1
|
van der Ham S, Agudo-Canalejo J, Vutukuri HR. Role of Shape in Particle-Lipid Membrane Interactions: From Surfing to Full Engulfment. ACS NANO 2024; 18:10407-10416. [PMID: 38513125 PMCID: PMC11025115 DOI: 10.1021/acsnano.3c11106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Understanding and manipulating the interactions between foreign bodies and cell membranes during endo- and phagocytosis is of paramount importance, not only for the fate of living cells but also for numerous biomedical applications. This study aims to elucidate the role of variables such as anisotropic particle shape, curvature, orientation, membrane tension, and adhesive strength in this essential process using a minimal experimental biomimetic system comprising giant unilamellar vesicles and rod-like particles with different curvatures and aspect ratios. We find that the particle wrapping process is dictated by the balance between the elastic free energy penalty and adhesion free energy gain, leading to two distinct engulfment pathways, tip-first and side-first, emphasizing the significance of the particle orientation in determining the pathway. Moreover, our experimental results are consistent with theoretical predictions in a state diagram, showcasing how to control the wrapping pathway from surfing to partial to complete wrapping by the interplay between membrane tension and adhesive strength. At moderate particle concentrations, we observed the formation of rod clusters, which exhibited cooperative and sequential wrapping. Our study contributes to a comprehensive understanding of the mechanistic intricacies of endocytosis by highlighting how the interplay between the anisotropic particle shape, curvature, orientation, membrane tension, and adhesive strength can influence the engulfment pathway.
Collapse
Affiliation(s)
- Stijn van der Ham
- Active
Soft Matter and Bio-inspired Materials Lab, Faculty of Science and
Technology, MESA+ Institute, University
of Twente, 7500 AE Enschede, The Netherlands
| | - Jaime Agudo-Canalejo
- Department
of Living Matter Physics, Max Planck Institute
for Dynamics and Self-Organization, Göttingen, D-37077, Germany
- Department
of Physics and Astronomy, University College
London, London WC1E 6BT, United Kingdom
| | - Hanumantha Rao Vutukuri
- Active
Soft Matter and Bio-inspired Materials Lab, Faculty of Science and
Technology, MESA+ Institute, University
of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
2
|
Salucci S, Giordani M, Betti M, Valentini L, Gobbi P, Mattioli M. The in vitro cytotoxic effects of natural (fibrous epsomite crystals) and synthetic (Epsom salt) magnesium sulfate. Microsc Res Tech 2024; 87:685-694. [PMID: 37982323 DOI: 10.1002/jemt.24458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/18/2023] [Accepted: 11/05/2023] [Indexed: 11/21/2023]
Abstract
Exposure to mineral fibers represents an occupational and environmental hazard since particulate inhalation leads to several health disorders. However, few data are available on the effect of fibers with high solubility like natural epsomite, a water-soluble fiber with an inhalable size that allows it to penetrate biological systems, with regard to the respiratory tract. This study evaluated the natural (fibrous epsomite) and synthetic (Epsom salt) magnesium sulfate pathogenicity. Investigations have been performed through morpho-functional and biochemical analyses, in an in vitro cell model that usually grows as monocytes, but that under appropriate conditions differentiates into macrophages. These latter, known as alveolar macrophages, if referred to lungs, represent the first line of defense against harmful inhaled stimuli. Morphological observations reveal that, if Epsom salt induces osmotic stress on cell culture, natural epsomite fibers lead to cellular alterations including thickening of the nuclear envelope and degenerated mitochondria. Moreover, the insoluble fraction (impurities) internalized by cells induces diffuse damage characterized at the highest dosage and exposure time by secondary necrosis or necrotic cell death features. Biochemical analyses confirm this mineral behavior that involves MAPK pathway activation, resulting in many different cellular responses ranging from proliferation control to cell death. Epsom salt leads to MAPK/ERK activation, a marker predictive of overall survival. Unlike, natural epsomite induces upregulation of MAPK/p38 protein involved in the phosphorylation of downstream targets driving necrotic cell death. These findings demonstrate natural epsomite toxicity on U937 cell culture, making the inhalation of these fibers potentially hazardous for human health. RESEARCH HIGHLIGHTS: Natural epsomite and synthetic Epsom salt effects have been evaluated in U937 cell model. Epsom salt induces an osmotic cellular stress. Natural epsomite fibers lead to cellular damage and can be considered potentially dangerous for human health.
