1
|
Sherekar P, Suke SG, Dhok A, Harode R, Mangrulkar S, Pingle S. Nano-enabled delivery of diosgenin and emodin ameliorates respirable silica dust-induced pulmonary fibrosis silicosis in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116483. [PMID: 38788565 DOI: 10.1016/j.ecoenv.2024.116483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/30/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
Oxidative stress and inflammation play a fundamental role in the beginning and advancement of silicosis. Hence, questing active phytocompounds (APCs) with anti-oxidative and anti-inflammatory properties such as diosgenin (DG) and emodin (ED) can be a therapeutic intervention targeting silica-induced pulmonary inflammation and fibrosis. Hydrophobicity and low bioavailability are the barriers that restrict the therapeutic efficacy of DG and ED against pulmonary defects. Encapsulating these APCs in polymeric nanoparticles can overcome this limitation. The present study has thus explored the anti-inflammatory and anti-fibrotic effects of polylactic-co-glycolic acid (PLGA) nanoparticles (NPs) individually loaded with DG (DGn) or ED (EDn) and in combine DG+ED [(DG+ED)n] in respirable silica dust (RSD)-induced pulmonary fibrosis silicosis rat model. Our study found that individual and combined NPs revealed physiochemical characteristics appropriate for IV administration with sustained-drug release purposes. Physiological evaluations of RSD-induced silicosis rats suggested that no treatment could improve the body weight. Still, they reduced the lung coefficient by maintaining lung moisture. Only (DG+ED)n significantly cleared free lung silica. All interventions were found to attribute the increased per cent cell viability in BALF, reduce cytotoxicity via minimizing LDH levels, and balance the oxidant-antioxidant status in silicotic rats. The expression of inflammatory cytokines (TNF-α, IL-1β, IL-6, MCP-1, and TGF-β1) were efficiently down-regulated with NPs interventions compared to pure (DG+ED) treatment. All drug treatments significantly declined, the 8-HdG and HYP productions indicate that RSD-induced oxidative DNA damage and collagen deposition were successfully repaired. Moreover, histopathological investigations proposed that individual or combined drugs NPs interventions could decrease the fibrosis and alveolitis grades in RSD-induced silicosis rats. However, (DG+ED)n intervention significantly inhibited pulmonary fibrosis and alveolitis compared to pure (DG+ED) treatment. In conclusion, the RSD can induce oxidative stress and inflammation in rats, producing reactive oxygen species (ROS)-mediated cytotoxicity to pulmonary cells and leading to silicosis development. The IV administration of combined NP suppressed lung inflammation and collagen formation by maintaining oxidant-antioxidant status and effectively interrupting the fibrosis-silicosis progression. These results may be attributed to the improved bioavailability of DG and ED through their combined nano-encapsulation-mediated targeted drug delivery.
Collapse
Affiliation(s)
- Prasad Sherekar
- Department of Biotechnology, Priyadarshini Institute of Engineering and Technology, Priyadarshini Campus, Hingna Road, Nagpur, Maharashtra 440 019, India; Department of Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research (Deemed to be University), Wardha, Maharashtra 442 005, India
| | - Sanvidhan G Suke
- Department of Biotechnology, Priyadarshini Institute of Engineering and Technology, Priyadarshini Campus, Hingna Road, Nagpur, Maharashtra 440 019, India; Department of Biotechnology, Priyadarshini College of Engineering, Priyadarshini Campus, Hingna Road, Nagpur, Maharashtra 440 019, India.
| | - Archana Dhok
- Department of Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research (Deemed to be University), Wardha, Maharashtra 442 005, India
| | - Raunak Harode
- Department of Pharmacology, Priyadarshini J. L. College of Pharmacy, Electronic Zone Building, MIDC, Hingna Road, Nagpur, Maharashtra 440 016, India
| | - Shubhada Mangrulkar
- Department of Pharmacology, Priyadarshini J. L. College of Pharmacy, Electronic Zone Building, MIDC, Hingna Road, Nagpur, Maharashtra 440 016, India; Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441 002, India
| | - Shubhangi Pingle
- Regional Occupational Health Centre (Southern), ICMR Complex, Kannamangala PO, Bengaluru, Karnataka 562 110, India
| |
Collapse
|
2
|
Morin L, Lecureur V, Lescoat A. Results from omic approaches in rat or mouse models exposed to inhaled crystalline silica: a systematic review. Part Fibre Toxicol 2024; 21:10. [PMID: 38429797 PMCID: PMC10905840 DOI: 10.1186/s12989-024-00573-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Crystalline silica (cSiO2) is a mineral found in rocks; workers from the construction or denim industries are particularly exposed to cSiO2 through inhalation. cSiO2 inhalation increases the risk of silicosis and systemic autoimmune diseases. Inhaled cSiO2 microparticles can reach the alveoli where they induce inflammation, cell death, auto-immunity and fibrosis but the specific molecular pathways involved in these cSiO2 effects remain unclear. This systematic review aims to provide a comprehensive state of the art on omic approaches and exposure models used to study the effects of inhaled cSiO2 in mice and rats and to highlight key results from omic data in rodents also validated in human. METHODS The protocol of systematic review follows PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Eligible articles were identified in PubMed, Embase and Web of Science. The search strategy included original articles published after 1990 and written in English which included mouse or rat models exposed to cSiO2 and utilized omic approaches to identify pathways modulated by cSiO2. Data were extracted and quality assessment was based on the SYRCLE's Risk of Bias tool for animal studies. RESULTS Rats and male rodents were the more used models while female rodents and autoimmune prone models were less studied. Exposure of animals were both acute and chronic and the timing of outcome measurement through omics approaches were homogeneously distributed. Transcriptomic techniques were more commonly performed while proteomic, metabolomic and single-cell omic methods were less utilized. Immunity and inflammation were the main domains modified by cSiO2 exposure in lungs of mice and rats. Less than 20% of the results obtained in rodents were finally verified in humans. CONCLUSION Omic technics offer new insights on the effects of cSiO2 exposure in mice and rats although the majority of data still need to be validated in humans. Autoimmune prone model should be better characterised and systemic effects of cSiO2 need to be further studied to better understand cSiO2-induced autoimmunity. Single-cell omics should be performed to inform on pathological processes induced by cSiO2 exposure.
