinal injections. Surv Ophthalmol 2024; 69:722-732. [PMID: 38797394 DOI: 10.1016/j.survophthal.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Subretinal injection is the preferred delivery technique for various novel ocular therapies and is widely used because of its precision and efficient delivery of gene and cell therapies; however, choosing an injection point and defining delivery parameters to target a specified retinal location and area is an inexact science. We provide an overview of the key factors that play important roles during subretinal injections to refine the technique, enhance patient outcomes, and minimise risks. We describe the role of anatomical and physical variables that affect subretinal bleb propagation and shape and their impact on retinal integrity. We highlight the risks associated with subretinal injections and consider strategies to mitigate reflux and retinal trauma. Finally, we explore the emerging field of robotic assistance in improving intraocular manouvrability and precision to facilitate the injection procedure.
Collapse
Affiliation(s)
- Dario L'Abbate
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Kia Prescott
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Brendan Geraghty
- Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Victoria R Kearns
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
| | - David H W Steel
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK; Sunderland Eye Infirmary, Sunderland, UK; Bioscience Institute, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
2
|
Poh SSJ, Sia JT, Yip MYT, Tsai ASH, Lee SY, Tan GSW, Weng CY, Kadonosono K, Kim M, Yonekawa Y, Ho AC, Toth CA, Ting DSW. Artificial Intelligence, Digital Imaging, and Robotics Technologies for Surgical Vitreoretinal Diseases. Ophthalmol Retina 2024; 8:633-645. [PMID: 38280425 DOI: 10.1016/j.oret.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
OBJECTIVE To review recent technological advancement in imaging, surgical visualization, robotics technology, and the use of artificial intelligence in surgical vitreoretinal (VR) diseases. BACKGROUND Technological advancements in imaging enhance both preoperative and intraoperative management of surgical VR diseases. Widefield imaging in fundal photography and OCT can improve assessment of peripheral retinal disorders such as retinal detachments, degeneration, and tumors. OCT angiography provides a rapid and noninvasive imaging of the retinal and choroidal vasculature. Surgical visualization has also improved with intraoperative OCT providing a detailed real-time assessment of retinal layers to guide surgical decisions. Heads-up display and head-mounted display utilize 3-dimensional technology to provide surgeons with enhanced visual guidance and improved ergonomics during surgery. Intraocular robotics technology allows for greater surgical precision and is shown to be useful in retinal vein cannulation and subretinal drug delivery. In addition, deep learning techniques leverage on diverse data including widefield retinal photography and OCT for better predictive accuracy in classification, segmentation, and prognostication of many surgical VR diseases. CONCLUSION This review article summarized the latest updates in these areas and highlights the importance of continuous innovation and improvement in technology within the field. These advancements have the potential to reshape management of surgical VR diseases in the very near future and to ultimately improve patient care. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Stanley S J Poh
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Josh T Sia
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore
| | - Michelle Y T Yip
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore
| | - Andrew S H Tsai
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Shu Yen Lee
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Gavin S W Tan
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Christina Y Weng
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas
| | | | - Min Kim
- Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Yoshihiro Yonekawa
- Wills Eye Hospital, Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Allen C Ho
- Wills Eye Hospital, Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Cynthia A Toth
- Departments of Ophthalmology and Biomedical Engineering, Duke University, Durham, North Carolina
| | - Daniel S W Ting
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore; Byers Eye Institute, Stanford University, Palo Alto, California.
| |
Collapse
|
3
|
Carlos Reyna E, Öztek M, Petrovski G, Binder S, Stieger K, Lytvynchuk L. Clinical significance of signal shadowing during intraoperative optical coherence tomography-assisted vitreoretinal surgery. Sci Rep 2024; 14:5393. [PMID: 38443491 PMCID: PMC10914830 DOI: 10.1038/s41598-024-56125-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/29/2024] [Indexed: 03/07/2024] Open
Abstract
This study aimed to analyze the clinical significance of signal shadowing during intraoperative optical coherence tomography (iOCT)-assisted vitreoretinal surgery caused by vitreoretinal instruments, tissue dyes, and vitreous substitutes, and to objectively quantify its impact on iOCT imaging. This is a retrospective observational study of postoperative image analysis from one hundred seventeen (117) patients who underwent iOCT-assisted vitrectomy. The image data were divided into three groups: vitreoretinal instruments, tissue dyes, and vitreous substitutes. The data was then processed using graphic software to measure the grade of picture quality distortion and compared to paired image controls without clinically perceptive interference, then analyzed statistically. The intraocular portion of all studied vitreoretinal instruments caused a high average gray level interference compared to controls ranging from 32 to 68% reduction, obscuring the area of interest significantly. The tips of the instruments produced low-grade shadowing, allowing the underlying tissue to be distinguished. The analyzed dyes demonstrated a wide interference range: ICG (- 75.12%), and triamcinolone (- 26.13%) showed dose-dependent high shadowing, while VITREODYNE™ (49.3%) and brilliant blue G (14.06%) exhibited no perceived distortions whilst increasing average gray levels. All analyzed vitreous substitutes (air, SF6, C3F8, PFCL, and silicone oil) showed an insignificant shadowing effect on iOCT. Certain dyes and vitreous substitutes produce a negligible shadowing effect compared to controls and other dyes, providing an advantage during real-time iOCT imaging. All analyzed vitreoretinal instruments showed a significant interference that should prompt the development of new imaging techniques or the implementation of materials with low-grade interference to overcome a clinically relevant shadowing effect on iOCT, maximizing the technology's visual accuracy and surgical diagnostic aid proficiency.