Collapse
Affiliation(s)
- Sara Salucci
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Matteo Giordani
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Michele Betti
- Department of Biomolecular Sciences (DISB), University of Urbino Carlo Bo, Urbino, Italy
| | - Laura Valentini
- Department of Biomolecular Sciences (DISB), University of Urbino Carlo Bo, Urbino, Italy
| | - Pietro Gobbi
- Department of Biomolecular Sciences (DISB), University of Urbino Carlo Bo, Urbino, Italy
| | - Michele Mattioli
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
3
|
Ackermann M, Rafiei Hashtchin A, Manstein F, Carvalho Oliveira M, Kempf H, Zweigerdt R, Lachmann N. Continuous human iPSC-macrophage mass production by suspension culture in stirred tank bioreactors. Nat Protoc 2022; 17:513-539. [PMID: 35039668 PMCID: PMC7612500 DOI: 10.1038/s41596-021-00654-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/01/2021] [Indexed: 11/09/2022]
Abstract
Macrophages derived from human induced pluripotent stem cells (iPSCs) have the potential to enable the development of cell-based therapies for numerous disease conditions. We here provide a detailed protocol for the mass production of iPSC-derived macrophages (iPSC-Mac) in scalable suspension culture on an orbital shaker or in stirred-tank bioreactors (STBRs). This strategy is straightforward, robust and characterized by the differentiation of primed iPSC aggregates into 'myeloid-cell-forming-complex' intermediates by means of a minimal cytokine cocktail. In contrast to the 'batch-like differentiation approaches' established for other iPSC-derived lineages, myeloid-cell-forming-complex-intermediates are stably maintained in suspension culture and continuously generate functional and highly pure iPSC-Mac. Employing a culture volume of 120 ml in the STBR platform, ~1-4 × 107 iPSC-Mac can be harvested at weekly intervals for several months. The STBR technology allows for real-time monitoring of crucial process parameters such as biomass, pH, dissolved oxygen, and nutrition levels; the system also promotes systematic process development, optimization and linear upscaling. The process duration, from the expansion of iPSC until the first iPSC-Mac harvest, is 28 d. Successful application of the protocol requires expertise in pluripotent stem cell culture, differentiation and analytical methods, such as flow cytometry. Fundamental know-how in biotechnology is also advantageous to run the process in the STBR platform. The continuous, scalable production of well-defined iPSC-Mac populations is highly relevant to various fields, ranging from developmental biology, immunology and cell therapies to industrial applications for drug safety and discovery.
Collapse
Affiliation(s)
- Mania Ackermann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH, Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Anna Rafiei Hashtchin
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH, Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Felix Manstein
- REBIRTH, Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Marco Carvalho Oliveira
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH, Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Henning Kempf
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- Department of Stem Cell Biology, Novo Nordisk A/S, Måløv, Denmark
| | - Robert Zweigerdt
- REBIRTH, Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Nico Lachmann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
- REBIRTH, Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany.
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
4
|
Voloaca OM, Clench MR, Koellensperger G, Cole LM, Haywood-Small SL, Theiner S. Elemental Mapping of Human Malignant Mesothelioma Tissue Samples Using High-Speed LA–ICP–TOFMS Imaging. Anal Chem 2022; 94:2597-2606. [PMID: 35073065 PMCID: PMC8829826 DOI: 10.1021/acs.analchem.1c04857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
This
is the first report of the use of laser ablation–inductively
coupled plasma time-of-flight mass spectrometry (LA–ICP–TOFMS)
to analyze human malignant pleural mesothelioma (MPM) samples at the
cellular level. MPM is an aggressive, incurable cancer associated
with asbestos exposure, with a long latency and poor overall survival.