Collapse
Affiliation(s)
- Laura Morin
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en sante, environnement et travail), UMR_S 1085, 35000, Rennes, France
| | - Valérie Lecureur
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en sante, environnement et travail), UMR_S 1085, 35000, Rennes, France.
| | - Alain Lescoat
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en sante, environnement et travail), UMR_S 1085, 35000, Rennes, France
- Department of Internal Medicine, Rennes University Hospital, 35000, Rennes, France
| |
Collapse
|
3
|
Pulmonary Toxicity of Silica Linked to Its Micro- or Nanometric Particle Size and Crystal Structure: A Review. NANOMATERIALS 2022; 12:nano12142392. [PMID: 35889616 PMCID: PMC9318389 DOI: 10.3390/nano12142392] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023]
Abstract
Silicon dioxide (SiO2) is a mineral compound present in the Earth’s crust in two mineral forms: crystalline and amorphous. Based on epidemiological and/or biological evidence, the pulmonary effects of crystalline silica are considered well understood, with the development of silicosis, emphysema, chronic bronchitis, or chronic obstructive pulmonary disease. The structure and capacity to trigger oxidative stress are recognized as relevant determinants in crystalline silica’s toxicity. In contrast, natural amorphous silica was long considered nontoxic, and was often used as a negative control in experimental studies. However, as manufactured amorphous silica nanoparticles (or nanosilica or SiNP) are becoming widely used in industrial applications, these paradigms must now be reconsidered at the nanoscale (<100 nm). Indeed, recent experimental studies appear to point towards significant toxicity of manufactured amorphous silica nanoparticles similar to that of micrometric crystalline silica. In this article, we present an extensive review of the nontumoral pulmonary effects of silica based on in vitro and in vivo experimental studies. The findings of this review are presented both for micro- and nanoscale particles, but also based on the crystalline structure of the silica particles.
Collapse
|
4
|
Wang W, Mu M, Zou Y, Li B, Cao H, Hu D, Tao X. Inflammation and fibrosis in the coal dust-exposed lung described by confocal Raman spectroscopy. PeerJ 2022; 10:e13632. [PMID: 35765591 PMCID: PMC9233900 DOI: 10.7717/peerj.13632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/03/2022] [Indexed: 01/17/2023] Open
Abstract
Background Coal workers' pneumoconiosis (CWP) is an occupational disease that severely damages the life and health of miners. However, little is known about the molecular and cellular mechanisms changes associated with lung inflammation and fibrosis induced by coal dust. As a non-destructive technique for measuring biological tissue, confocal Raman spectroscopy provides accurate molecular fingerprints of label-free tissues and cells. Here, the progression of lung inflammation and fibrosis in a murine model of CWP was evaluated using confocal Raman spectroscopy. Methods A mouse model of CWP was constructed and biochemical analysis in lungs exposed to coal dust after 1 month (CWP-1M) and 3 months (CWP-3M) vs control tissues (NS) were used by confocal Raman spectroscopy. H&E, immunohistochemical and collagen staining were used to evaluate the histopathology alterations in the lung tissues. Results The CWP murine model was successfully constructed, and the mouse lung tissues showed progression of inflammation and fibrosis, accompanied by changes in NF-κB, p53, Bax, and Ki67. Meanwhile, significant differences in Raman bands were observed among the different groups, particularly changes at 1,248, 1,448, 1,572, and 746 cm-1. These changes were consistent with collagen, Ki67, and Bax levels in the CWP and NS groups. Conclusion Confocal Raman spectroscopy represented a novel approach to the identification of the biochemical changes in CWP lungs and provides potential biomarkers of inflammation and fibrosis.
Collapse
Affiliation(s)
- Wenyang Wang
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| | - Min Mu
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| | - Yuanjie Zou
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| | - Bing Li
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| | - Hangbing Cao
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| | - Dong Hu
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| | - Xinrong Tao
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| |
Collapse
|
5
|
Djatioetomo YCED, Marhana IA. Deadly dust: Silicotuberculosis as a downplayed and overlooked fatal disease in Indonesia. Ann Med Surg (Lond) 2022; 78:103794. [PMID: 35734735 PMCID: PMC9207042 DOI: 10.1016/j.amsu.2022.103794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 01/20/2023] Open
Abstract
Background Case presentation Discussion Conclusion Silicotuberculosis is a disease often experienced by workers exposed to silica dust. No treatment for silicosis is currently effective, and it mainly focuses on complications. Silicotuberculosis is a disease that is often found in patients with a history of silica exposure in TB endemic areas.
Collapse
Affiliation(s)
- Yovita Citra Eka Dewi Djatioetomo
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga – Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Isnin Anang Marhana
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga – Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Corresponding author. Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga – Dr. Soetomo General Academic Hospital, Jl. Mayjend No. 6-8, Airlangga, Gubeng, Surabaya, East Java 60286, Indonesia.
| |
Collapse
|