Collapse
Affiliation(s)
- Erick Carlos Reyna
- Department of Ophthalmology, Eye Clinic, Justus Liebig University, University Hospital Giessen and Marburg, Campus Giessen, Giessen, Germany.
| | - Melisa Öztek
- Department of Ophthalmology, Eye Clinic, Justus Liebig University, University Hospital Giessen and Marburg, Campus Giessen, Giessen, Germany
| | - Goran Petrovski
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, Split, Croatia
- UKLONetwork, University St. Kliment Ohridski-Bitola, Bitola, North Macedonia
| | - Susanne Binder
- Karl Landsteiner Institute for Retinal Research and Imaging, Vienna, Austria
- Eye Center Donaustadt, Sigmund Freud University, Vienna, Austria
| | - Knut Stieger
- Department of Ophthalmology, Eye Clinic, Justus Liebig University, University Hospital Giessen and Marburg, Campus Giessen, Giessen, Germany
| | - Lyubomyr Lytvynchuk
- Department of Ophthalmology, Eye Clinic, Justus Liebig University, University Hospital Giessen and Marburg, Campus Giessen, Giessen, Germany
- Karl Landsteiner Institute for Retinal Research and Imaging, Vienna, Austria
| |
Collapse
|
4
|
Yang P, Mustafi D, Pepple KL. Immunology of Retinitis Pigmentosa and Gene Therapy-Associated Uveitis. Cold Spring Harb Perspect Med 2024; 14:a041305. [PMID: 37037600 PMCID: PMC10562523 DOI: 10.1101/cshperspect.a041305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
The underlying immune state of inherited retinal degenerations (IRDs) and retinitis pigmentosa (RP) has been an emerging area of interest, wherein the consequences have never been greater given the widespread recognition of gene therapy-associated uveitis (GTU) in gene therapy clinical trials. Whereas some evidence suggests that the adaptive immune system may play a role, the majority of studies indicate that the innate immune system is likely the primary driver of neuroinflammation in RP. During retinal degeneration, discrete mechanisms activate resident microglia and promote infiltrating macrophages that can either be protective or detrimental to photoreceptor cell death. This persistent stimulation of innate immunity, overlaid by the introduction of viral antigens as part of gene therapy, has the potential to trigger a complex microglia/macrophage-driven proinflammatory state. A better understanding of the immune pathophysiology in IRD and GTU will be necessary to improve the success of developing novel treatments for IRDs.
Collapse
Affiliation(s)
- Paul Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregan 97239, USA
| | - Debarshi Mustafi
- Department of Ophthalmology, Roger and Karalis Johnson Retina Center, University of Washington, Seattle, Washington 98109, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington 98109, USA
- Department of Ophthalmology, Seattle Children's Hospital, Seattle, Washington 98109, USA
| | - Kathryn L Pepple
- Department of Ophthalmology, Roger and Karalis Johnson Retina Center, University of Washington, Seattle, Washington 98109, USA
| |
Collapse
|
5
|
Sobh M, Lagali PS, Ghiasi M, Montroy J, Dollin M, Hurley B, Leonard BC, Dimopoulos I, Lafreniere M, Fergusson DA, Lalu MM, Tsilfidis C. Safety and Efficacy of Adeno-Associated Viral Gene Therapy in Patients With Retinal Degeneration: A Systematic Review and Meta-Analysis. Transl Vis Sci Technol 2023; 12:24. [PMID: 37982768 PMCID: PMC10668613 DOI: 10.1167/tvst.12.11.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/18/2023] [Indexed: 11/21/2023] Open
Abstract
Purpose This systematic review evaluates the safety and efficacy of ocular gene therapy using adeno-associated virus (AAV). Methods MEDLINE, Embase, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov were searched systematically for controlled or non-controlled interventional gene therapy studies using key words related to retinal diseases, gene therapy, and AAV vectors. The primary outcome measure was safety, based on ocular severe adverse events (SAEs). Secondary outcome measures evaluated efficacy of the therapy based on best corrected visual acuity (BCVA) and improvements in visual sensitivity and systemic involvement following ocular delivery. Pooling was done using a DerSimonian Laird random effects model. Risk of bias was assessed using the Cochrane Risk of Bias Tool, version 1. Results Our search identified 3548 records. Of these, 80 publications met eligibility criteria, representing 28 registered clinical trials and 5 postmarket surveillance studies involving AAV gene therapy for Leber congenital amaurosis (LCA), choroideremia, Leber hereditary optic neuropathy (LHON), age-related macular degeneration (AMD), retinitis pigmentosa (RP), X-linked retinoschisis, and achromatopsia. Overall, AAV therapy vectors were associated with a cumulative incidence of at least one SAE of 8% (95% confidence intervals [CIs] of 5% to 12%). SAEs were often associated with the surgical procedure rather than the therapeutic vector itself. Poor or inconsistent reporting of adverse events (AEs) were a limitation for the meta-analysis. The proportion of patients with any improvement in BCVA and visual sensitivity was 41% (95% CIs of 31% to 51%) and 51% (95% CIs of 31% to 70%), respectively. Systemic immune involvement was associated with a cumulative incidence of 31% (95% CI = 21% to 42%). Conclusions AAV gene therapy vectors appear to be safe but the surgical procedure required to deliver them is associated with some risk. The large variability in efficacy can be attributed to the small number of patients treated, the heterogeneity of the population and the variability in dosage, volume, and follow-up. Translational Relevance This systematic review will help to inform and guide future clinical trials.