Following careful optimization of the laser fluence, the simultaneous
ablation of soft biological tissue and hard mineral fibers was possible,
allowing the spatial detection of elements such as Si, Mg, Ca, and
Fe, which are also present in the glass substrate. A low-dispersion
LA setup was employed, which provided the high spatial resolution
necessary to identify the asbestos fibers and fiber fragments in the
tissue and to characterize the metallome at the cellular level (a
pixel size of 2 μm), with a high speed (at 250 Hz). The multielement
LA–ICP–TOFMS imaging approach enabled (i) the detection
of asbestos fibers/mineral impurities within the MPM tissue samples
of patients, (ii) the visualization of the tissue structure with the
endogenous elemental pattern at high spatial resolution, and (iii)
obtaining insights into the metallome of MPM patients with different
pathologies in a single analysis run. Asbestos and other mineral fibers
were detected in the lung and pleura tissue of MPM patients, respectively,
based on their multielement pattern (Si, Mg, Ca, Fe, and Sr). Interestingly,
strontium was detected in asbestos fibers, suggesting a link between
this potential toxic element and MPM pathogenesis. Furthermore, monitoring
the metallome around the talc deposit regions (characterized by elevated
levels of Al, Mg, and Si) revealed significant tissue damage and inflammation
caused by talc pleurodesis. LA–ICP–TOFMS results correlated
to Perls’ Prussian blue and histological staining of the corresponding
serial sections. Ultimately, the ultra-high-speed and high-spatial-resolution
capabilities of this novel LA–ICP–TOFMS setup may become
an important clinical tool for simultaneous asbestos detection, metallome
monitoring, and biomarker identification.
Collapse
Affiliation(s)
- Oana M. Voloaca
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, S1 1WB Sheffield, U.K
| | - Malcolm R. Clench
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, S1 1WB Sheffield, U.K
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria
| | - Laura M. Cole
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, S1 1WB Sheffield, U.K
| | - Sarah L. Haywood-Small
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, S1 1WB Sheffield, U.K
| | - Sarah Theiner
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria
| |
Collapse
|
5
|
Di Giuseppe D, Scarfì S, Alessandrini A, Bassi AM, Mirata S, Almonti V, Ragazzini G, Mescola A, Filaferro M, Avallone R, Vitale G, Scognamiglio V, Gualtieri AF. Acute cytotoxicity of mineral fibres observed by time-lapse video microscopy. Toxicology 2021; 466:153081. [PMID: 34953976 DOI: 10.1016/j.tox.2021.153081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023]
Abstract
Inhalation of mineral fibres is associated with the onset of an inflammatory activity in the lungs and the pleura responsible for the development of fatal malignancies. It is known that cell damage is a necessary step for triggering the inflammatory response. However, the mechanisms by which mineral fibres exert cytotoxic activity are not fully understood. In this work, the kinetics of the early cytotoxicity mechanisms of three mineral fibres (i.e., chrysotile, crocidolite and fibrous erionite) classified as carcinogenic by the International Agency for Research on Cancer, was determined for the first time in a comparative manner using time-lapse video microscopy coupled with in vitro assays. All tests were performed using the THP-1 cell line, differentiated into M0 macrophages (M0-THP-1) and exposed for short times (8 h) to 25 μg/mL aliquots of chrysotile, crocidolite and fibrous erionite. The toxic action of fibrous erionite on M0-THP-1 cells is manifested since the early steps (2 h) of the experiment while the cytotoxicity of crocidolite and chrysotile gradually increases during the time span of the experiment. Chrysotile and crocidolite prompt cell death mainly via apoptosis, while erionite exposure is also probably associated to a necrotic-like effect. The potential mechanisms underlying these different toxicity behaviours are discussed in the light of the different morphological, and chemical-physical properties of the three fibres.
