1
|
Leung DHL, Phon BWS, Sivalingam M, Radhakrishnan AK, Kamarudin MNA. Regulation of EMT Markers, Extracellular Matrix, and Associated Signalling Pathways by Long Non-Coding RNAs in Glioblastoma Mesenchymal Transition: A Scoping Review. BIOLOGY 2023; 12:818. [PMID: 37372103 DOI: 10.3390/biology12060818] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Glioblastoma (GBM) mesenchymal (MES) transition can be regulated by long non-coding RNAs (lncRNAs) via modulation of various factors (Epithelial-to-Mesenchymal (EMT) markers, biological signalling, and the extracellular matrix (ECM)). However, understanding of these mechanisms in terms of lncRNAs is largely sparse. This review systematically analysed the mechanisms by which lncRNAs influence MES transition in GBM from a systematic search of the literature (using PRISMA) performed in five databases (PubMed, MEDLINE, EMBASE, Scopus, and Web of Science). We identified a total of 62 lncRNAs affiliated with GBM MES transition, of which 52 were upregulated and 10 were downregulated in GBM cells, where 55 lncRNAs were identified to regulate classical EMT markers in GBM (E-cadherin, N-cadherin, and vimentin) and 25 lncRNAs were reported to regulate EMT transcription factors (ZEB1, Snai1, Slug, Twist, and Notch); a total of 16 lncRNAs were found to regulate the associated signalling pathways (Wnt/β-catenin, PI3k/Akt/mTOR, TGFβ, and NF-κB) and 14 lncRNAs were reported to regulate ECM components (MMP2/9, fibronectin, CD44, and integrin-β1). A total of 25 lncRNAs were found dysregulated in clinical samples (TCGA vs. GTEx), of which 17 were upregulated and 8 were downregulated. Gene set enrichment analysis predicted the functions of HOXAS3, H19, HOTTIP, MEG3, DGCR5, and XIST at the transcriptional and translational levels based on their interacting target proteins. Our analysis observed that the MES transition is regulated by complex interplays between the signalling pathways and EMT factors. Nevertheless, further empirical studies are required to elucidate the complexity in this process between these EMT factors and the signalling involved in the GBM MES transition.
Collapse
Affiliation(s)
- Dexter Hoi Long Leung
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Brandon Wee Siang Phon
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Mageswary Sivalingam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Ammu Kutty Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Muhamad Noor Alfarizal Kamarudin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| |
Collapse
|
2
|
Shree B, Tripathi S, Sharma V. Transforming Growth Factor-Beta-Regulated LncRNA-MUF Promotes Invasion by Modulating the miR-34a Snail1 Axis in Glioblastoma Multiforme. Front Oncol 2022; 11:788755. [PMID: 35223453 PMCID: PMC8865078 DOI: 10.3389/fonc.2021.788755] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/13/2021] [Indexed: 01/12/2023] Open
Abstract
Transforming growth factor beta (TGF-β)-regulated long-non-coding RNAs (lncRNAs) modulate several aspects of tumor development such as proliferation, invasion, metastasis, epithelial to mesenchymal transition (EMT), and drug resistance in various cancers, including Glioblastoma multiforme (GBM). We identified several novel differentially expressed lncRNAs upon TGF-β treatment in glioma cells using genome-wide microarray screening. We show that TGF-β induces lncRNA-MUF in glioma cells, and its expression is significantly upregulated in glioma tissues and is associated with poor overall survival of GBM patients. Knockdown of lncRNA-MUF reduces proliferation, migration, and invasion in glioma cells and sensitizes them to temozolomide (TMZ)-induced apoptosis. In addition, lncRNA-MUF downregulation impairs TGF-β-induced smad2/3 phosphorylation. In line with its role in regulating invasion, lncRNA-MUF functions as a competing endogenous RNA (ceRNA) for miR-34a and promotes Snail1 expression. Collectively, our findings suggest lncRNA-MUF as an attractive therapeutic target for GBM.
Collapse
Affiliation(s)
- Bakhya Shree
- Department of Biological Sciences, Birla Institute of Technology and Science, Hyderabad, India
| | - Shraddha Tripathi
- Department of Biological Sciences, Birla Institute of Technology and Science, Hyderabad, India
| | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science, Hyderabad, India
| |
Collapse
|
3
|
Zhang C, Guo L, Su Z, Luo N, Tan Y, Xu P, Ye L, Tong S, Liu H, Li X, Chen Q, Tian D. Tumor Immune Microenvironment Landscape in Glioma Identifies a Prognostic and Immunotherapeutic Signature. Front Cell Dev Biol 2021; 9:717601. [PMID: 34650972 PMCID: PMC8507498 DOI: 10.3389/fcell.2021.717601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/03/2021] [Indexed: 12/21/2022] Open
Abstract
The tumor immune microenvironment (TIME) has been recognized to be associated with sensitivity to immunotherapy and patient prognosis. Recent research demonstrates that assessing the TIME patterns on large-scale samples will expand insights into TIME and will provide guidance to formulate immunotherapy strategies for tumors. However, until now, thorough research has not yet been reported on the immune infiltration landscape of glioma. Herein, the CIBERSORT algorithm was used to unveil the TIME landscape of 1,975 glioma observations. Three TIME subtypes were established, and the TIMEscore was calculated by least absolute shrinkage and selection operator (LASSO)–Cox analysis. The high TIMEscore was distinguished by an elevated tumor mutation burden (TMB) and activation of immune-related biological process, such as IL6-JAK-STAT3 signaling and interferon gamma (IFN-γ) response, which may demonstrate that the patients with high TIMEscore were more sensitive to immunotherapy. Multivariate analysis revealed that the TIMEscore could strongly and independently predict the prognosis of gliomas [Chinese Glioma Genome Atlas (CGGA) cohort: hazard ratio (HR): 2.134, p < 0.001; Gravendeel cohort: HR: 1.872, p < 0.001; Kamoun cohort: HR: 1.705, p < 0.001; The Cancer Genome Atlas (TCGA) cohort: HR: 2.033, p < 0.001; the combined cohort: HR: 1.626, p < 0.001], and survival advantage was evident among those who received chemotherapy. Finally, we validated the performance of the signature in human tissues from Wuhan University (WHU) dataset (HR: 15.090, p = 0.008). Our research suggested that the TIMEscore could be applied as an effective predictor for adjuvant therapy and prognosis assessment.