Collapse
Affiliation(s)
- Mohamad Sobh
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Pamela S. Lagali
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Maryam Ghiasi
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Joshua Montroy
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Michael Dollin
- Department of Ophthalmology, University of Ottawa, University of Ottawa Eye Institute, Ottawa, Ontario, Canada
| | - Bernard Hurley
- Department of Ophthalmology, University of Ottawa, University of Ottawa Eye Institute, Ottawa, Ontario, Canada
| | - Brian C. Leonard
- Department of Ophthalmology, University of Ottawa, University of Ottawa Eye Institute, Ottawa, Ontario, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Ioannis Dimopoulos
- Department of Ophthalmology, University of Ottawa, University of Ottawa Eye Institute, Ottawa, Ontario, Canada
| | - Mackenzie Lafreniere
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Dean A. Fergusson
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Manoj M. Lalu
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Departments of Anesthesiology and Pain Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Catherine Tsilfidis
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Ophthalmology, University of Ottawa, University of Ottawa Eye Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Ciarmatori N, Pellegrini M, Nasini F, Talli PM, Sarti L, Mura M. The State of Intraoperative OCT in Vitreoretinal Surgery: Recent Advances and Future Challenges. Tomography 2023; 9:1649-1659. [PMID: 37736985 PMCID: PMC10514838 DOI: 10.3390/tomography9050132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023] Open
Abstract
Since its first introduction more than 30 years ago, optical coherence tomography (OCT) has revolutionized ophthalmology practice, providing a non-invasive in vivo cross-sectional view of the structures of the eye. Mostly employed in the clinical setting due to its tabletop configuration requiring an upright patient positioning, the recent advent of microscope-integrated systems now allows ophthalmologists to perform real-time intraoperative OCT (iOCT) during vitreoretinal surgical procedures. Numerous studies described various applications of this tool, such as offering surgeons feedback on tissue-instrument interactions in membrane peeling, providing structural images in macular hole repair, and showing residual subretinal fluid or perfluorocarbon in retinal detachment surgery. This narrative review aims at describing the state of the art of iOCT in vitreoretinal procedures, highlighting its modern role and applications in posterior segment surgery, its current limitations, and the future perspectives that may improve the widespread adoption of this technology.
Collapse
Affiliation(s)
- Nicolò Ciarmatori
- St. Anna University Hospital, University of Ferrara, 30010 Ferrara, Italy; (N.C.)
| | - Marco Pellegrini
- St. Anna University Hospital, University of Ferrara, 30010 Ferrara, Italy; (N.C.)
- Istituto Internazionale per la Ricerca e Formazione in Oftalmologia (IRFO), 47122 Forlì, Italy
- Ospedali Privati Forlì “Villa Igea”, Department of Ophthalmology, 47122 Forlì, Italy
| | - Francesco Nasini
- St. Anna University Hospital, University of Ferrara, 30010 Ferrara, Italy; (N.C.)
| | - Pietro Maria Talli
- St. Anna University Hospital, University of Ferrara, 30010 Ferrara, Italy; (N.C.)
| | - Laura Sarti
- St. Anna University Hospital, University of Ferrara, 30010 Ferrara, Italy; (N.C.)
| | - Marco Mura
- St. Anna University Hospital, University of Ferrara, 30010 Ferrara, Italy; (N.C.)
- Istituto Internazionale per la Ricerca e Formazione in Oftalmologia (IRFO), 47122 Forlì, Italy
- King Khaled Eye Specialist Hospital, Riyadh 11462, Saudi Arabia
| |
Collapse
|
7
|
Tripepi D, Jalil A, Ally N, Buzzi M, Moussa G, Rothschild PR, Rossi T, Ferrara M, Romano MR. The Role of Subretinal Injection in Ophthalmic Surgery: Therapeutic Agent Delivery and Other Indications. Int J Mol Sci 2023; 24:10535. [PMID: 37445711 DOI: 10.3390/ijms241310535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Subretinal injection is performed in vitreoretinal surgery with two main aims, namely, the subretinal delivery of therapeutic agents and subretinal injection of fluid to induce a controlled and localized macular detachment. The growing interest in this technique is mainly related to its suitability to deliver gene therapy in direct contact with target tissues. However, subretinal injection has been also used for the surgical management of submacular hemorrhage through the subretinal delivery of tissue plasminogen activator, and for the repair of full-thickness macular holes, in particular refractory ones. In the light of the increasing importance of this maneuver in vitreoretinal surgery as well as of the lack of a standardized surgical approach, we conducted a comprehensive overview on the current indications for subretinal injection, surgical technique with the available variations, and the potential complications.