Collapse
Affiliation(s)
- Dario Di Giuseppe
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Sonia Scarfì
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa, Italy
| | - Andrea Alessandrini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Modena, Italy; CNR-Nanoscience Institute-S3, Modena, Italy
| | - Anna Maria Bassi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa, Italy
| | - Serena Mirata
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa, Italy
| | - Vanessa Almonti
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa, Italy
| | - Gregorio Ragazzini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Modena, Italy; CNR-Nanoscience Institute-S3, Modena, Italy
| | | | - Monica Filaferro
- Department of Biomedical, Metabolic and Neural Sciences, The University of Modena and Reggio Emilia, Modena, Italy
| | - Rossella Avallone
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Vitale
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Scognamiglio
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandro F Gualtieri
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
6
|
Kuroda A. Recent progress and perspectives on the mechanisms underlying Asbestos toxicity. Genes Environ 2021; 43:46. [PMID: 34641979 PMCID: PMC8507173 DOI: 10.1186/s41021-021-00215-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/13/2021] [Indexed: 01/10/2023] Open
Abstract
Most cases of mesothelioma are known to result from exposure to asbestos fibers in the environment or occupational ambient air. The following questions regarding asbestos toxicity remain partially unanswered: (i) why asbestos entering the alveoli during respiration exerts toxicity in the pleura; and (ii) how asbestos causes mesothelioma, even though human mesothelial cells are easily killed upon exposure to asbestos. As for the latter question, it is now thought that the frustrated phagocytosis of asbestos fibers by macrophages prolongs inflammatory responses and gives rise to a “mutagenic microenvironment” around mesothelial cells, resulting in their malignant transformation. Based on epidemiological and genetic studies, a carcinogenic model has been proposed in which BRCA1-associated protein 1 mutations are able to suppress cell death in mesothelial cells and increase genomic instability in the mutagenic microenvironment. This leads to additional mutations, such as CDKN2A [p16], NF2, TP53, LATS2, and SETD2, which are associated with mesothelioma carcinogenesis. Regarding the former question, the receptors involved in the intracellular uptake of asbestos and the mechanism of transfer of inhaled asbestos from the alveoli to the pleura are yet to be elucidated. Further studies using live-cell imaging techniques will be critical to fully understanding the mechanisms underlying asbestos toxicity.
Collapse
Affiliation(s)
- Akio Kuroda
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi Hiroshima, Hiroshima, 739-8530, Japan.
| |
Collapse
|
7
|
Bardelli F, Brun F, De Panfilis S, Cloetens P, Capella S, Belluso E, Bellis D, Di Napoli A, Cedola A. Chemo-physical properties of asbestos bodies in human lung tissues studied at the nano-scale by non-invasive, label free x-ray imaging and spectroscopic techniques. Toxicol Lett 2021; 348:18-27. [PMID: 34023437 DOI: 10.1016/j.toxlet.2021.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022]
Abstract
In the lungs, asbestos develops an Fe-rich coating (Asbestos Body, AB) that becomes the actual interface between the foreign fibers and the host organism. Conventional approaches to study ABs require an invasive sample preparation that can alter them. In this work, a novel combination of x-ray tomography and spectroscopy allowed studying unaltered lung tissue samples with chrysotile and crocidolite asbestos. The thickness and mass density maps of the ABs obtained by x-ray tomography were used to derive a truly quantitative elemental analysis from scanning x-ray fluorescence spectroscopy data. The average mass density of the ABs is compatible with that of highly loaded ferritin, or hemosiderin. The composition of all ABs analyzed was similar, with only minor differences in the relative elemental fractions. Silicon concentration decreased in the core-to-rim direction, indicating a possible partial dissolution of the inner fiber. The Fe content in the ABs was higher than that possibly contained in chrysotile and crocidolite. This finding opens two opposite scenarios, the first with Fe coming from the fiber bulk and concentrating on the surface as long as the fiber dissolves, the second where the Fe that takes part to the formation of the AB originates from the host organism Fe-pool.