Collapse
Affiliation(s)
- Chunyu Zhang
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
| | - Lirui Guo
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
| | - Zhongzhou Su
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Na Luo
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Yinqiu Tan
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengfei Xu
- Sun Yat-sen University, The Seventh Affiliated Hospital, Shenzhen, China
| | - Liguo Ye
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
| | - Shiao Tong
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
| | - Haitao Liu
- Department of Cardiothoracic Surgery, Jiaxing University, The First Affiliated Hospital, Jiaxing, China
| | - Xiaobin Li
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Qianxue Chen
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
| | - Daofeng Tian
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
| |
Collapse
|
4
|
Evaluation of Epithelial-Mesenchymal Transition Genes Involved in Iranian Gastric Cancer Patients via Transcriptome Analysis. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2019. [DOI: 10.5812/ijcm.94924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Tan DC, Roth IM, Wickremesekera AC, Davis PF, Kaye AH, Mantamadiotis T, Stylli SS, Tan ST. Therapeutic Targeting of Cancer Stem Cells in Human Glioblastoma by Manipulating the Renin-Angiotensin System. Cells 2019; 8:cells8111364. [PMID: 31683669 PMCID: PMC6912312 DOI: 10.3390/cells8111364] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022] Open
Abstract
Patients with glioblastoma (GB), a highly aggressive brain tumor, have a median survival of 14.6 months following neurosurgical resection and adjuvant chemoradiotherapy. Quiescent GB cancer stem cells (CSCs) invariably cause local recurrence. These GB CSCs can be identified by embryonic stem cell markers, express components of the renin-angiotensin system (RAS) and are associated with circulating CSCs. Despite the presence of circulating CSCs, GB patients rarely develop distant metastasis outside the central nervous system. This paper reviews the current literature on GB growth inhibition in relation to CSCs, circulating CSCs, the RAS and the novel therapeutic approach by repurposing drugs that target the RAS to improve overall symptom-free survival and maintain quality of life.
Collapse
Affiliation(s)
- David Ch Tan
- Department of Neurosurgery, Wellington Regional Hospital, Wellington 6021, New Zealand.
| | - Imogen M Roth
- Gillies McIndoe Research Institute, Wellington 6021, New Zealand.
| | - Agadha C Wickremesekera
- Department of Neurosurgery, Wellington Regional Hospital, Wellington 6021, New Zealand.
- Gillies McIndoe Research Institute, Wellington 6021, New Zealand.
- Department of Surgery, The University of Melbourne, Parkville, Victoria 3050, Australia.
| | - Paul F Davis
- Gillies McIndoe Research Institute, Wellington 6021, New Zealand.
| | - Andrew H Kaye
- Department of Surgery, The University of Melbourne, Parkville, Victoria 3050, Australia.
- Department of Neurosurgery, Hadassah Hebrew University Medical Centre, Jerusalem 91120, Israel.
| | - Theo Mantamadiotis
- Department of Surgery, The University of Melbourne, Parkville, Victoria 3050, Australia.
| | - Stanley S Stylli
- Department of Surgery, The University of Melbourne, Parkville, Victoria 3050, Australia.
- Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.
| | - Swee T Tan
- Gillies McIndoe Research Institute, Wellington 6021, New Zealand.
- Department of Surgery, The University of Melbourne, Parkville, Victoria 3050, Australia.
- Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Lower Hutt 5040, New Zealand.
| |
Collapse
|
6
|
Kundu M, Das S, Dhara D, Mandal M. Prospect of natural products in glioma: A novel avenue in glioma management. Phytother Res 2019; 33:2571-2584. [PMID: 31359523 DOI: 10.1002/ptr.6426] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/28/2019] [Accepted: 06/09/2019] [Indexed: 12/26/2022]
Abstract
Glioma is one of the most perplexing cancers because of its infiltrating nature, molecular signaling, and location in central nervous system. Blood-brain barrier acts as a natural barrier to the glioma making it difficult to access by conventional chemotherapy. Clinicians are using natural compounds or their derivatives for several diseases including different cancers. However, the feasibility of using natural compounds in glioma is not explored in details. Natural compounds can act over a wide variety of signaling pathways such as survival and metabolic pathways and induce cell death. Some of the natural agents have additional benefits of crossing biological barriers such as blood-brain barrier with ease having few or no impact on the surrounding healthy cells. All of these benefits make natural compounds a prospective candidate for the glioma management. This article evaluates the benefits of using natural compounds for glioma therapy and their possible mechanism of actions. We have discussed the natural compounds assessed currently for glioma therapy and proposed a few novel natural compounds with potential antiglioma effect based on their mechanism of action.
Collapse
Affiliation(s)
- Moumita Kundu
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Subhayan Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Dibakar Dhara
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|