Collapse
Affiliation(s)
- Domenico Tripepi
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Italy
| | - Assad Jalil
- Manchester Royal Eye Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Naseer Ally
- Manchester Royal Eye Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Matilde Buzzi
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Italy
| | - George Moussa
- Manchester Royal Eye Hospital, Oxford Road, Manchester M13 9WL, UK
- Lancashire Teaching Hospitals NHS Foundation Trust, Preston PR2 9HT, UK
| | - Pierre-Raphaël Rothschild
- Department of Ophthalmology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
- Centre de Recherche des Cordeliers, INSERM, UMR_1138, Université Paris Cité, 75270 Paris, France
| | | | - Mariantonia Ferrara
- Manchester Royal Eye Hospital, Oxford Road, Manchester M13 9WL, UK
- Faculty of Medicine, University of Malaga, 29016 Malaga, Spain
| | - Mario R Romano
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Italy
- Eye Center, Humanitas Gavazzeni-Castelli, 24128 Bergamo, Italy
| |
Collapse
|
8
|
Bravo FJV, Ayliffe W, Stanga SFE, Reinstein UI, Moxham R, Tariq Z, Downes SM, Stanga PE. New Imaging Technology for Simultaneous Multiwavelength-UWF Fundus Fluorescein Angiography and Indocyanine Green Angiography With Navigated Central and Peripheral SS-OCT. Ophthalmic Surg Lasers Imaging Retina 2023:1-10. [PMID: 37418670 DOI: 10.3928/23258160-20230607-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
OBJECTIVE Our aim was to assess central and peripheral retinal and choroidal diseases using novel simultaneous multiwavelength-ultra-widefield (MW-UWF) fundus fluorescein angiography (FFA)/indocyanine green angiography (ICGA) with navigated central and peripheral swept-source optical coherence tomography (SS-OCT) technology. METHODS Retrospective evaluation was carried out of 30 consecutive patients (60 eyes) who underwent UWF red/green (RG), infrared (IR), FFA and ICGA with simultaneous navigated SS-OCT using Optos Silverstone (Optos PLC). Angiographic retinal and choroidal findings in vascular pathologies and their relationship with the vitreoretinal interface (VRI) were assessed. RESULTS Simultaneous FFA with navigated SSOCT was performed in all patients and simultaneous FFA-ICGA with SS-OCT in 18 eyes (30%). Cross-sectional central and peripheral changes in the retina, choroid, and VRI corresponding with angiographic findings in several diseases were imaged. CONCLUSION First-in-human study of a new technology providing UWF RG/FFA/ICGA with simultaneous navigated central and peripheral SS-OCT can guide clinical management and provide new insights and understanding of central and peripheral retinal and choroidal disease. [Ophthalmic Surg Lasers Imaging Retina 2023;54:xx-xx.].
Collapse
|
9
|
Scruggs BA, Vasconcelos HM, Matioli da Palma M, Kogachi K, Pennesi ME, Yang P, Bailey ST, Lauer AK. Injection pressure levels for creating blebs during subretinal gene therapy. Gene Ther 2022; 29:601-607. [PMID: 34580433 PMCID: PMC8958181 DOI: 10.1038/s41434-021-00294-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 01/09/2023]
Abstract
Retinal damage has been associated with increased injection pressure during subretinal gene therapy delivery in various animal models, yet there are no human clinical data regarding the pressures required to initiate and propagate subretinal blebs. This study characterized the intraoperative pressure levels for subretinal gene therapy delivery across eight retinal conditions. A total of 116 patients with retinal degenerative diseases have been treated with subretinal gene therapy at OHSU-Casey Eye Institute as of June 2020; seventy patients (60.3%) were treated using a pneumatic-assisted subretinal delivery system. All retinal blebs were performed using a 41-gauge injection cannula, and use of a balanced salt solution (BSS) "pre-bleb" prior to gene therapy delivery was performed at the discretion of the surgeon. Patient age and intraoperative data for BSS and vector injections were analyzed in a masked fashion for all patients who received pneumatic-assisted subretinal gene therapy. The median age of the patients was 35 years (range 4-70). No significant differences in injection pressures were found across the eight retinal conditions. In this study, patient age was shown to affect maximum injection pressures required for bleb propagation, and the relationship between age and pressure varied based on retinal condition. These data have important implications in optimizing surgical protocols for subretinal injections.
Collapse
Affiliation(s)
- Brittni A Scruggs
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, USA
| | - Huber Martins Vasconcelos
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
- Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil
| | - Mariana Matioli da Palma
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
- Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil
| | - Katie Kogachi
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| | - Mark E Pennesi
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| | - Paul Yang
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| | - Steven T Bailey
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| | - Andreas K Lauer
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
10
|
Kovacs KD, Ciulla TA, Kiss S. Advancements in ocular gene therapy delivery: vectors and subretinal, intravitreal, and suprachoroidal techniques. Expert Opin Biol Ther 2022; 22:1193-1208. [PMID: 36062410 DOI: 10.1080/14712598.2022.2121646] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Ocular gene therapy represents fertile ground for rapid innovation, with ever-expanding therapeutic strategies, molecular targets, and indications. AREAS COVERED : Potential indications for ocular gene therapy have classically focused on inherited retinal disease (IRD), but more recently include acquired retinal diseases, such as neovascular age-related macular degeneration, geographic atrophy and diabetic retinopathy. Ocular gene therapy strategies have proliferated recently, and include gene augmentation, gene inactivation, gene editing, RNA modulation, and gene-independent gene augmentation. Viral vector therapeutic constructs include adeno-associated virus and lentivirus and continue to evolve through directed evolution and rationale design. Ocular gene therapy administration techniques have expanded beyond pars plana vitrectomy with subretinal injection to intravitreal injection and suprachoroidal injection. EXPERT OPINION : The success of treatment for IRD, paired with the promise of clinical research in acquired retinal diseases and in administration techniques, has raised the possibility of in-office gene therapy for common retinal disorders within the next five to ten years.