Collapse
Affiliation(s)
- Fabrizio Bardelli
- Institute of Nanotechnology - CNR-Nanotec, c/o Department of Physics, Sapienza University, Roma, Italy.
| | - Francesco Brun
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Simone De Panfilis
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Roma, Italy
| | - Peter Cloetens
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - Silvana Capella
- Department of Earth Sciences, University of Torino, Torino, Italy; Interdepartmental Centre for the Study of Asbestos and Other Toxic Particulate "G. Scansetti", University of Torino, Torino, Italy
| | - Elena Belluso
- Department of Earth Sciences, University of Torino, Torino, Italy; Interdepartmental Centre for the Study of Asbestos and Other Toxic Particulate "G. Scansetti", University of Torino, Torino, Italy
| | - Donata Bellis
- Interdepartmental Centre for the Study of Asbestos and Other Toxic Particulate "G. Scansetti", University of Torino, Torino, Italy; Department of Surgery, Pathological Anatomy, Ospedale degli Infermi, Biella, Italy
| | - Arianna Di Napoli
- Department of Clinical and Molecular Medicine, Pathology Unit, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | - Alessia Cedola
- Institute of Nanotechnology - CNR-Nanotec, c/o Department of Physics, Sapienza University, Roma, Italy
| |
Collapse
|
8
|
Asbestiform Amphiboles and Cleavage Fragments Analogues: Overview of Critical Dimensions, Aspect Ratios, Exposure and Health Effects. MINERALS 2021. [DOI: 10.3390/min11050525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The term asbestos refers to a group of serpentine (chrysotile) and amphibole (amosite, crocidolite, anthophyllite, tremolite and actinolite) minerals with a fibrous habit. Their chemical-physical properties make them one of the most important inorganic materials for industrial purposes and technological applications. However, the extraction, use and marketing of these minerals have been prohibited due to proven harmful effects, mainly involving the respiratory system. In addition to the known six minerals classified as asbestos, the natural amphiboles and serpentine polymorphs antigorite and lizardite, despite having the same composition of asbestos, do not have the same morphology. These minerals develop chemical and geometric (length > 5 μm, width < 3 μm and length: diameter > 3:1), but not morphological, analogies with asbestos, which is regulated by the WHO. The debate about their potential hazardous properties is open and ongoing; therefore, their morphological characterization has a key role in establishing a reliable asbestos hazard scenario. This review focuses on evaluating the most relevant papers, evidencing the need for a reappraisal. Different in vitro, in vivo and epidemiological studies report information about cleavage fragments with critical dimensions similar to asbestos fibres, but very few works target fragments below 5 µm in length. Breathable smaller fibres could have deleterious effects on human health and cannot be disregarded from the risk assessment process. Furthermore, a few studies suggest that the carcinogenic nature of short fibres is not excluded. This review highlights that it is worth investigating the effects of this size range of elongated mineral particles and fibres.
Collapse
|
9
|
Khaliullin TO, Kisin ER, Guppi S, Yanamala N, Zhernovkov V, Shvedova AA. Differential responses of murine alveolar macrophages to elongate mineral particles of asbestiform and non-asbestiform varieties: Cytotoxicity, cytokine secretion and transcriptional changes. Toxicol Appl Pharmacol 2020; 409:115302. [PMID: 33148505 DOI: 10.1016/j.taap.2020.115302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/17/2020] [Accepted: 10/21/2020] [Indexed: 01/19/2023]
Abstract
Human exposures to asbestiform elongate mineral particles (EMP) may lead to diffuse fibrosis, lung cancer, malignant mesothelioma and autoimmune diseases. Cleavage fragments (CF) are chemically identical to asbestiform varieties (or habits) of the parent mineral, but no consensus exists on whether to treat them as asbestos from toxicological and regulatory standpoints. Alveolar macrophages (AM) are the first responders to inhaled particulates, participating in clearance and activating other resident and recruited immunocompetent cells, impacting the long-term outcomes. In this study we address how EMP of asbestiform versus non-asbestiform habit affect AM responses. Max Planck Institute (MPI) cells, a non-transformed mouse line that has an AM phenotype and genotype, were treated with mass-, surface area- (s.a.), and particle number- (p.n.) equivalent concentrations of respirable asbestiform and non-asbestiform riebeckite/tremolite EMP for 24 h. Cytotoxicity, cytokines secretion and transcriptional changes were evaluated. At the equal mass, asbestiform EMP were more cytotoxic, however EMP of both habits induced similar LDH leakage and decrease in viability at s.a. and p.n. equivalent doses. DNA damage assessment and cell cycle analysis revealed differences in the modes of cell death between asbestos and respective CF. There was an increase in chemokines, but not pro-inflammatory cytokines after all EMP treatments. Principal component analysis of the cytokine secretion showed close clustering for the s.a. and p.n. equivalent treatments. There were mineral- and habit-specific patterns of gene expression dysregulation at s.a. equivalent doses. Our study reveals the critical nature of EMP morphometric parameters for exposure assessment and dosing approaches used in toxicity studies.