Collapse
Affiliation(s)
- Kyle D Kovacs
- Department of Ophthalmology, Retina Service, Weill Cornell Medical College, New York, NY, USA
| | | | - Szilárd Kiss
- Department of Ophthalmology, Retina Service, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
11
|
Irigoyen C, Amenabar Alonso A, Sanchez-Molina J, Rodríguez-Hidalgo M, Lara-López A, Ruiz-Ederra J. Subretinal Injection Techniques for Retinal Disease: A Review. J Clin Med 2022; 11:jcm11164717. [PMID: 36012955 PMCID: PMC9409835 DOI: 10.3390/jcm11164717] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) affect an estimated 1 in every 2000 people, this corresponding to nearly 2 million cases worldwide. Currently, 270 genes have been associated with IRDs, most of them altering the function of photoreceptors and retinal pigment epithelium. Gene therapy has been proposed as a potential tool for improving visual function in these patients. Clinical trials in animal models and humans have been successful in various types of IRDs. Recently, voretigene neparvovec (Luxturna®) has been approved by the US Food and Drug Administration for the treatment of biallelic mutations in the RPE65 gene. The current state of the art in gene therapy involves the delivery of various types of viral vectors into the subretinal space to effectively transduce diseased photoreceptors and retinal pigment epithelium. For this, subretinal injection is becoming increasingly popular among researchers and clinicians. To date, several approaches for subretinal injection have been described in the scientific literature, all of them effective in accessing the subretinal space. The growth and development of gene therapy give rise to the need for a standardized procedure for subretinal injection that ensures the efficacy and safety of this new approach to drug delivery. The goal of this review is to offer an insight into the current subretinal injection techniques and understand the key factors in the success of this procedure.
Collapse
Affiliation(s)
- Cristina Irigoyen
- Department of Ophthalmology, Donostia University Hospital (HUD), 20014 Donostia San-Sebastián, Spain
- Biodonostia Health Research Institute, 20014 Donostia-San Sebastián, Spain
- Department of Ophthalmology, University of the Basque Country, 48940 Leioa, Spain
| | - Asier Amenabar Alonso
- Department of Ophthalmology, Donostia University Hospital (HUD), 20014 Donostia San-Sebastián, Spain
| | - Jorge Sanchez-Molina
- Department of Ophthalmology, Donostia University Hospital (HUD), 20014 Donostia San-Sebastián, Spain
- Correspondence: ; Tel.: +34-629950276
| | | | | | | |
Collapse
|
12
|
Alexopoulos P, Madu C, Wollstein G, Schuman JS. The Development and Clinical Application of Innovative Optical Ophthalmic Imaging Techniques. Front Med (Lausanne) 2022; 9:891369. [PMID: 35847772 PMCID: PMC9279625 DOI: 10.3389/fmed.2022.891369] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022] Open
Abstract
The field of ophthalmic imaging has grown substantially over the last years. Massive improvements in image processing and computer hardware have allowed the emergence of multiple imaging techniques of the eye that can transform patient care. The purpose of this review is to describe the most recent advances in eye imaging and explain how new technologies and imaging methods can be utilized in a clinical setting. The introduction of optical coherence tomography (OCT) was a revolution in eye imaging and has since become the standard of care for a plethora of conditions. Its most recent iterations, OCT angiography, and visible light OCT, as well as imaging modalities, such as fluorescent lifetime imaging ophthalmoscopy, would allow a more thorough evaluation of patients and provide additional information on disease processes. Toward that goal, the application of adaptive optics (AO) and full-field scanning to a variety of eye imaging techniques has further allowed the histologic study of single cells in the retina and anterior segment. Toward the goal of remote eye care and more accessible eye imaging, methods such as handheld OCT devices and imaging through smartphones, have emerged. Finally, incorporating artificial intelligence (AI) in eye images has the potential to become a new milestone for eye imaging while also contributing in social aspects of eye care.
Collapse
Affiliation(s)
- Palaiologos Alexopoulos
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
| | - Chisom Madu
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
| | - Gadi Wollstein
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
- Center for Neural Science, College of Arts & Science, New York University, New York, NY, United States
| | - Joel S. Schuman
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
- Center for Neural Science, College of Arts & Science, New York University, New York, NY, United States
- Department of Electrical and Computer Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
| |
Collapse
|
13
|
Ladha R, Caspers LE, Willermain F, de Smet MD. Subretinal Therapy: Technological Solutions to Surgical and Immunological Challenges. Front Med (Lausanne) 2022; 9:846782. [PMID: 35402424 PMCID: PMC8985755 DOI: 10.3389/fmed.2022.846782] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Recent advances in ocular gene and cellular therapy rely on precisely controlled subretinal delivery. Due to its inherent limitations, manual delivery can lead to iatrogenic damage to the retina, the retinal pigment epithelium, favor reflux into the vitreous cavity. In addition, it suffers from lack of standardization, variability in delivery and the need to maintain proficiency. With or without surgical damage, an eye challenged with an exogenous viral vector or transplanted cells will illicit an immune response. Understanding how such a response manifests itself and to what extent immune privilege protects the eye from a reaction can help in anticipating short- and long-term consequences. Avoidance of spillover from areas of immune privilege to areas which either lack or have less protection should be part of any mitigation strategy. In that regard, robotic technology can provide reproducible, standardized delivery which is not dependent on speed of injection. The advantages of microprecision medical robotic technology for precise targeted deliveries are discussed.
Collapse
Affiliation(s)
- Reza Ladha
- Departments of Ophthalmology, Centre Hospitalier Universitaire Saint-Pierre and Brugmann, Brussels, Belgium
- Université Libre de Bruxelles, Brussels, Belgium
| | - Laure E. Caspers
- Departments of Ophthalmology, Centre Hospitalier Universitaire Saint-Pierre and Brugmann, Brussels, Belgium
- Université Libre de Bruxelles, Brussels, Belgium
| | - François Willermain
- Departments of Ophthalmology, Centre Hospitalier Universitaire Saint-Pierre and Brugmann, Brussels, Belgium
- Université Libre de Bruxelles, Brussels, Belgium
| | - Marc D. de Smet
- Department of Ophthalmology, Leiden University, Leiden, Netherlands
- Preceyes B.V., Eindhoven, Netherlands
- MIOS SA, Lausanne, Switzerland
| |
Collapse
|
14
|
Muijzer MB, Schellekens PA, Beckers HJM, de Boer JH, Imhof SM, Wisse RPL. Clinical applications for intraoperative optical coherence tomography: a systematic review. Eye (Lond) 2022; 36:379-391. [PMID: 34272509 PMCID: PMC8807841 DOI: 10.1038/s41433-021-01686-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/17/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
In this systematic review, we provide an overview of the current state of intraoperative optical coherence tomography (iOCT). As iOCT technology is increasingly utilized, its current clinical applications and potential uses warrant attention. Here, we categorize the findings of various studies by their respective fields, including the use of iOCT in vitreoretinal surgery, corneal surgery, glaucoma surgery, cataract surgery, and pediatric ophthalmology. The trend observed in recent decades towards performing minimally invasive ophthalmic surgery has caused practitioners to recognize the limitations of using a conventional surgical microscope for intraoperative visualization. Thus, the superior visualization provided by iOCT can improve the safety of these surgical techniques and promote the development of new minimally invasive ophthalmic surgeries. Landmark prospective studies found that iOCT can significantly affect surgical decision making and can cause a subsequent change in surgical strategy, and the use of iOCT has potential to improve surgical outcome. Despite these advantages, however, iOCT is still a relatively new technique, and beginning users of iOCT can encounter limitations that can preclude their reaching the full potential of iOCT and in this respect several improvements are needed.
Collapse
Affiliation(s)
- Marc B. Muijzer
- grid.7692.a0000000090126352Department of Ophthalmology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter A.W.J. Schellekens
- grid.7692.a0000000090126352Department of Ophthalmology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Henny J. M. Beckers
- grid.412966.e0000 0004 0480 1382University Eye Clinic, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Joke H. de Boer
- grid.7692.a0000000090126352Department of Ophthalmology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Saskia M. Imhof
- grid.7692.a0000000090126352Department of Ophthalmology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Robert P. L. Wisse
- grid.7692.a0000000090126352Department of Ophthalmology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
15
|
Amato A, Arrigo A, Aragona E, Manitto MP, Saladino A, Bandello F, Battaglia Parodi M. Gene Therapy in Inherited Retinal Diseases: An Update on Current State of the Art. Front Med (Lausanne) 2021; 8:750586. [PMID: 34722588 PMCID: PMC8553993 DOI: 10.3389/fmed.2021.750586] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Gene therapy cannot be yet considered a far perspective, but a tangible therapeutic option in the field of retinal diseases. Although still confined in experimental settings, the preliminary results are promising and provide an overall scenario suggesting that we are not so far from the application of gene therapy in clinical settings. The main aim of this review is to provide a complete and updated overview of the current state of the art and of the future perspectives of gene therapy applied on retinal diseases. Methods: We carefully revised the entire literature to report all the relevant findings related to the experimental procedures and the future scenarios of gene therapy applied in retinal diseases. A clinical background and a detailed description of the genetic features of each retinal disease included are also reported. Results: The current literature strongly support the hope of gene therapy options developed for retinal diseases. Although being considered in advanced stages of investigation for some retinal diseases, such as choroideremia (CHM), retinitis pigmentosa (RP), and Leber's congenital amaurosis (LCA), gene therapy is still quite far from a tangible application in clinical practice for other retinal diseases. Conclusions: Gene therapy is an extremely promising therapeutic tool for retinal diseases. The experimental data reported in this review offer a strong hope that gene therapy will be effectively available in clinical practice in the next years.
Collapse
Affiliation(s)
- Alessia Amato
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Alessandro Arrigo
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Emanuela Aragona
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Maria Pia Manitto
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Andrea Saladino
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | | |
Collapse
|
16
|
Reichel FF, Wozar F, Seitz I, Ochakovski A, Bartz-Schmidt KU, Peters T, Fischer MD. An Optimized Treatment Protocol for Subretinal Injections Limits Intravitreal Vector Distribution. OPHTHALMOLOGY SCIENCE 2021; 1:100050. [PMID: 36247814 PMCID: PMC9559903 DOI: 10.1016/j.xops.2021.100050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/05/2022]
Abstract
Purpose Subretinal injections (SRis) are commonly used in retinal gene therapy procedures to deliver adeno-associated virus (AAV) to photoreceptors and retinal pigment epithelial cells. We present an optimized surgical protocol to minimize off-target application of AAV in the vitreous, which in turn reduces the risk of extensive biodistribution and inflammation, ultimately leading to enhanced safety of the therapy. Design Experimental animal research study. Participants Eight cynomolgus monkeys (Macaca fascicularis). Methods Subretinal injections with an AAV2/8 vector were performed. The animals were allocated to 2 different vector dose groups (1×10ˆ11 and 5×10ˆ11 viral genomes [vg]). Samples of intravitreal fluid were taken at the end of the SRi procedure and again after a 3-minute lavage (wash-out) with balanced salt solution (BSS). Main Outcome Measures Intravitreal vector genome copies were analyzed with quantitative polymerase chain reaction and compared between groups. Results Even uneventful SRi leads to dissemination of millions of AAV particles (0.1–0.7% of viral vector loading dose) into the vitreous cavity. Three minutes of lavage led to a substantial decrease (on average 96%) of intravitreal vector load. Conclusions Multiple studies have shown that the intravitreal space is not as immune privileged as the subretinal space. Intravitreal AAV particles disseminate into the bloodstream, lead to increased biodistribution into lymphatic tissue, and help to stage an immune response with implications for both safety and efficacy. Therefore, minimizing off-target vector application after reflux of vector from the subretinal space is of significant interest. We show that a simple lavage of intravitreal fluid efficiently decreases the intravitreal vector load. Such a step should be considered when performing subretinal gene therapy.