Collapse
Affiliation(s)
- T O Khaliullin
- West Virginia University, Morgantown, WV, United States of America; HELD, NIOSH, CDC, Morgantown, WV, United States of America.
| | - E R Kisin
- HELD, NIOSH, CDC, Morgantown, WV, United States of America.
| | - S Guppi
- HELD, NIOSH, CDC, Morgantown, WV, United States of America.
| | - N Yanamala
- West Virginia University, Morgantown, WV, United States of America; Carnegie Mellon University, Pittsburgh, PA, United States of America.
| | | | - A A Shvedova
- West Virginia University, Morgantown, WV, United States of America; HELD, NIOSH, CDC, Morgantown, WV, United States of America.
| |
Collapse
|
10
|
Ogorodnik E, Karsai A, Wang KH, Liu FT, Lo SH, Pinkerton KE, Gilbert B, Haudenschild DR, Liu GY. Direct Observations of Silver Nanowire-Induced Frustrated Phagocytosis among NR8383 Lung Alveolar Macrophages. J Phys Chem B 2020; 124:11584-11592. [PMID: 33306381 DOI: 10.1021/acs.jpcb.0c08132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interaction of long nanowires and living cells is directly related to nanowires' nanotoxicity and health impacts. Interactions of silver nanowires (AgNWs) and macrophage cell lines (NR8383) were investigated using laser scanning confocal microscopy and single cell compression (SCC). With high-resolution imaging and mechanics measurement of individual cells, AgNW-induced frustrated phagocytosis was clearly captured in conjunction with structural and property changes of cells. While frustrated phagocytosis is known for long microwires and long carbon nanotubes, this work reports first direct observations of frustrated phagocytosis of AgNWs among living cells in situ. In the case of partial penetration of AgNWs into NR8383 cells, confocal imaging revealed actin participation at the entry sites, whose behavior differs from microwire-induced frustrated phagocytosis. The impacts of frustrated phagocytosis on the cellular membrane and cytoskeleton were also quantified by measuring the mechanical properties using SCC. Taken collectively, this study reveals the structural and property characteristics of nanowire-induced frustrated phagocytosis, which deepens our understanding of nanowire-cell interactions and nanocytotoxicity.