Collapse
|
17
|
Testa F, Melillo P, Della Corte M, Di Iorio V, Brunetti-Pierri R, Citro A, Ferrara M, Karali M, Annibale R, Banfi S, Rossi S, Simonelli F. Voretigene Neparvovec Gene Therapy in Clinical Practice: Treatment of the First Two Italian Pediatric Patients. Transl Vis Sci Technol 2021; 10:11. [PMID: 34554209 PMCID: PMC8475277 DOI: 10.1167/tvst.10.10.11] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To present visual outcomes of the first two Italian patients with RPE65-related inherited retinal dystrophy (RPE65-IRD) treated with voretigene neparvovec (VN). Methods Two pediatric patients with RPE65-IRD were treated with VN in both eyes. Patients were evaluated by best-corrected visual acuity (BCVA), full-field stimulus threshold (FST) test, semiautomated kinetic visual field (SKVF), microperimetry, and chromatic pupillometry over 6 months. Results No complications occurred in the first patient, whereas in the second a subretinal hemorrhage was observed in the first treated eye, and excessive resistance to drug injection occurred during treatment of the second eye. BCVA improved by at least one Early Treatment Diabetic Retinopathy Study line in all treated eyes. The FST test and SKVF showed clinically significant improvements in all eyes (i.e., change of light sensitivity > 10 decibels; area enlargement of at least 20%). Moreover, microperimetry showed better fixation stability. Finally, chromatic pupillometry showed increases in pupillary constriction that ranged from 10% to 20%. All visual changes remained stable during follow-up. Conclusions The first VN treatments in two pediatric Italian patients in clinical practice showed significant improvements in visual outcomes, even in the case of surgical complications, which spontaneously recovered without sequelae. Translational Relevance These findings with VN in patients with RPE65-IRD confirm the results of clinical trials.
Collapse
Affiliation(s)
- Francesco Testa
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Paolo Melillo
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Michele Della Corte
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Valentina Di Iorio
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Raffaella Brunetti-Pierri
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Amelia Citro
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Maurizio Ferrara
- Anesthesiology Unit, Azienda Ospedaliera Universitaria, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Marianthi Karali
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Rosa Annibale
- Pharmacy Unit, Azienda Ospedaliera Universitaria, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Settimio Rossi
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
18
|
Xu D, Khan MA, Klufas MA, Ho AC. Administration of Ocular Gene Therapy. Int Ophthalmol Clin 2021; 61:131-149. [PMID: 34196321 DOI: 10.1097/iio.0000000000000365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Tummala G, Crain A, Rowlan J, Pepple KL. Characterization of Gene Therapy Associated Uveitis Following Intravitreal Adeno-Associated Virus Injection in Mice. Invest Ophthalmol Vis Sci 2021; 62:41. [PMID: 33630023 PMCID: PMC7910624 DOI: 10.1167/iovs.62.2.41] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/30/2021] [Indexed: 12/26/2022] Open
Abstract
Purpose To characterize the intraocular immune cell infiltrate induced by intravitreal adeno-associated virus (AAV) gene therapy. Methods AAV vectors carrying plasmids expressing green fluorescent protein under the control of PR2.1 were injected intravitreally into AAV naive and AAV primed C57Bl/6 mice. Clinical inflammation was assessed using optical coherence tomography. Intraocular immune cell populations were identified and quantified by flow cytometry on days 1, 7, and 29 after intravitreal injection and compared with sham and fellow eye controls. Results Optical coherence tomography inflammation score and total CD45+ cell number were significantly higher in AAV injected eyes compared to uninjected fellow eye and sham injected controls. Clinically apparent inflammation (vitritis on optical coherence tomography) and cellular inflammation (CD45+ cell number) was significantly increased in AAV injected eyes and peaked around day 7. Vitritis resolved by day 29, but cellular inflammation persisted through day 29. On day 1, neutrophils and activated monocytes were the dominant cell populations in all AAV injected eyes. On day 7, eyes of AAV exposed animals had significantly more dendritic cells and T cells than eyes of AAV naive animals. By day 29, CD8- T cells were the dominant CD45+ cell population in AAV injected eyes. Conclusions Intravitreal AAV injection in mice generates clinically evident inflammation that is mild and seems to resolve spontaneously. However, the total number of intraocular CD45+ cells, particularly T cells, remain elevated. Both innate and adaptive immune cells respond to intravitreal AAV regardless of prior immune status, but the adaptive response is delayed in AAV naive eyes.
Collapse
Affiliation(s)
- Gayathri Tummala
- University of Washington, Department of Ophthalmology, Seattle, Washington, United States
| | - Adam Crain
- University of Washington, Department of Ophthalmology, Seattle, Washington, United States
| | - Jessica Rowlan
- University of Washington, Department of Ophthalmology, Seattle, Washington, United States
| | - Kathryn L. Pepple
- University of Washington, Department of Ophthalmology, Seattle, Washington, United States
| |
Collapse
|
20
|
Intraoperative Optical Coherence Tomography: Game-Changing Technology. Cornea 2020; 40:675-678. [PMID: 33941713 DOI: 10.1097/ico.0000000000002629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/22/2020] [Indexed: 10/22/2022]
Abstract
ABSTRACT Intraoperative optical coherence tomography (OCT) has the potential to revolutionize lamellar corneal surgery and facilitate many other types of ocular surgery because it readily visualizes ocular structures that can be difficult to discern with a coaxial microscope, particularly through a cloudy cornea. Systems that can provide a high-quality image on demand in the surgeon's oculars, rather than just on an adjacent monitor, are the most useful because they allow the surgeon to rely on the OCT image while operating, without having to look away from the surgical field. Useful applications in lamellar corneal surgery include assessing graft attachment with Descemet stripping endothelial keratoplasty and discerning graft orientation with Descemet membrane endothelial keratoplasty, which otherwise could be challenging in an eye with a cloudy cornea. Intraoperative OCT is particularly helpful when performing deep anterior lamellar keratoplasty in cases in which a big bubble should not be attempted or cannot be achieved because it enables better intraoperative control of the incision depth and allows the surgeon to assess the uniformity of the dissection plane to optimize visual outcomes. Intraoperative OCT is also useful when judging the depth of a scar for a lamellar dissection, when evaluating intraocular lens positioning in the capsular bag, or when locating and removing retained nuclear fragments from an eye with a poor view because of a cloudy cornea. The primary barrier to the adoption of this valuable technology is cost.
Collapse
|
21
|
Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, Goodspeed K, Gray SJ, Kay CN, Boye SL, Boye SE, George LA, Salabarria S, Corti M, Byrne BJ, Tremblay JP. Current Clinical Applications of In Vivo Gene Therapy with AAVs. Mol Ther 2020; 29:464-488. [PMID: 33309881 PMCID: PMC7854298 DOI: 10.1016/j.ymthe.2020.12.007] [Citation(s) in RCA: 389] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/16/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023] Open
Abstract
Hereditary diseases are caused by mutations in genes, and more than 7,000 rare diseases affect over 30 million Americans. For more than 30 years, hundreds of researchers have maintained that genetic modifications would provide effective treatments for many inherited human diseases, offering durable and possibly curative clinical benefit with a single treatment. This review is limited to gene therapy using adeno-associated virus (AAV) because the gene delivered by this vector does not integrate into the patient genome and has a low immunogenicity. There are now five treatments approved for commercialization and currently available, i.e., Luxturna, Zolgensma, the two chimeric antigen receptor T cell (CAR-T) therapies (Yescarta and Kymriah), and Strimvelis (the gammaretrovirus approved for adenosine deaminase-severe combined immunodeficiency [ADA-SCID] in Europe). Dozens of other treatments are under clinical trials. The review article presents a broad overview of the field of therapy by in vivo gene transfer. We review gene therapy for neuromuscular disorders (spinal muscular atrophy [SMA]; Duchenne muscular dystrophy [DMD]; X-linked myotubular myopathy [XLMTM]; and diseases of the central nervous system, including Alzheimer’s disease, Parkinson’s disease, Canavan disease, aromatic l-amino acid decarboxylase [AADC] deficiency, and giant axonal neuropathy), ocular disorders (Leber congenital amaurosis, age-related macular degeneration [AMD], choroideremia, achromatopsia, retinitis pigmentosa, and X-linked retinoschisis), the bleeding disorder hemophilia, and lysosomal storage disorders.
Collapse
Affiliation(s)
- Jerry R Mendell
- Center of Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics and Neurology, The Ohio State University, Columbus, OH, USA
| | | | | | - Kimberly Goodspeed
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Steven J Gray
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Sanford L Boye
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | - Shannon E Boye
- Division of Cellular and Molecular Therapeutics, University of Florida, Gainesville, FL, USA
| | - Lindsey A George
- Division of Hematology and the Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, PA, USA; Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephanie Salabarria
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Manuela Corti
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA; Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | - Barry J Byrne
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA; Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
22
|
Nuzbrokh Y, Kassotis AS, Ragi SD, Jauregui R, Tsang SH. Treatment-Emergent Adverse Events in Gene Therapy Trials for Inherited Retinal Diseases: A Narrative Review. Ophthalmol Ther 2020; 9:709-724. [PMID: 32740739 PMCID: PMC7708583 DOI: 10.1007/s40123-020-00287-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Indexed: 12/24/2022] Open
Abstract
Patient safety is a primary priority in the conduction of retinal gene therapy trials. An understanding of risk factors and mitigation strategies for post-procedure complications is crucial for the optimization of gene therapy clinical trial protocols. In this review, we synthesize the literature on ocular delivery methods, vector platforms, and treatment-emergent adverse effects in recent gene therapy clinical trials for inherited retinal diseases.
Collapse
Affiliation(s)
- Yan Nuzbrokh
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, NY, USA
- Jonas Children's Vision Care, New York, NY, USA
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Alexis S Kassotis
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, NY, USA
| | - Sara D Ragi
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, NY, USA
- Jonas Children's Vision Care, New York, NY, USA
| | - Ruben Jauregui
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, NY, USA
- Jonas Children's Vision Care, New York, NY, USA
| | - Stephen H Tsang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, NY, USA.
- Jonas Children's Vision Care, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|