Collapse
Affiliation(s)
- Evgeny Ogorodnik
- Biophysics Graduate Group, University of California, Davis, California 95616, United States
| | - Arpad Karsai
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Kang-Hsin Wang
- Department of Dermatology, University of California Davis, School of Medicine, Sacramento, California 95817, United States
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Su Hao Lo
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California 95817, United States
| | - Kent E Pinkerton
- Department of Pediatrics, University of California Davis, School of Medicine, Sacramento, California 95817, United States
| | - Benjamin Gilbert
- Energy Geoscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Dominik R Haudenschild
- Department of Orthopedic Surgery, University of California Davis Medical Center, Sacramento, California, 95817, United States
| | - Gang-Yu Liu
- Biophysics Graduate Group, University of California, Davis, California 95616, United States.,Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
11
|
Voloaca OM, Greenhalgh CJ, Cole LM, Clench MR, Managh AJ, Haywood-Small SL. Laser ablation inductively coupled plasma mass spectrometry as a novel clinical imaging tool to detect asbestos fibres in malignant mesothelioma. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8906. [PMID: 32700418 DOI: 10.1002/rcm.8906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Malignant pleural mesothelioma is an extremely aggressive and incurable malignancy associated with prior exposure to asbestos fibres. Difficulties remain in relation to early diagnosis, notably due to impeded identification of asbestos in lung tissue. This study describes a novel laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) imaging approach to identify asbestos within mesothelioma models with clinical significance. METHODS Human mesothelioma cells were exposed to different types of asbestos fibres and prepared on plastic slides for LA-ICP-MS analysis. No further sample preparation was required prior to analysis, which was performed using an NWR Image 266 nm laser ablation system coupled to an Element XR sector-field ICP mass spectrometer, with a lateral resolution of 2 μm. Data was processed using LA-ICP-MS ImageTool v1.7 with the final graphic production made using DPlot software. RESULTS Four different mineral fibres were successfully identified within the mesothelioma samples based on some of the most abundant elements that make up these fibres (Si, Mg and Fe). Using LA-ICP-MS as an imaging tool provided information on the spatial distribution of the fibres at cellular level, which is essential in asbestos detection within tissue samples. Based on the metal counts generated by the different types of asbestos, different fibres can be identified based on shape, size, and elemental composition. Detection of Ca was attempted but requires further optimisation. CONCLUSIONS Detection of asbestos fibres in lung tissues is very useful, if not necessary, to complete the pathological dt9iagnosis of asbestos-related malignancies in the medicolegal field. For the first time, this study demonstrates the successful application of LA-ICP-MS imaging to identify asbestos fibres and other mineral fibres within mesothelioma samples. Ultimately, high-resolution, fast-speed LA-ICP-MS analysis has the potential to be integrated into clinical workflow to aid earlier detection and stratification of mesothelioma patient samples.
Collapse
Affiliation(s)
- Oana M Voloaca
- Biomolecular Research Centre, Sheffield Hallam University, City Campus, Howard Street, Sheffield, S1 1WB, UK
| | - Calum J Greenhalgh
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK
| | - Laura M Cole
- Biomolecular Research Centre, Sheffield Hallam University, City Campus, Howard Street, Sheffield, S1 1WB, UK
| | - Malcolm R Clench
- Biomolecular Research Centre, Sheffield Hallam University, City Campus, Howard Street, Sheffield, S1 1WB, UK
| | - Amy J Managh
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK
| | - Sarah L Haywood-Small
- Biomolecular Research Centre, Sheffield Hallam University, City Campus, Howard Street, Sheffield, S1 1WB, UK
| |
Collapse
|
12
|
Yasa IC, Ceylan H, Bozuyuk U, Wild AM, Sitti M. Elucidating the interaction dynamics between microswimmer body and immune system for medical microrobots. Sci Robot 2020; 5:5/43/eaaz3867. [DOI: 10.1126/scirobotics.aaz3867] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/19/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022]
Abstract
The structural design parameters of a medical microrobot, such as the morphology and surface chemistry, should aim to minimize any physical interactions with the cells of the immune system. However, the same surface-borne design parameters are also critical for the locomotion performance of the microrobots. Understanding the interplay of such parameters targeting high locomotion performance and low immunogenicity at the same time is of paramount importance yet has so far been overlooked. Here, we investigated the interactions of magnetically steerable double-helical microswimmers with mouse macrophage cell lines and splenocytes, freshly harvested from mouse spleens, by systematically changing their helical morphology. We found that the macrophages and splenocytes can recognize and differentially elicit an immune response to helix turn numbers of the microswimmers that otherwise have the same size, bulk physical properties, and surface chemistries. Our findings suggest that the structural optimization of medical microrobots for the locomotion performance and interactions with the immune cells should be considered simultaneously because they are highly entangled and can demand a substantial design compromise from one another. Furthermore, we show that morphology-dependent interactions between macrophages and microswimmers can further present engineering opportunities for biohybrid microrobot designs. We demonstrate immunobots that can combine the steerable mobility of synthetic microswimmers and the immunoregulatory capability of macrophages for potential targeted immunotherapeutic applications.
Collapse
Affiliation(s)
- Immihan Ceren Yasa
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Hakan Ceylan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Ugur Bozuyuk
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Anna-Maria Wild
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- School of Medicine and School of Engineering, Koç University, 34450 Istanbul, Turkey
| |
Collapse
|
13
|
La Maestra S, Micale RT, Ferretti M, Izzotti A, Gaggero L. Attenuation of oxidative stress and chromosomal aberrations in cultured macrophages and pulmonary cells following self-sustained high temperature synthesis of asbestos. Sci Rep 2020; 10:8581. [PMID: 32444646 PMCID: PMC7244567 DOI: 10.1038/s41598-020-65620-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/28/2020] [Indexed: 01/06/2023] Open
Abstract
Inhalation of asbestos fibres can cause lung and pleural diseases in humans and constitutes a severe public health threat worldwide. The aim of the present study was to assess the biological effects induced in both pulmonary cells (A549) and monocyte/macrophage (RAW 264.7) cell lines by combustion slags obtained from asbestos through a self-sustained high-temperature synthesis (SHS) reaction. The SHS reaction involves rapid thermal treatment and displays great ability to neutralise asbestos. Cytotoxicity, redox status imbalance, lipid peroxide production, DNA strand breaks (comet assay) and chromosomal aberrations (cytokinesis block micronucleus test) were evaluated in cells exposed either to untreated asbestos fibres or to grinded SHS-generated slags of different granulometry, tested in cultured cells at varying doses and for varying exposure times. Our results show that asbestos fibres cause redox status imbalance, especially in monocyte/macrophage cell lines. Moreover, they promote lipid peroxidation and trigger genomic alterations. When the cells were exposed to slag powders, which are the products of SHS asbestos treatment, generation of lipid peroxides and induction of DNA strand breaks still persisted, due to the high content in iron and other metals detected in these samples. However, there was an attenuation of redox status imbalance and an absence of chromosomal aberrations, which probably reflects the loss of the asbestos fibrous structure following SHS reaction, as demonstrated by electron microscopy analyses. In conclusions, SHS-treated asbestos wastes can potentially have deleterious health effects due to the oxidative stress induced by inhaled powders but they loose the asbestos ability to induce chromosomal alterations.
Collapse
Affiliation(s)
- Sebastiano La Maestra
- Department of Health Sciences, University of Genoa, via A. Pastore, 1, 16132, Genoa, Italy.
| | - Rosanna T Micale
- Department of Health Sciences, University of Genoa, via A. Pastore, 1, 16132, Genoa, Italy
| | - Maurizio Ferretti
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146, Genoa, Italy
| | - Alberto Izzotti
- Department of Health Sciences, University of Genoa, via A. Pastore, 1, 16132, Genoa, Italy
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi, 10, 16132, Genoa, Italy
| | - Laura Gaggero
- Department of Earth, Environment and Life Sciences, University of Genoa, Corso Europa 26, 16132, Genoa, Italy
| |
Collapse
|
14
|
Abstract
One of the open questions regarding the asbestos problem is the fate of the mineral fibres in the body once inhaled and deposited in the deep respiratory system. In this context, the present paper reports the results of an electron microscopy study of both mineral fibres and asbestos bodies found in the lung tissue of a patient who died of malignant mesothelioma due to past occupational exposure. In concert with previous in vivo animal studies, our data provide evidence that amphibole asbestos fibres are durable in the lungs, whereas chrysotile fibres are transformed into a silica‐rich product, which can be easily cleared. Amphibole fibres recovered from samples of tissue of the deceased display a high degree of crystallinity but also show a very thin amorphous layer on their surface; 31% of the fibres are coated with asbestos bodies consisting of a mixture of ferroproteins (mainly ferritin). Here, we propose an improved model for the coating process. Formation of a coating on the fibres is a defence mechanism against fibres that are longer than 10 µm and thinner than 0.5 µm, which macrophages cannot engulf. The mature asbestos bodies show signs of degradation, and the iron stored in ferritin may be released and potentially increase oxidative stress in the lung tissue.
Collapse
|